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Visual comparison between our method, MRefSR [25], and SwinIR [13] on a real-world example where a panorama shot is

upscaled with the help of a set of close up images captured during a trip through the city. All images were captured using a Google Pixel 7a
smartphone. Our method uses SwinlR trained for the RealSR setting as a backbone. While MRefSR struggles in this in-the-wild scenario,
our method effectively uses the available reference images and produces high quality results.

Abstract

In recent years image restoration methods have made sig-
nificant progress addressing a wide variety of degradations.
Some methods focus on a specific task while others ad-
dress enhancement in a more generic setting. Reference-
based restoration aims at leveraging any image of higher
quality that would be available to further improve the re-
sults. To the best of our knowledge reference images were
only used in the context of image and video super-resolution
(RefSR and RefVSR), with specialized models. In this work,
we propose a novel and generic reference-based restora-
tion method that is applicable to any model and any task.
We start with the observation that restoration models typi-
cally operate in feature space before a final decoding step
which transforms the extracted features into an image. Our

model operates as an add-on that extracts information from
the references and uses this to enhance these pre-decoding
feature maps, leading to significant improvement in image
quality. Our strategy is compatible with virtually all ex-
isting image restoration methods and we demonstrate this
with a wide range of both specialized and generic image
enhancement models where we achieve a significant boost
in quality. Besides its generic applicability, we also demon-
strate that the proposed solution outperforms existing spe-
cialized RefSR state-of-the-art methods both quantitatively
and qualitatively.

1. Introduction

Image quality enhancement is a fundamental computer vi-
sion task which aims to restore a high quality signal from
a low quality image. As image quality can be degraded



for a multitude of reasons there is a variety of meth-
ods aimed at different sub-tasks of image restoration. To
name a few, there are specialized methods for image super-
resolution [5, 7-9, 13, 18, 26], compression artifact re-
moval [13], and denoising [13, 22]. In each of these cat-
egories significant progress has been made in recent years
and current state-of-the-art methods are able to recover im-
pressive levels of detail from heavily degraded input im-
ages.
In many real-world applications a single degraded im-
age is not the only information available. Often, higher
quality images depicting similar content are available and
can be used to guide the restoration process to achieve even
higher quality. In the field of image super-resolution a num-
ber of methods have been proposed which are able to utilize
available reference images and show a significant boost in
quality. However existing reference based super-resolution
(RefSR) methods [2, 10, 14, 19, 21, 24, 25, 27, 29] are
specifically designed and trained (from scratch) for the task
of super-resolution. We believe this to be an important lim-
itation. On one side it is difficult to benefit from progress
made in terms of models (architecture, training, etc.), as
each time a new design and re-training is needed to inte-
grate reference image information. On another side, there
is no reason to limit the usage of references to the super-
resolution task.
In this work we propose a generic reference refinement
module that is designed as an add-on compatible with any
existing image restoration method, enabling the optional
use of reference images to boost quality. By extracting in-
formation from the references and using it to enhance the
last feature maps of any existing restoration model, our pro-
posed module can be efficiently trained as we leave the orig-
inal model frozen, while benefiting from all its advantages.
Compared to existing RefSR approaches this has two main
advantages: First, our approach allows us to build upon the
large existing body of work exploring neural network archi-
tecture and training for super-resolution, and we can easily
utilize newer, more powerful image models once they be-
come available. Second, our generic design is not limited
to the task of RefSR. Instead our method can be applied
to any image restoration task. We show that our approach
yields state-of-the-art results on the task of RefSR and can
be applied seamlessly to other image restoration tasks like
denoising or compression artifact removal.
We claim the following contributions:
¢ A novel reference-based restoration module compatible
with existing image restoration methods.

* We achieve state-of-the-art quantitative and qualitative re-
sults for the task of RefSR.

 The first method capable of utilizing reference images for
general image restoration tasks like denoising or com-
pression artifact removal.
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2. Related Work

Image restoration is a classic computer vision task with the
goal of recovering a high-quality signal from a degraded,
low-quality image. Dong et al. [7] were among the first
to apply deep neural networks to the task of image super-
resolution, which have since become the standard approach
of tackling any image restoration task. Since then, signif-
icant progress in network architecture [8, 13, 18, 26] has
been made and current state-of-the-art image restoration
methods are able to recover impressive details even from
heavily degraded inputs. Methods like BSRGAN [23] are
even able to upscale low-resolution images with a multi-
tude of degradations while methods like [1, 5, 9] can handle
arbitrary scaling factors or even arbitrary geometric trans-
formations [1, 16]. In an effort to further increase image
quality methods have been proposed which are able to uti-
lize additional input information. For example, video super-
resolution methods like [3, 4, 20] utilize temporal informa-
tion from neighboring video frames to produce high qual-
ity super-resolution results, while methods like [1, 6] con-
ditioning their method on the downsampling kernel. An-
other popular approach to increase super-resolution quality
is the usage of reference images. Zheng et al. [28] were
among the first to propose a method of this task. Later
methods such as [11, 14, 19, 21, 27] improved upon these
early results by identifying better correspondences between
the degraded and reference image. Other methods such
as [2, 10, 24] have further pushed quality by employing
more sophisticated architectures and training procedures. A
major limitation of most RefSR methods is their inability
to utilize multiple reference images. This was addressed
by MRefSR [25] which was the first RefSR method ca-
pable of utilizing multiple reference images. In addition
to their method they also introduce the LMR dataset con-
taining both training and testing examples for multi-RefSR.
While their method clearly outperforms previous methods
which were limited to a single reference image our evalua-
tion shows that our two stage refinement process manages
to extract significantly more information from the avail-
able reference images and produces much higher quality re-
sults. The task of RefSR has also been extended to video
by RefVSR [12]. Their method is, however, limited to their
highly specific triple camera setup and only a single refer-
ence image can be used for each video frame. To the best of
our knowledge currently no reference-based methods exist
which can handle image restoration tasks other than super-
resolution or even arbitrary scale super-resolution. Ad-
ditionally, all RefSR methods so far have been designed
and trained from scratch for RefSR. This means integrat-
ing new advances in image restoration into these existing
approaches requires redesign their architecture and compu-
tationally expensive re-training. Our method on the other
hand can easily be adapted to any new backbone without
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Figure 2. Overview of our proposed reference-based image restoration method. First, an initial feature map is extracted from the degraded
input image using the pre-trained backbones feature extractor. Both our proposed refinement stages then sequentially refine this feature
map by injecting information from the available high quality reference images. Finally, the refined feature map is decoded to an image
using the backbones image decoder. Note that only the two refinement stages are trained while all backbone parts are kept frozen.

any redesign and relatively low computational cost.

3. Method

On a high level all existing image restoration methods op-
erate in two stages as illustrated on the left side of Figure 2.
Starting from the input image /, the core part of most exist-
ing enhancement models operates on features, the resulting
features F' are then decoded into the enhanced image I. In
the following we assume that F' has the same spatial reso-
lution as /. Typically for SR methods this means that F' is
the high resolution feature map.

We propose a reference-based image restoration module
that leaves the backbone architecture unchanged. Using a
set of available reference images I ... n, our method re-
fines F'in two stages. Both follow the same principles: first,
compute a mapping between the original and the references;
second, extract and align features from the references; third,
use the aligned features to enhance F'. The first stage relies
on robust matching to compute the mapping with the ref-
erences, while the second stage relies on a fine matching
methods. The motivation for these two stages is the abil-
ity to best leverage the references with both large and small
differences in appearance and viewpoint.

In summary, starting from the backbone core module &,
we enhance the initial feature map F' through the two stages
R; and R, using the references, before finally decoding the
result image I’ with the backbones decoder D.

F=&(I) (1)
F' = Ry(Ry(F)) )
I' = D(F") 3)

For the robust matching we rely on the same strategy as
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RefSR, using CCN [11] based matching, while for the fine
matching we use PDCNet+ [17].

3.1. Aligned Multi-Scale Feature Extraction (A-
MSFE)

Reference image features are extracted at multiple scales.
Feature at each scale are used to progressively enhance the
feature map F' extracted from the backbone core module
in a coarse-to-fine manner. We start by describing the
multi-scale architecture then detail the spatial feature
alignment. Here we assume the 2D mappings (M;) to the
references I; is already computed.

Multi-Scale Feature Extraction (MSFE). The multi-scale
feature extractor (MSFE) is the basic building block used
throughout our method. From any feature map F' it returns
three feature maps F'*, F2, F* at scales 1, 3, and § respec-
tively.

F! = RDB(down(F'~')) and F!=RDB(F) (4)

Here, RDB refers to residual-dense-blocks as introduced
in [18, 26] and they are used to extract features at each
scale. The down operation spatially downscales feature
maps by a factor of 2 using pixel-unshuffling followed by a
convolution adjusting the number of channels.

Pre-Alignment MSFE. When using pre-alignment the
multi-scale feature extraction is only used after 2D align-
ment

Fi = RDB(COHVm(IZ‘)) (5)
Fy = warp(F;, M;) 6)
E}, F? F? = MSFE(F,). (7)

To avoid warping the raw reference image I; directly we
perform shallow feature extraction via RDB first which
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Figure 3. Visual illustration of our proposed multi-scale multi-
reference feature refinement module. The current feature map is
refined at multiple scales by the MRFR module which aggregates
and injects information from multiple reference images. Note that
in the first refinement stage the current feature map is the fea-
ture map provided by the backbone while in the second refinement
stage it refers to the output of the first refinement stage.

results in the unaligned feature map F;. This feature map
F;; is then warped and further processed by the MSFE.

Post-Alignment MSFE. When using post-alignment the
reference image /; is first processed by the MSFE and each
extracted feature map is then aligned to F' individually.
F!, F? F? = MSFE(Convi,(I;))
le = Warp(ﬁ‘ilv le)

®)
€))

Each scale [ is warped according to the mapping M;
adjusted for the scale. Further details regarding how the
mappings are obtained are discussed next.

We note that multi-scale feature extraction is possible
with Pre- or Post- alignment. Experimentally their perfor-
mance varies depending on the type of matching we use
(robust vs fine). We use post-alignment MSFE for the en-
hancement with robust matching and pre-alignment MSFE
for the enhancement with fine matching.

3.2. Matching and Warping

Our aligned multi-scale feature extraction relies on the es-
timation of a 2D mapping between the image to enhance
and the references. There can be a wide range of variabil-
ity between the references and the image to enhance, both
in terms of viewpoint and colors. To handle more extreme
cases while still benefiting from refined matching when pos-
sible, we adopt a two-stage strategy.

Robust Matching. Following MRefSR [25] we use the
Contrastive Correspondence Network (CCN) introduced by
C?-Matching [11] to extract correspondences between the
base image I and each reference image I;. We refer to this
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mapping as M?. Note that M7 is at one fourth the reso-
lution of I. We generate higher resolution version of this
mapping M? and M} at half and full resolution via near-
est neighbor upsampling. The main advantage of CCN is
its ability to identify similar content in reference images for
each location in the base image even under large deforma-
tions.

Precise Matching. For our second refinement stage we use
PDCNet+ [17] to extract correspondences between the im-
age I and each reference image I;. The main advantage of
PDCNet+ is that it provides us a smooth flow field at full
resolution with sub-pixel accuracy. Warping is performed
using nearest neighbor grid sampling and adding the sub-
pixel offsets and confidence provided by PDCNet+ to the
warped feature maps along the channel dimension. More
details are provided in supplementary material.

3.3. Multi-Scale Multi-Reference Feature Refine-
ment

Our proposed multi-reference feature refinement is illus-
trated in Figure 3. First, we operate on the core feature map
F'. Here we use MSFE to extract features at three different
scales, which are progressively enhanced using the refer-
ences. On the reference side (top part of the figure), the
mapping estimated between I and the reference I; is used
to extract multi-scale features using the aligned multi-scale
feature extraction. We now describe in more details how we
produce the refined feature map.

Given the multi-scale feature extracted from F’
F' F? F3 = MSFE(F), (10)

and the aligned multi-scale features extracted for each ref-
erence

F} F? F? = AMSFE(L;) Vi € [1,N],  (11)

we use an attention based fusion mechanism (AttnFusion)
to fuse the information at each scale, before propagation to
the next scale.

F® = AttnFusion(F3, F?, ... | F})
F' = AttnFusion(F' + up(F*Y) FL ..o FY)

12)
13)

where AttnFusion is based on multi-head attention (mha)

Fyef = mha(F, F, -+, Fiy)
F = F + ConVoy (RDB(F||Fye))

F' is used to extract queries, while key-value pairs are ex-
tracted from F .. n. The attention mechanism is per-
formed separately for each spatial location. Note that the
operator || refers to concatenation along the channel dimen-
sion. The obtained feature map is used as residual to F’' (See
Figure 3).



LMR CUFED5 WR-SR
Method PSNR1 SSIM+ LPIPS||PSNR+ SSIM1 LPIPS||PSNR1 SSIMt LPIPS |
LIIF [5] (CVPR21) 28.63 0835  0.157| 2578 0779  0.193| 2744 0796  0.209
SwinIR [13] ICCV21) 2987 0859  0.183| 2692 0812 0199 2832 0817 0.245
DRCT [8] (CVPR24) 30.00 0.861 0.183| 27.02 0812 0205| 2840 0.818  0.246
C2-Matching-rec [11] (CVPR21) | 30.52 0.880  0.147| 28.18 0.852  0.137| 28.19 0814 0244
DATSR-rec [2] (ECCV22) 30.89 0.888  0.132| 2858 0.863  0.122| 28.19 0.815  0.234
MRefSR-rec [25] (ICCV23) 31,78 0903  0.121| 28.80 0.868 0.126| 2840 0.818  0.237
Ours (LIIF) 3218 0912  0.105| 2894 0874 0.116| 2855 0.823 0230
Ours (SwinIR) 3261 0918  0.100| 2929 0.882  0.108| 28.75 0.829  0.224
Ours (DRCT) 3268 0918  0.098| 2933 0.883 0.110| 28.80 0.830  0.222

Table 1. Numeric evaluation for x4 scaling on common RefSR datasets. We highlight the best result in bold and underline the second-best.
Our method using either SwinIR or DRCT as a backbone significantly outperforms existing RefSR approaches. Even when LIIF is used as
a backbone our method outperforms existing approaches while not being limited to fixed x4 scaling.

C2Matching (GAN) DATSR (GAN) MRefSR (GAN) MRefSR (MSE) Ours (DRCT)

Figure 4. Visual results for x4 scaling. Previous methods either produce noticeable artifacts when trained with an adversarial loss (column
2-4) or blurry results when trained without (column 5). Our method utilized reference images more effectively managing to produce sharp
results without any noticeable artifacts.

4. Results iment our model is trained in two stages. First, the refine-
ment stages 1 and 2 are trained independently, each for 300k

We evaluate our method on a variety of image restoration steps. Both stages are then combined and trained jointly

tasks using a variety of backbone models. For each exper-
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for another 150k steps. All training is performed on the
LMR [25] dataset using two RTX4090 GPUs. Further train-
ing details are provided in supplemental material.

4.1. Ref-SR

We start our evaluation by comparing our method to exist-
ing RefSR approaches. Note that previous methods train
two versions of their model. A perceptually optimized ver-
sion trained with an adversarial loss and a numerically opti-
mized version without adversarial loss. We indicate the nu-
merically optimized versions with the postfix -rec. For our
method we use a single version trained with L1 loss for both
numeric and visual evaluation. Also note that DATSR [2]
and C2-Matching [11] are both limited to using only a sin-
gle reference images. If multiple reference images are avail-
able we simulate a best case scenario for these methods by
picking the reference image that results in highest PSNR.
In Table 1 we present a numeric evaluation for x4 refer-
ence based super-resolution on common datasets. For this
evaluation we train our method using both SwinlR [13] and
DRCT [8] as a backbone. With either backbone our method
clearly outperforms existing approaches across the board.
Even when using LIIF [5], an arbitrary scaling SR method,
as a backbone our method still produces state-of-the-art re-
sults. When using the LIIF backbone our method is not
fixed to x4 scaling but can handle arbitrary scaling fac-
tors instead. Our methods strong numeric performance is
backed up by clear visual improvements which is illustrated
in Figure 4. Here, we see that previous methods trained with
adversarial loss (GAN) produce undesirable artifacts while
MSE optimized methods produce overly blurry results. Our
method produces sharp results without any noticeable arti-
facts.

4.2. Ref-Restoration

As our method is naturally compatible with most existing
image restoration methods we evaluate the benefits of refer-
ence images on a variety of image restoration tasks. Table 2
illustrates that our method manages to effectively use ref-
erence images to improve quality for arbitrary scaling SR
using LIIF [5] as a backbone, JPEG artifact removal using
SwinlR [13] as a backbone, denoising using Restormer [22]
as a backbone, and RealSR using SwinIR [13] as a back-
bone. For each task we use the publicly available pre-
trained backbone checkpoints. Figures 5&6 illustrate the vi-
sual improvement our method achieves for different restora-
tion tasks. We can clearly see that our method effectively
uses the available reference images to improve quality in
each case. Our methods benefits also translate to the in-
the-wild setting presented in Figure 1. Here, we upscale a
panorama shot captured with a smartphone using a set of
close up images. The set of close up reference images was
captured using the same smartphone during a walk through
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Figure 5. Visual results illustrating the benefits of using reference
images for a variety of tasks. Our method effectively utilized avail-
able reference images which significantly boost quality compared
to the backbone.

the city. Compared to MRefSR [25] our method produces
much sharper, more visually appealing results.

Task Backbone Backbone Backbone + Ours
PSNR 1 SSIM T LPIPS | \ PSNR T SSIM 1 LPIPS |
SR x2.5 LIIF 29.14  0.866 0.076 31.10  0.892 0.064
SR x6.5 LIIF 2570  0.719 0.258 2641 0.750 0.266
JPEG 10 SwinIR 32.16  0.895 0.142 33.69 0924 0.101
JPEG 30 SwinIR 36.18 0.951 0.065 37.21 0.960 0.052
Noise 25 Restormer 3439 0937 0.057 36.62 0954 0.048
Noise 50 Restormer 29.40  0.870 0.108 33.78 0.926 0.083
RealSR  SwinlR 25.62  0.719 0.347 27.53 0.794 0.239

Table 2. Numeric evaluation illustrating the benefits of using refer-
ence images for different tasks. We evaluate arbitrary scale super-
resolution for scales 2.5 and 6.5 using LIIF as backbone, JPEG
artifact removal for quality levels 10 and 30 using the SwinIR
backbone, image denoising with the Restormer backbone and o
25 and 50, and finally real image super-resolution using SwinIR
as a backbone. For RealSR we apply noise to the HR image with
o = 20, then downscale the image by x4, and finally apply JPEG
compression with ¢ = 30 to the LR image.
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Figure 6. Visual results of our method applied to a variety of tasks. For SR x 4 we compare our method against MRefSR [25] which
is also capable of using the available reference images. For all other tasks we compare our method against its backbone. For the task of
RealSR the input image is generated by first adding noise (¢ = 20) to the ground truth image, then downscaling by a factor of 4, and

finally applying JPEG compression (¢ = 30) to the LR image.

4.3. Ablation Study

In this section we ablate a number of design choices we
made throughout our method. As existing reference-based
methods focus on the task of super-resolution we choose
this task to ablate our design choices. However, the in-
sights gained from our ablation study should translate to
other tasks and our evaluation shows that our method per-
forms well on a wide variety of reference-based restora-
tion tasks. Throughout this section we report runtime, GPU
memory consumption, and number of parameters in differ-
ent settings. Unless mentioned explicitly results are gener-
ated on the LMR [25] testset without performing any CPU
offloading and transfer times from CPU to GPU are not in-
cluded in the reported runtimes. Runtime is always reported
as seconds-per-image which refers to the average number
of seconds required to process each example in the test-
set. Memory consumption refers to maximum GPU mem-
ory consumption over the whole testset in Gigabytes. The
number of parameters is reported in three categories. Train
refers to the number of parameters which are optimized
when training a given method. Enhance refers to the num-
ber of parameters which are directly contributing to the en-
hanced output image. This excludes parameters from PDC-
Net+ [17] and CCN [11] which are only used to compute
correspondences between the base and reference images.
Total refers to the total number of parameters in the model.
Unless explicitly stated otherwise our ablation is performed
using the x4 upscaling SwinIR [13] as a backbone.
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. Time Mem Params [M]
Corr  Align Scales |[PSNR SSIM LPIPS [s] [GB]|Train Enhance Total
CCN Post 3] 31.55 0.899 0.125| 84 8.0| 12.5 244 255
CCN Pre 3| 31.39 0897 0.126| 84 8.0| 12.5 244 255
CCN Post 1]30.96 0.888 0.140| 8.6 12.8| 3.3 152 16.3
PDC Pre 3| 32.44 0916 0.101| 2.6 81| 125 244 428
PDC Post 313237 0914 0.104| 25 8.1 125 244 428
PDC Pre 1] 32.00 0.909 0.109| 29 129| 35 154 338
CCN + PDC 3\ 32.61 0.918 0.100\ 10.0 8.1\ 249 36.8 56.4

Table 3. Ablation study showing effect of different model ar-
chitecture choices in both refinement stages. For the CCN-
alignment stage post-aligning feature maps performs better than
pre-alignment, while for the PDC-alignment stage pre-alignment
performs better. For both stages a deeper 3-scale architecture with
64,128,256 channels produces higher quality results and is less
computationally expensive compared to a 1-scale architecture with
128 channels. In the last row we show the result of combining the
best performing CCN and PDC stages. The combined model out-
performs both individual refinement stages which clearly shows
the advantage of our two stage refinement process.

Our first ablation is presented in Table 3. Here, we show
that post-alignment performs better when CCN correspon-
dences are used while pre-alignment is preferable for PD-
CNet+ correspondences. Additionally, we also show that
our multi-scale design has clear benefits both in terms of
quality and computational cost. We compare a single-scale
version of our method where all refinement happens at full
resolution with 128 feature channels to our multi-scale de-



sign with three levels of size 64, 128, and 256. The re-
sults show that the multi-scale design performs significantly
better while using less GPU memory and achieving faster
runtime. We note that the PDCNet+ refinement stage per-
forms significantly better at greatly reduced computational
cost compared to the CCN stage. This may be an interest-
ing direction to pursue for future work focused on resource
constrained environments. Our work is, however, aimed at
maximum performance in an offline setting and we see that
combining the two refinement stages yields the best results.
This illustrates the effectiveness of our two stage refinement
process.

Corr  Match Image Enhancement ‘ PSNR T SSIM 1 LPIPS |
CCN  bicubic features 31.55 0.899 0.125
CCN backbone features 31.44 0.897 0.127
CCN  bicubic image 31.53 0.899 0.125
PDC backbone features 32.44 0.916 0.101
PDC  bicubic features 3236 0914 0.105
PDC  backbone image 32.40 0.915 0.105
Table 4. Ablation study showing the effect of using different match

images and injected reference information at different locations.

Other important design choices are which image to use
when computing correspondences, where to inject informa-
tion from reference images, and the ordering of the two
refinement stages. We ablate this in Table 4. For CCN
correspondences we find that it is best to use a biubically
upscaled image to extract correspondences while for PDC-
Net+ an already enhanced image from the backbone model
performs better. This finding also informs our ordering of
the refinement stages. Using CCN for the first stage makes
sense as it does not benefit from an already enhanced im-
age. PDCNet+ is best suited for the second stage where it
can benefit from an already enhanced image from the first
stage. For both stages we see that refining the feature map
extracted by the backbone performs better than refining the
restored image directly.

In Table 5 we showcase the effect both the quality and
number of reference images have on computational cost
and performance. This experiment is performed on the
CUFEDS [27] dataset which provides a set of reference im-
ages with different levels of similarity for each example. We
evaluate our method using the best/worst 1/3 reference im-
ages and also using all the available reference images. We
identify two key insights from these results - more similar
reference images are better than less similar ones and more
reference images are better than fewer. We also note that
using all available reference images yield the best results
which indicates that our method manages to ignore infor-
mation from lower quality reference images where higher
quality information is available.

Finally, we compare our method to MRefSR [25] both
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References | PSNR ~ SSIM  LPIPS ‘ T"[“;]’ Ifée];']‘
Best | 2884 0869 0124 | 03 08
Best 3 2923 0880 0110 | 04 11
Worst 1 2730 082 018 | 03 08
Worst 3 2806 0848 0149 | 04 11
All | 2920 0882 0108 | 06 15

Table 5. Impact of number and quality of reference images on our
method computational cost and performance on the CUFEDS [27]
testset which provides reference images of varying similarity level
for each example. We see that higher quality reference images re-
sult in better performance compared to lower quality references.
We also see that, independent of reference image quality, provid-
ing more reference images strictly improves output quality.

Time Mem Params[M]
Method PSNR SSIMLPIPS | "1 1G] | Train Enhance Total
SwinIR 2087 0859 0183 0.8 14| 119 119 119
DRCT 3000 0861 0.183| 41 3.1|276 276 276
MRefSR (MSE) | 3178 0903 0.121| 13.6 22.1| 237 237 254
Ours S (SwinIR) | 32.26 0913 0.107| 9.1 50| 61 180 376
Ours S (DRCT) | 3236 0914 0.106| 122 52| 61 337 533
Ours L (SwinlR) | 32.61 0918 0.100| 100 81| 249 368 564
Ours L (DRCT) | 32.68 0918 0098| 13.0 83| 249 525 72.1

Table 6. Computational cost and quality comparison between
our method and MRefSR [25]. Independent of the backbone our
method significantly outperforms MRefSR in both quality and
computational cost.

in terms of runtime and peak memory consumption on the
LMR [25] dataset. Our method is evaluated using both the
SwinlR [13] and DRCT [8] as a backbone and for both op-
tions we test a small and large version. The large version
(Ours L) uses intermediate feature maps of size 64, 128, 256
while the small version (Ours S) halves each layers size to
32,64,128. The results are presented in Table 6. We see
that, in all configurations, our method produces higher qual-
ity results than MRefSR [25] while consuming less memory
and achieving faster runtimes. We also see that the small
versions of our method have significantly lowered memory
requirements while still providing noticeably higher qual-
ity than other methods. While in this work we focus on
maximum quality in a offline setting we believe that the re-
sults achieved by our small model show that application in
a more resource constrained environment is feasible. This
is, however, beyond the scope of this work.

5. Conclusion

In this paper we have introduced a generic method
capable of utilizing available reference images for
any image restoration task. Our method is compat-
ible with virtually any image restoration backbone
and our results clearly show the benefits of using ref-
erence images across a variety of image restoration
tasks. For the task of RefSR our method significantly
outperforms the current state-of-the-art while simulta-
neously reducing the required computational resources.
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