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1. Complexity Analysis

We analyze the computational complexity implications of
resolution scaling in diffusion models. When image resolu-
tion increases by a factor of k, the computational require-
ments grow quadratically as O(k2) due to the direct rela-
tionship between resolution and total pixel count. This scal-
ing effect becomes particularly significant in transformer-
based architectures like Diffusion Transformer (DiT) [4],
where self-attention [6] operations exhibit quadratic com-
plexity with respect to sequence length. For generation
tasks beyond 10242 resolution, this computational burden
becomes prohibitive. Our progressive dynamic resolution
approach addresses this limitation by performing initial
probabilistic paths at lower resolutions, thereby substan-
tially reducing overall computational demands. The com-
putational complexity manifests in both transformer-based
and CNN architectures, though with different scaling char-
acteristics. For transformer models utilizing self-attention
mechanisms with complexity O(n2) [6], where n represents
the number of image patches, the total computational com-
plexity scales as:

C(H,W ) = O((H ×W ) · (H ×W )) = O((H ×W )2)

where C(H,W ) denotes the computational cost for an im-
age of height H and width W . This formulation yields two
crucial insights:
1. Reducing patch count through our dynamic resolution

strategy provides quadratic computational savings in
self-attention operations.

2. The quartic relationship between resolution and com-
putational requirements (in both FLOPs and memory)
demonstrates the theoretical efficiency of our progres-
sive resolution approach compared to fixed-resolution
methods.

2. Case Study

2.1. Effect of Initial Noise Intensity Parameter
The parameter σinit controls the initial noise intensity in
the Latent Space Scaling Generation (LSSGen) generation
stages. Fig. S1 illustrates the visual impact of different σinit
values. The results demonstrate that higher σinit values pro-
duce images with enhanced detail sharpness. Among all
configurations examined, σinit = 0.75 yields optimal quality
across the tested parameter range. Our method performs up-
sampling operations in latent space rather than pixel space,

which preserves the structural integrity of the generated im-
ages across different parameter settings. This observation
suggests a configurable quality-speed tradeoff: a slight re-
duction in image detail fidelity can yield significant infer-
ence acceleration. Thus, σinit serves as an effective control
parameter that enables practitioners to balance generation
quality against computational efficiency according to appli-
cation requirements.

2.2. Comparative Analysis of Progressive Scaling
Approaches in Flow Model

Fig. S2 presents a qualitative comparison of various pro-
gressive scaling approaches. We evaluate the baseline
FLUX.1-dev [1], the pixel-space approach MegaFusion [7],
and our proposed method LSSGen. The visual results
demonstrate that LSSGen preserves fine-grained details
with superior fidelity compared to MegaFusion, which ex-
hibits characteristic blur artifacts inherent to pixel-space
scaling transformations. This comparison substantiates the
efficacy of latent-space manipulation in preserving high-
frequency components during multi-resolution synthesis.
The enhanced perceptual quality is particularly evident in
complex textures and sharp boundaries, where our approach
maintains structural coherence across different resolution
scales. These observations align with our quantitative met-
rics that indicate significant improvements in both compu-
tational efficiency and generation quality.

2.3. Comparative Analysis of LSSGen in Distillated
Flow Model

Fig. S3 presents a quantitative evaluation contrasting the
non-scaling baseline approach with our proposed LSS-
Gen framework. We systematically compare FLUX.1-
schnell [1] against LSSGen across multiple generation
tasks. The empirical results demonstrate that LSSGen con-
sistently produces outputs with enhanced perceptual qual-
ity characterized by superior detail preservation and edge
definition. This quality enhancement stems from our la-
tent space scaling operations that maintain high-frequency
information through the generation process. The latent-
space manipulations introduce precisely controlled detail
amplification that manifests as enhanced definition in tex-
tural elements. This characteristic proves advantageous
for most generative tasks, though practitioners should note
potential over-sharpening effects when synthesizing hu-
man facial features, where the enhanced detail reproduction
may accentuate fine wrinkles beyond natural appearance.
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Figure S1. Comparison between different σinit setting on SD3.5-medium [2].

Most significantly, our progressive upsampling methodol-
ogy achieves a substantial inference time reduction from
4.77s to 4.36s (an 1.1x acceleration) while maintaining gen-
eration quality integrity. This performance optimization ex-
emplifies the efficiency even further with timestep-distilled
models, indicating the broadness of our methods. The

demonstrated compatibility with model distillation tech-
niques underscores the generalizability of our latent space
transformations across varied architectural configurations
and computational constraints.
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a photo of a bench and a snowboard.

An epic painting of Gandalf the Black summoning thunder and lightning in the mountains.

An oil painting of a latent space.

Figure S2. More comparison between different progressive approaches on FLUX.1-dev [1] with 10242 resolution.



2.4. Comparative Analysis of LSSGen in Diffusion
Models

Fig. S4 presents a quantitative evaluation contrasting vari-
ous approaches with our proposed LSSGen framework. We
systematically compare SDXL [5], Self-Cascade [3], and
MegaFusion [7] against LSSGen across multiple prompts.
The results demonstrate that LSSGen produces outputs with
quality comparable to Self-Cascade while offering signifi-
cant advantages in inference speed and universal applicabil-
ity. In contrast, MegaFusion exhibits consistent blurriness
across all generated samples, highlighting the limitations of
pixel-space transformation methods. The superior perfor-
mance of our approach stems from effective latent space
manipulations that preserve semantic structure and fine de-
tails during the scaling process. This enables LSSGen to
maintain perceptual quality while achieving computational
efficiency that makes it practical for real-world applications
requiring both high-quality outputs and responsive genera-
tion times.

2.5. Details of Timesteps in LSSGen
This section provides a detailed description of the input pa-
rameters for our proposed LSSGen, as presented in Algo-
rithm 1. These parameters allow for precise control over
the progressive generation process, enabling users to bal-
ance computational efficiency and final image quality. Each
parameter is defined as follows:
min resolution: This integer value specifies the initial,
lowest resolution at which the generative process begins.
The first stage of the pipeline synthesizes a latent tensor at
this resolution from pure noise. We use 512 in FLUX.1-dev.
target resolution: Defines the final, desired resolu-
tion of the output image. The LSSGenframework progres-
sively upscales the latent representation through multiple
stages until this target resolution is reached.
base resolution: Serves as a reference resolution for
the dynamic step calculation. When the shorten steps flag
is enabled, any generation stage operating at a resolution
lower than base resolution will use a proportionally reduced
number of denoising steps.
base steps: The baseline number of denoising steps per-
formed by the diffusion pipeline (e.g., FLUX.1-dev and
SDXL are 50 steps) for any stage operating at or above the
base resolution.
init noise level: This floating-point value corre-
sponds to the initial noise coefficient (σinit) discussed in our
methodology (Section 4.1). It governs the ratio between the
signal from the upsampled latent and the stochastic noise
injected at the beginning of a new stage. Based on our anal-
ysis, this is typically set to 0.75 for optimal quality. The
parameter can be lower if efficiency is desired.
shorten steps: A boolean flag that enables (True)
or disables (False) the intermediate step reduction strat-

egy. When enabled, this optimization accelerates the ini-
tial, lower-resolution stages by reducing their denoising step
count, significantly improving overall inference speed with
minimal impact on quality.

Together, these parameters provide fine-grained control
over the speed-quality trade-off within the LSSGen frame-
work, making it adaptable to various hardware constraints
and use cases.
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Algorithm 1 LSSGen: Latent Space Scaling Generation

1: Input:
2: min resolution // Initial generation resolution
3: target resolution // Final desired resolution
4: base resolution // Reference resolution for step calculation
5: base steps // Number of diffusion steps for the base resolution
6: init noise level // Initial noise factor σinit

7: shorten steps // Boolean to enable step reduction

8: Initialize:
9: stages← Define progressive scaling stages from min resolution to target resolution

10: latents← RandomNoiseGenerator(min resolution)

11: for stage res in stages do
12: if stage res > min resolution then
13: upsampled latents← Upsampler(latents)
14: noise← RandomNoise(stage res)
15: latents← upsampled latents * (1 - init noise level) + noise * init noise level
16: end if

17: // Calculate steps for the current stage
18: if shorten steps and stage res < base resolution then
19: steps← base steps / int(base resolution / stage res)
20: else
21: steps← base steps
22: end if

23: latents← DiffusionPipeline(latents, steps, stage res)
24: end for

25: images← VAE Decode(latents)
26: return images



Prompt FLUX.1-schnell LSS-FLUX.1-schnell (ours)
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Figure S3. More comparison between different progressive approaches on FLUX.1-schnell [1] with 10242 resolution.



Prompt SDXL SDXL-Self-Cascade SDXL-MegaFusion SDXL-DiffuseHigh LSS-SDXL (ours)
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Figure S4. More comparison between different progressive approaches on SDXL [5], where the top row represents the original 20482

output images and bottom row represents cropped results.



detailed pen and ink drawing of a mas-
sive complex alien space ship above a
farm in the middle of nowhere

an anthopomorphic pink donut with a
mustache and cowboy hat standing by
a log cabin in a forest with an old 1970s
orange truck in the driveway

a cartoon of aboy playing with a tiger

Medium shot of a friendly male barista
with curly hair and an apron, smiling in
a cozy, warm-lit caf

Action shot of a female basketball
player mid-dunk, with an intense ex-
pression in a brightly lit arena

Full-body shot of a woman with pink
hair in a neon-lit, rainy Tokyo street at
night, wearing a futuristic jacket

photo of a bear wearing a suit and tophat
in a river in the middle of a forest hold-
ing a sign that says I cant bear it

A futuristic city at night, where the
skyscrapers are built from living, glow-
ing organic material,

An intricate city of marble towers and
ornate bridges built upon a dense layer
of clouds,

Figure S5. More generated samples of LSSGen on FLUX.1-dev [1] at 10242 resolution.



tilt shift aerial photo of a cute city made of sushi
on a wooden table in the evening

dark high contrast render of a psychedelic tree of
life illuminating dust in a mystical cave

fox sitting in front of a computer in a messy room
at night. On the screen is a 3d modeling program
with a line render of a zebra

cat patting a crystal ball with the number 7 written
it in black marker

Cute adorable little goat, unreal engine, cozy inte-
rior lighting, art station, detailed digital painting,
cinematic, octane rendering

Close-up portrait of an old fisherman with a kind,
wrinkled face and white beard, soft window light-
ing

Fantasy portrait of a non-binary elf with silver hair
and violet eyes on a throne, in a grand hall with
moonlight

An intricate city of marble towers and ornate
bridges built upon a dense layer of clouds,

A cozy village of round-doored homes built into
lush green hills

Figure S6. More generated samples of LSSGen on FLUX.1-dev [1] at 20482 resolution.
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