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Abstract

Knowledge distillation (KD) is a powerful technique for
model compression, enabling the creation of compact
and efficient ”student” models by transferring knowl-
edge from large-scale, pre-trained ”teacher” models.
However, the application of traditional KD methods
in this domain is considerably more challenging than
in high-level tasks like classification, as the SISR task
is to reconstruct image pixels a regression problem.
Hence, to effectively distill the knowledge of a teacher
model in SR, we propose MCAD-KD, Multi-Scale Con-
trastive–Adversarial Distillation for Super-Resolution.
We utilize a novel hybrid contrastive learning frame-
work that operates on both global (image-level) and lo-
cal (patch-level) scales. Furthermore, we integrate ad-
versarial guidance, which pushes the student’s output
towards the manifold of realistic images, allowing it to
potentially surpass the perceptual quality of the teacher
by learning directly from the ground-truth data distri-
bution. Our comprehensive framework synergistically
combines these components to train a lightweight stu-
dent model that achieves a superior trade-off between
perceptual quality and computational efficiency.

1. Introduction
Image super-resolution (SR) is a foundational task in
computer vision (CV) that seeks to reconstruct a high-
resolution (HR) image from a low-resolution (LR) in-
put, with applications ranging from medical imaging
to surveillance and consumer electronics. Early deep-
learning approaches—such as SRCNN [8], RCAN [35]
and EDSR [21]—demonstrated that convolutional neu-
ral networks (CNNs) can achieve impressive PSNR and
SSIM gains. More recently, Transformer-based archi-
tectures like SwinIR [20], and IPT [6] have further ad-
vanced perceptual quality by modeling long-range de-
pendencies.

Despite these advances, both CNN- and Transformer-
based SR models demand extensive computational re-
sources and memory, limiting their deployment on edge

devices and in real-world scenarios. Quantization [11],
and pruning [2] alleviate some cost but often require spe-
cialized hardware or extensive tuning. Knowledge distil-
lation (KD) offers a complementary strategy by transfer-
ring “dark knowledge” from a large teacher network to
a compact student network [14]. KD has proven highly
effective in natural language processing [30] and high-
level CV tasks such as classification [29], detection [5],
and segmentation [23]. However, vanilla KD methods
that match soft logits or intermediate features often yield
marginal gains, or even degrade performance, when ap-
plied to SR networks. In SR, the teacher’s output is itself
an approximation of the ground truth, providing little ex-
tra information for pixel-wise or feature-wise imitation.
Recent SR-specific distillation methods exploit data up-
cycling and label consistency regularization [36], but
still rely on pixel-level or feature-level alignment that
can propagate teacher artifacts. To address these limita-
tions, we propose MCAD-KD, a unified SR distillation
framework that combines multi-scale contrastive distil-
lation and adversarial distillation guidance. Multi-scale
contrastive objectives align global structure and local
texture relations in a shared embedding space, avoiding
direct pixel mimicking. Adverarial distillation guidance
provides discriminative feedback against real HR im-
ages with a discriminator, D, driving the student to pro-
duce perceptually superior outputs beyond the teacher’s
capabilities. Thus, our contributions are summarized as
follows: 1) A novel multi-scale contrastive distillation
strategy that transfers relational knowledge at both im-
age and patch levels. 2) Integration of adversarial distil-
lation guidance into KD, enabling the student to surpass
teacher performance in perceptual quality. 3) Compre-
hensive experiments demonstrate that our MCAD-KD
outperforms other baselines.

2. Related Works
Image Super-Resolution The introduction of SR-
CNN [8] pioneered end-to-end convolutional architec-
tures for mapping LR images to their HR counterparts,
substantially outperforming classical interpolation. FS-
RCNN [9] and ESPCN [31] improved efficiency by
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moving the upsampling step into the network via decon-
volution and sub-pixel convolutions, respectively. SR-
ResNet [18] and EDSR [21] refined residual designs
to have an exceptional performance in SR. EDSR re-
moved BatchNorm [16] layers and stacked more resid-
ual blocks to boost fidelity. RCAN [35] further en-
hanced performance through channel-attention layers
that dynamically reweight feature maps. After the ad-
vent of vision transformer, ViT-based models have been
also applied to super-resolution tasks. SwinIR [20]
adapts the Swin Transformer for SR by stacking Resid-
ual Swin Transformer Blocks (RSTBs), each using win-
dowed self-attention and cyclically shifted windows to
efficiently capture both local textures and cross-window
context. This design reduces computational complex-
ity from O

(
(HW )2

)
to O

(
HW M2

)
while still match-

ing or surpassing full-attention ViT restorers. However,
large-scale models employ very deep architectures with
millions of parameters, rendering them impractical for
mobile or real-time applications.

Contrastive Learning. Contrastive learning trains
representations by pulling semantically related views to-
gether while pushing apart other samples, typically via
the InfoNCE loss [26]. Seminal works such as Sim-
CLR [7] employ large batch sizes and random augmen-
tations, whereas MoCo [12] uses a momentum encoder
with a memory bank to efficiently harvest negatives.
More recently, contrastive objectives have been adopted
in knowledge distillation in super-resolution tasks. Dis-
tilling statistical information of the intermediate feature
maps [13, 22]. CSD [33] align teacher–student em-
beddings via InfoNCE, demonstrating richer relational
transfer and superior compactness compared to tradi-
tional L1/L2 feature matching. FACD [25] selectively
applies feature contrastive learning by comparing out-
put patches of the student and teacher network. These
methods show that embedding-based relational cues can
yield more robust and efficient student models.

KD for Super-Resolution. Early attempts to com-
press SISR models largely adopted vanilla KD tech-
niques [14] from classification—matching pixel-wise
outputs or intermediate feature maps [27]. These ap-
proaches typically yield only modest PSNR gains or
even degrade visual quality, since the teacher’s super-
resolved output is itself an approximation of the ground
truth. FAKD [13] align second-order feature affinities
by injecting structural priors. CSD [32] uses a frozen
VGG network to impose contrastive bounds in a fixed
feature space. While these improve stability over raw
L1 matching, they rely on pre-trained backbones or
handcrafted similarity metrics, and they lack explicit
control over both global and local relational features.

DUKD [36] sidesteps feature matching by upcycling in-
domain LR–HR pairs, enforcing label consistency un-
der data augmentations. MiPKD [19] introduces multi-
granularity and adapter modules to fuse teacher priors at
various network depths. These methods improve robust-
ness or high-frequency recovery.

3. Methodology
3.1. Preliminaries and Notations
We denote by ILR ∈ RH×W×3 a low-resolution (LR)
input image and by IGT ∈ RsH×sW×3 its correspond-
ing high-resolution (HR) ground truth. A pre-trained
and frozen teacher network FT and a lightweight stu-
dent network FS produce output images:

ITSR = FT

(
ILR

)
, ISSR = FS

(
ILR

)
(1)

We also employ a discriminator D for adversarial guid-
ance, and two projection heads ϕimg and ϕpatch for con-
trastive embedding. ITSR and ISSR are output images of
the teacher and student models, respectively.

3.2. Motivation
Classical knowledge distillation [14] uses the ”logits” of
the networks outputs by applying a softmax over them
and matching the resulting probability distribution for
tasks such as classification and detection. This is gen-
erally not effective and rather provide detrimental re-
sults [4]. Furthermore, in super resolution, the net-
work’s output is a full HR image or a dense tensor, not
a probability vector over a fixed size. Logits for exam-
ple, in a classification task collapse all spatial informa-
tion into a single vector where SR tasks must recover.
The reconstruction and response-based terms alone suf-
fer from inheriting the teacher’s artifacts: pixel-wise L1
matching cannot distinguish between correct details and
teacher errors. Thus, the ”dark knowledge” from the
teacher model FT outputs inaccurate approximation of
the ground-truth distributions of HR image, IHR [36].

To overcome these major issues, we propose two
main components: multi-scale contrastive loss and ad-
versarial distillation loss components. Multi-scale con-
trastive distillation remedies this by teaching the stu-
dent how different regions relate, both at the whole-
image and fine-patch levels, so that structural consis-
tency and textural fidelity are explicitly enforced in a
shared embedding space. This relational learning goes
beyond second-order or frequency-band alignment or
simple intermediate feature distillation, because it di-
rectly models both global semantics and local details.
Meanwhile, the adversarial term injects a learned per-
ceptual prior: by forcing the student to “fool” a discrim-
inator trained on real HR images, we enable the student
to generate textures and sharpness that can exceed the
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teacher’s own perceptual ceiling. Together, contrastive
and adversarial guidance balance stability (from L1 and
InfoNCE losses) with high-quality, realistic image gen-
eration. Details of each component will be elaborated in
the latter sections.

3.3. Multi-scale Contrastive Learning
Previous work that leverages contrastive learning,
CSD [32], tightly couples student and teacher via
channel-splitting. It uses a frozen VGG-19 network
to extract multi-layer feature maps and then applies an
L1-based contrastive ratio between teacher vs. student
and negatives in that fixed feature space. In compari-
son, our contrastive loss first learns two small projection
heads (one for whole-image, one for patches) that map
directly from SR outputs into a dedicated embedding
space. These projection heads are trained end-to-end, so
your distillation space adapts specifically to the SR task
rather than relying on generic ImageNet [10] features.
Furthermore, our method treats student and teacher as
fully separate networks. We can plug the distillation
losses into any off-the-shelf SR backbone without modi-
fying its channel configuration, making it broadly appli-
cable. Lastly, our contrastive learning method leverages
multi-scale relational alignment enforces both image-
level and patch-level InfoNCE objectives. This multi-
scale contrast ensures that the student learns both the
global structure and fine textures.

Image-level InfoNCE Loss. Let zT = ϕimg(I
T
SR) and

zS = ϕimg(I
S
SR) where zT and zS are contrastive em-

beddings of the teacher’s and student’s super–resolved
outputs. The projection head ϕimg consists of a 3 × 3
convolution (mapping 3→d/2 channels), ReLU, global
average pooling, flattening, and a fully-connected layer
(d/2 → d), followed by L2–normalization. These
d–dimensional vectors lie in a learned latent space where
cosine similarity reflects structural and perceptual align-
ment. The image-level InfoNCE loss is:

Limg = − log
exp

(
sim(zS , zT )/τ

)∑
k

exp
(
sim(zS , zk)/τ

) (2)

where {zk} are negatives from the batch and τ is a
temperature. τ is initialized as 0.07.

Patch-Level Contrastive Loss To enforce fine-
grained textural consistency, we randomly extract N =
8 patches of size 48× 48 from each super–resolved out-
put, denoted {piT } for the teacher and {piS} for the stu-
dent. Each patch is passed through the patch-level pro-
jection head ϕpatch:

ui
T = (ϕpatch(p

i
T )), ui

S = (ϕpatch(p
i
S)) (3)

where ui
T and ui

S denotes teacher and student patch em-
beddings, respectively. We then apply an InfoNCE ob-
jective over these local embeddings:

Lpatch = −
N∑
i=1

log
exp

(
sim(ui

S , u
i
T )/τ

)
N∑
j=1

exp
(
sim(ui

S , u
j
T )/τ

) (4)

Where sim denotes the cosine similarity between
two d-dimensional vectors. Ths function explicitly pulls
each student patch embedding ui

S toward its correspond-
ing teacher patch ui

T and pushes it away from all other
patches {uj

T }j ̸=i, thereby focusing the student on local
structural and textural patterns. Compared to a stan-
dard global contrastive loss, the patch-level objective
captures localized details such as edges and patterns
that are often lost when averaging over the full im-
age. Unlike pixel-wise L1 or feature-affinity KD meth-
ods which treat all pixels or feature channels uniformly,
patch-level contrast enforces discriminative local rela-
tionships, making the student more robust to spatially
varying artifacts. Furthermore, our patch-level loss di-
rectly aligns local distributions in a learned embedding
space, yielding sharper, more realistic textures without
requiring specialized frequency decompositions or aux-
iliary data mining. Details are shown in Figure 2.

3.4. Adversarial Distillation
Incorporating an adversarial loss into our distillation
framework provides a powerful perceptual prior that di-
rectly models the HR image manifold rather than merely
mimicking the teacher’s imperfect outputs. Concretely,
we train a discriminator D with

LD = −EIGT

[
logD(IGT)

]
− EÎS

[
log

(
1−D(ÎS)

)]
,

(5)
and update the student to minimize

Ladv = −EÎS

[
logD(ÎS)

]
. (6)

This adversarial term differs from traditional pixel- or
feature-level KD losses by enabling the student to gener-
ate fine-grained textures and break through the teacher’s
perceptual ceiling. GAN objective requires no auxil-
iary data manipulation or handcrafted transforms—its
learned discriminator automatically captures natural im-
age statistics and focuses the student on high-frequency
realism. While GAN training introduces additional pa-
rameters and potential instability, when properly bal-
anced it yields sharper edges, and richer texture details.

5071



Figure 1. Overall framework of MCAD-KD. HybridNCE denotes the multi-scale contrastive loss.

co
nv

G
AP FC

co
nv

G
AP FC

Image-Level Projection

Patch-Level Projection
48 × 48

Figure 2. Detailed figures of image-level projection and patch-
level projection.

Overall Loss Function. Our training objective is a
weighted sum of four losses:

Ltotal = λrecLrec+λrespLresp+λcontLcont+λadvLadv.

These are defined as:

(7a)

Lrec = ∥ISSR − IGT∥1, (7b)

Lresp = ∥ISSR − ITSR∥1, (7c)
Lcont = λimg Limg + λpatch Lpatch, (7d)

Ladv = EÎS

[
− logD(ÎS)

]
(7e)

Here, Lrec,Lresp,Lcont and Ladv denote the recon-
struction, response-based distillation, multi-scale con-

Table 1. Hyperparameter settings used throughout our experi-
ments.

Term Symbol Value

Reconstruction weight λrec 3.0
Response-KD weight λresp 0.5
Contrastive total weight λcont 0.05
Image-level weight λimg 0.3
Patch-level weight λpatch 0.7
Patch size — 48× 48
# of patches N 8
Adversarial weight λadv 0.01

trastive, and adversarial losses, respectively, as defined
in Eqs. (7b)–(7e).

4. Experimental Results
4.1. Experimental Settings
Backbones and Evaluation. We use EDSR [21],
RCAN [35] and SwinIR [20] as backbone models
to evaluate the performance of our MCAD-KD. We
compare our method with recent works of knowledge
distillation including Vanilla-KD [14], RKD [28], AT [],
FitNet [29], FAKD [13], CSD [32], DUKD [36] and
MiPKD [19]. We calculate the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM)
on the Y channel of the YCbCr color space. We use
800 images from DIV2K [1] dataset. We evaluated our
work under four classical benchmark dataset, Set5 [3],
Set14 [34], BSD100 [24] and Urban100 [15]. The SR
network specification of teacher and student models is
illustrated in Table 2.
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Table 2. Specifications and computational statistics of SR models at ×4 scale. FLOPs and parameter counts are evaluated using
3×256×256 input images on an A100 GPU with 80GB VRAM. Block counts refer to residual blocks in EDSR and RCAN (per
residual group) and Swin transformer blocks in SwinIR.

Model Role Network FLOPs (G) #Params
Channel Block Group

EDSR [21] Teacher 256 32 - 3293.35 43.09 M
Student 64 32 - 207.28 2.70 M

RCAN [35] Teacher 64 20 10 1044.03 15.59 M
Student 64 6 10 366.98 5.17 M

SwinIR [20] Teacher 180 6 - 861.27 11.90 M
Student 60 4 - 121.48 1.24 M

Training Details. All models are trained with
Adam [17] optimizer with β1 = 0.9, β = 0.99 and
ϵ = 10−8 with a batch size of 32 and a total of 2.5×105

iterations. The initial learning rate was set to 10−4

for EDSR, RCAN and SwinIR. The learning rate is
decayed by a factor of 10 at every 105 iterations. We
set the hyperparameter of λrec, λrespkd, λcont, λadv

as 3.0, 0.5, 0.05 and 0.01, respectively. The total
contrastive loss weight is divided into image-level and
patch-level weight. The values λimg and λpatch are
0.3 and 0.7, respectively. Overall summary of the
hyperparameters can be found in Table 1.

5. Results Analysis

Comparison with Baseline Methods. Quantitative
results for EDSR [21], RCAN [35], SwinIR [20] of
scales ×2,×3,×4 is presented in Table 3, 4, 5. From the
results, we observe that MCAD-KD consistently deliv-
ers the largest PSNR/SSIM gains over both the scratch
student and every competing distillation method, but
the magnitude of those gains varies with architectures.
On EDSR, we observe improvements of +0.67 dB at
×4(31.96 to 32.63 dB) and +0.64 dB at ×3 (27.99 to
28.63 dB) on Urban100, whereas RCAN sees a more
modest +0.24 dB at ×2 and +0.20 dB at ×3. SwinIR,
despite already benefiting from efficient windowed at-
tention, still gains roughly +0.60 dB on Urban100 at
×2, underscoring MCAD-KD’s ability to refine Trans-
former outputs. We believe that these differences are
directly from mostly the multi-scale contrastive loss.
Multi-scale contrastive distillation transfers both global
structure and fine-patch relations; deep models like
EDSR and SwinIR, with their larger capacity and richer
feature hierarchies, can more fully exploit these rela-
tional cues, producing larger PSNR gains. In compari-
son, RCAN’s built-in channel-attention already captures
some global–local dependencies, so the marginal ben-
efit of extra contrastive supervision is smaller. Adver-

sarial distillation guidance also helps in marginal ben-
efits, injecting a learned perceptual prior that sharpens
textures. Our patch-level InfoNCE loss directly super-
vises that process by sampling 48×48 patches and forc-
ing the student to match the teacher’s patch embeddings
in a learned space. In effect, we give SwinIR an ex-
plicit “local-texture teacher” signal on top of its inter-
nal attention, which sharpens repetitive structures. Espe-
cially, in Urban100 where skyscrapers, facades, and tiled
streets exhibit strong, repeating high-frequency patterns,
the perceptual prior of using the adversarial loss pushes
aligned features toward the true HR distribution’s high-
frequency statistics. This produces marginal but visually
significant improvements : crisper edges, more realistic
textures, and a further PSNR gain of 0.05–0.10 dB over
contrastive-only distillation.

5.1. Qualitative Analysis
Figure 3 illustrates representative ×4 super-resolution
crops from Urban100, comparing the student trained
from scratch, with DUKD, MiPKD, CSD, and our
MCAD-KD. Scratch and vanilla KD outputs exhibit pro-
nounced blurring on repetitive patterns (e.g. window
frames and brick textures), while DUKD and MiPKD
slightly improve sharpness but still suffer from washed-
out edges and inconsistent local details. CSD recovers
more structure via its VGG-based contrastive bound, yet
fine textures remain oversmoothed. In contrast, MCAD-
KD produces markedly crisper edges, faithfully recon-
structs small-scale patterns such as the grid of win-
dow panes and the weave of textured walls, and sup-
presses halo artifacts around high-contrast boundaries.
Our patch-level InfoNCE term explicitly guides the stu-
dent to match the teacher’s local textural statistics, and
the adversarial loss injects a learned perceptual prior
that recovers plausible high-frequency detail. Together,
these components yield SR outputs that not only score
highest in PSNR/SSIM but also look visually closest
to the ground truth, especially on the highly structured
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Table 3. Quantitative comparison (average PSNR/SSIM) between MCAD-KD and other distillation methods for EDSR of three
SR scales. The best and second-best performances are highlighted in bold and underlined, respectively. The EDSR teacher model
c256b32 is distilled to c64b32 student model.

Scale Method Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Scratch 38.00/0.9605 33.57/0.9171 32.17/0.8996 31.96/0.9268
Vanilla-KD 38.04/0.9606 33.58/0.9172 32.19/0.8998 31.98/0.9269

FitNet 37.59/0.9589 33.09/0.9136 31.79/0.8953 30.46/0.9111
RKD 38.03/0.9606 33.57/0.9173 32.18/0.8998 31.96/0.9270

FAKD 37.99/0.9606 33.60/0.9173 32.19/0.8998 32.04/0.9275
CSD 38.06/0.9607 33.65/0.9179 32.22/0.9004 32.26/0.9300

DUKD 38.15/0.9610 33.80/0.9195 32.27/0.9007 32.53/0.9320
MiPKD 38.16/0.9611 33.85/0.9194 32.27/0.9008 32.52/0.9318

MCAD-KD 38.19/0.9611 33.88/0.9203 32.31/0.9013 32.63/0.9329

×3

Scratch 34.39/0.9270 30.32/0.8417 29.08/0.8046 27.99/0.8489
Vanilla-KD 34.43/0.9273 30.34/0.8422 29.10/0.8050 28.00/0.8491

FitNet 33.35/0.9178 29.71/0.8323 28.62/0.7949 26.61/0.8167
RKD 34.43/0.9274 30.33/0.8423 29.09/0.8051 27.96/0.8493

FAKD 34.39/0.9272 30.34/0.8426 29.10/0.8052 28.07/0.8511
CSD 34.45/0.9275 30.32/0.8430 29.11/0.8061 28.21/0.8549

DUKD 34.59/0.9287 30.47/0.8448 29.20/0.8073 28.44/0.8578
MiPKD 34.59/0.9287 30.48/0.8447 29.19/0.8070 28.41/0.8571

MCAD-KD 34.65/0.9290 30.54/0.8457 29.24/0.8082 28.63/0.8633

×4

Scratch 32.29/0.8965 28.68/0.7840 27.64/0.7380 26.21/0.7893
Vanilla-KD 32.30/0.8965 28.70/0.7842 27.64/0.7382 26.21/0.7897

FitNet 31.65/0.8873 28.33/0.7768 27.38/0.7309 25.40/0.7637
RKD 32.30/0.8965 28.69/0.7842 27.64/0.7383 26.20/0.7899

FAKD 32.27/0.8960 28.65/0.7836 27.62/0.7379 26.18/0.7895
CSD 32.34/0.8974 28.72/0.7856 27.68/0.7396 26.34/0.7948

DUKD 32.47/0.8981 28.80/0.7866 27.71/0.7403 26.45/0.7963
MiPKD 32.46/0.8981 28.79/0.7863 27.71/0.7400 26.45/0.7960

MCAD-KD 32.50/0.8984 28.84/0.7870 27.76/0.7407 26.51/0.7967

scenes in Urban100.

5.2. Ablation Studies
Ablation on Contrastive vs. Adversarial Distillation.
Table 6 demonstrates the ablation analysis of absence
of each loss. When distilling EDSR at ×4 scale on
Urban100, using only the multi-scale contrastive loss
yields a PSNR/SSIM of 26.48/0.7963, whereas using
only the adversarial loss gives 26.35/0.7948. Combining
both losses boosts performance to 26.51/0.7967. This
demonstrates that contrastive supervision is the primary
driver of reconstruction accuracy by aligning relational
cues in a learned embedding space while the adversarial
term provides a complementary perceptual refinement,
sharpening textures and pushing the student beyond the
teacher’s inherent ceiling.

Ablation on Image vs. Patch-Level Contrastive Loss.
Table 6 shows the ablation study of using a single-scale

contrastive loss. Isolating the two scales of our con-
trastive distillation on EDSR reveals that the image-level
term alone achieves 26.49/0.7966 and the patch-level
term alone 26.48/0.7966. Leveraging multi-scale each
capture distinct aspects of the SR task: the former pre-
serves overall semantics, while the latter enforces fine-
grained detail.

Ablation on Multi-Scale Contrastive for SwinIR.
Table 8 shows the ablation study of using a single-
scale contrastive loss and the imapact of patch-level loss
for SwinIR. For SwinIR at ×4 scale on Urban100, the
patch-level contrastive loss alone (26.55/0.8002) outper-
forms the image-level variant (26.50/0.7997), reflecting
SwinIR’s architectural strength in capturing global con-
text via windowed attention. Nonetheless, combining
both scales still provides the best result (26.57/0.8006),
indicating that even Transformer-based SR benefits from
explicit local-texture supervision. The patch-level term
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Table 4. Quantitative comparison (average PSNR/SSIM) between MCAD-KD and other distillation methods for RCAN of three
SR scales. The best and second-best performances are highlighted in bold and underlined, respectively.

Scale Method Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Scratch 38.13/0.9610 33.78/0.9194 32.26/0.9007 32.63/0.9327
KD 38.18/0.9611 33.83/0.9197 32.29/0.9010 32.67/0.9329

FitNet 37.97/0.9602 33.57/0.9174 32.19/0.8999 32.06/0.9279
RKD 38.18/0.9612 33.78/0.9191 32.29/0.9011 32.70/0.9330

FAKD 38.17/0.9612 33.83/0.9199 32.29/0.9011 32.65/0.9330
DUKD 38.23/0.9614 33.90/0.9201 32.33/0.9016 32.87/0.9349
MiPKD 38.21/0.9613 33.92/0.9203 32.32/0.9015 32.83/0.9344

MCAD-KD 38.24/0.9613 33.90/0.9202 32.35/0.9016 32.90/0.9348

×3

Scratch 34.61/0.9288 30.45/0.8444 29.18/0.8074 28.59/0.8610
KD 34.61/0.9291 30.47/0.8447 29.21/0.8080 28.62/0.8612

FitNet 34.21/0.9248 30.20/0.8399 29.05/0.8044 27.89/0.8472
RKD 34.67/0.9292 30.48/0.8451 29.21/0.8080 28.60/0.8610

FAKD 34.63/0.9290 30.51/0.8453 29.21/0.8079 28.62/0.8612
DUKD 34.74/0.9296 30.54/0.8458 29.25/0.8088 28.79/0.8646
MiPKD 34.72/0.9296 30.55/0.8458 29.25/0.8087 28.76/0.8640

MCAD-KD 34.75/0.9296 30.55/0.8458 29.29/0.8090 28.81/0.8650

×4

Scratch 32.31/0.8966 28.69/0.7842 27.64/0.7384 26.37/0.7949
KD 32.45/0.8980 28.76/0.7860 27.67/0.7400 26.49/0.7980

FitNet 31.99/0.8899 28.50/0.7789 27.55/0.7353 25.90/0.7791
RKD 32.39/0.8974 28.74/0.7856 27.67/0.7399 26.47/0.7981

FAKD 32.46/0.8980 28.77/0.7860 27.68/0.7400 26.50/0.7980
DUKD 32.56/0.8990 28.83/0.7870 27.72/0.7410 26.62/0.8020
MiPKD 32.46/0.8982 28.77/0.7860 27.69/0.7402 26.55/0.7998

MCAD-KD 32.57/0.8994 28.84/0.7875 27.74/0.7413 26.71/0.8031

Table 5. Quantitative comparison (average PSNR/SSIM) between MCAD-KD and other applicable distillation methods for SwinIR
of three SR scales. The best and second-best performances are highlighted in bold and underlined, respectively.

Scale Method Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Scratch 38.01/0.9607 33.57/0.9178 32.19/0.9000 32.05/0.9279
KD 38.04/0.9608 33.61/0.9184 32.22/0.9003 32.09/0.9282

DUKD 38.13/0.9610 33.78/0.9194 32.26/0.9007 32.63/0.9327
MiPKD 38.14/0.9611 33.76/0.9194 32.29/0.9011 32.46/0.9313

MCAD-KD 38.18/0.9614 33.80/0.9196 32.32/0.9015 32.7/0.9333

×3

Scratch 34.41/0.9273 30.43/0.8437 29.12/0.8062 28.20/0.8537
KD 34.44/0.9275 30.45/0.8443 29.14/0.8066 28.23/0.8545

DUKD 34.55/0.9285 30.53/0.8456 29.20/0.8080 28.53/0.8604
MiPKD 34.53/0.9283 30.52/0.8456 29.19/0.8079 28.47/0.8591

MCAD-KD 34.58/0.9289 30.57/0.8470 29.22/0.8088 28.68/0.8635

×4

Scratch 32.31/0.8955 28.67/0.7833 27.61/0.7379 26.15/0.7884
KD 32.27/0.8954 28.67/0.7833 27.62/0.7380 26.15/0.7887

DUKD 32.41/0.8973 28.79/0.7860 27.69/0.7405 26.43/0.7972
MiPKD 32.39/0.8971 28.76/0.7854 27.68/0.7403 26.37/0.7956

MCAD-KD 32.47/0.8988 28.84/0.7880 27.72/0.7419 26.57/0.8006

corrects SwinIR’s tendency to oversmooth, while the
image-level term ensures consistency in large-scale
structures.
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Figure 3. Qualitative outputs of ×4 SR examples of EDSR models with different KD methods. Img073 and img047 is taken from
Urban100.

Table 6. Ablation on the two modules of MCAD-KD of ×4
scale. AD Loss stands for Adversarial Distillation loss.

Contrastive Loss AD Loss Urban100
PSNR / SSIM

✓ × 26.48 / 0.7963
× ✓ 26.35 / 0.7948
✓ ✓ 26.51 / 0.7967

Table 7. Ablation on the two parts of multi-scale contrastive
loss for×4 scale of EDSR . The last row indicate multi-scale
contrastive loss.

Image-level Patch-level Urban100
PSNR / SSIM

✓ × 26.49 / 0.7966
× ✓ 26.48 / 0.7966
✓ ✓ 26.51 / 0.7967

Table 8. Ablation on the two parts of multi-scale contrastive
loss for×4 scale of SwinIR .

Image-level Patch-level Urban100
PSNR / SSIM

✓ × 26.50 / 0.7997
× ✓ 26.55 / 0.8002
✓ ✓ 26.57 / 0.8006

6. Conclusion
We have presented MCAD-KD, a unified distillation
framework for single-image super-resolution that syn-
ergistically combines multi-scale contrastive learning
with adversarial guidance. By aligning global and local
embeddings via learned projection heads and injecting
a perceptual prior through a adversarial loss, MCAD-
KD consistently outperforms prior KD methods across
EDSR, RCAN, and SwinIR backbones particularly on
the structurally rich Urban100 dataset. Our plug-and-
play design requires no architectural modifications and
scales, paving the way for efficient, high-fidelity SR on
resource-constrained devices.
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