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Abstract

Learned image compression methods using a generative de-
coder can reconstruct images at significantly higher per-
ceptual quality than the new hand-crafted codecs or other
learned methods. Recently, diffusion models have been in-
tegrated into the decoding process to further enhance image
quality.

However, the diffusion process is sensitive to several hy-
perparameters, such as the number of steps, which are typ-
ically hard-coded and expected to perform well across var-
ious images. When applied to a single image, these param-
eters are often suboptimal.

In this work, we propose enhancing the reconstruction
quality by optimizing the diffusion process’s decoding pa-
rameters for each image individually during encoding. This
approach improves the final quality with virtually no in-
crease in bits-per-pixel. In addition, we compare methods
to minimize the additional computational impact during en-
coding.

We validate our approach on the CDC (Yang et al., 2024)
and PerCo (Careil et al., 2023) image compression mod-
els using datasets like Kodak and DIV2K. Our results show
clear improvements in LPIPS and PSNR without negatively
impacting bits-per-pixel. This concept of optimizing qual-
ity tradeoffs can be readily applied to other diffusion-based
image compression methods without the necessity of addi-
tional network training.

1. Introduction

Image compression is a critical technology for managing
the vast amounts of images and videos shared across the
Internet. Although hand-crafted codecs such as JPEG [39]
remain prevalent, newer codecs such as BPG [7] and VVC
still image coding [11] offer substantial improvements, pro-
viding a robust baseline. However, recent learned image
compression methods surpass these codecs in terms of com-
pression rates [6, 21, 22, 32, 33].

Despite their efficiency, distortion-optimized methods
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Figure 1. Overview of the proposed method.

often fail to align with human perception of quality. At low
bitrates, optimizing solely for distortion can result in blurry
or aesthetically displeasing images. Consequently, PSNR
can be a misleading metric for image quality in many cases.
Alternative metrics such as LPIPS [41] or FID [24] are of-
ten used. Several studies have aimed to enhance perceptual
quality by employing generative modeling to better synthe-
size missing texture information. These methods often in-
volve an adversarially trained generator [23, 31, 34], which
can produce more realistic images even at low bitrates.

With the increasing popularity of diffusion models for
generative tasks [25, 36], they have also been applied to
generative image compression. Theis et al. [38] proposed
using an unconditional diffusion model and reverse channel
coding to achieve impressive FID scores. Other approaches
include using a conditional diffusion model as the genera-
tor [10, 40], enhancing a pre-trained (neural) codec with a
diffusion model [16, 27], or leveraging the generative capa-
bilities of pre-trained latent diffusion models for improved
image reconstruction [12, 35].

Although diffusion models have shown promising re-
sults, the performance of the decoding process is heavily
influenced by several hyperparameters. Typically, these pa-
rameters are handpicked to perform well in various cases,
but they may not be optimal for each specific image. Conse-
quently, existing methods do not fully exploit the potential
of the diffusion process, as they rely on fixed hyperparame-
ters that may not yield the best quality for each image.

In this paper, we propose enhancing existing diffusion-
based image compression methods by optimizing their sam-
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GT (PSNR/LPIPS) Default (26.68 / 0.057) α = 0 (26.84 / 0.058) α = 0.992 (26.61 / 0.056) α = 1 (26.03 / 0.054)

GT (PSNR/LPIPS) Default (23.79 / 0.066) α = 0 (25.03 / 0.073) α = 0.992 (24.46 / 0.066) α = 1 (24.11 / 0.065)

GT (PSNR/LPIPS) Default (28.32 / 0.085) α = 0 (29.39 / 0.120) α = 0.992 (27.86 / 0.072) α = 1 (27.61 / 0.071)

Figure 2. Qualitative comparison of different tradeoffs between LPIPS and PSNR as generated by CDC x0 [40] for different crops
of Kodak images. The leftmost image is the ground truth. The second-left image is the default configuration. The remaining images are
optimized for different tradeoffs, with optimization for PSNR (α = 0) up to optimization for LPIPS (α = 1). Images optimized for PSNR
tend to be more blurry while optimizing for LPIPS can result in more noisy images.

pling parameters specifically for the individual image being
compressed. An overview is provided in Fig. 1. During the
encoding process, we search for the parameter combination
that results in the highest quality image. Depending on the
chosen metric, different perception-distortion tradeoffs can
be targeted [9]. Furthermore, the computational cost of this
optimization is only incurred during compression, and the
parameters can be transmitted with the compressed image at
a negligible additional cost. We demonstrate the effective-
ness of our approach on two different diffusion-based im-
age compression methods: CDC [40] and PerCo [12]. Our
results show significant improvements in perceptual qual-
ity without requiring additional training or significantly in-
creasing bitrate. A project page is available online1.

2. Related work

2.1. Learned image compression
Recent advances in the field of learned image compression
have shown significant improvements, not only beating es-
tablished handcrafted methods, such as JPEG [39], but also
improving quality over newer ones, such as BPG [7] and the
still image compression of VVC [11].

Most of the learned image compression methods are
based on a nonlinear transform coding paradigm [18], in
which an auto-encoder style model transforms the image

1Project: https://jbrenig.github.io/diff-bbopt-25/

into an easily compressible latent space [4, 5]. The latent
space is quantized and then compressed by using arithmetic
coding. To further improve this process, most works adopt
an additional hyper-prior entropy model, which was first in-
troduced by Ballé et al. [6], beating BPG.

Further improvements in entropy coding have been
achieved using autoregressive context modeling [19, 33].
Recent works offer architectural improvements and al-
low for more parallelized decoding, resulting in faster de-
coding speeds while maintaining high performance [20–
22, 30, 32, 42]. Recent works beat the state-of-the-art hand-
crafted still image compression codec of VVC [11].

When compressing natural images, PSNR is often not a
very good indicator of image quality. Instead, perceptual
metrics such as LPIPS [41] or FID [24] align much better
with human perception.

Recently, several works focused on developing image
compression techniques that prioritize perceptual quality. In
most cases, these models use a generative adversarial net-
work [17] (GAN) for the decoder. The first use of GANs in
this context was introduced by Agustsson et al. [2]. Later
works improved upon the initial concept [31], incorporat-
ing more advanced entropy models [23, 34] or allowing for
control of the perception-distortion tradeoff [3, 28].

2.2. Diffusion-based learned image compression
More recently, diffusion models [25] offer promising po-
tential to enhance the perceptual quality of image recon-

5562



struction, and several studies have begun to investigate their
integration into the image compression pipeline.

Hoogeboom et al. [26] explored the use of Autoregres-
sive Diffusion Models for lossless compression. In the
realm of lossy compression, Theis et al. [38] proposed a
scheme using an unconditional diffusion model combined
with reverse channel coding. Although their experiments
showed promising results, the approach is limited to small
images due to computational complexity.

The first method to use diffusion models for image
compression was introduced by Yang and Mandt [40].
They achieved impressive perceptual results across vari-
ous metrics using a denoising diffusion model conditioned
on the encoder latent. Alternatively, approaches such as
DIRAC [16], HFD [27] and ResCDC [10] are trained to im-
prove the perceptual quality of the reconstructions obtained
using other image compression methods. These methods
are trained on the degraded output of existing (neural) im-
age compression codecs and can yield significant improve-
ments in perceptual quality.

Relic et al. [35] recently proposed a lossy image com-
pression method using Stable Diffusion [36]. Notably, their
approach employs an integrated prediction network to esti-
mate the number of decoding steps and quantization param-
eters. In contrast, our method does not require any training
and estimates additional parameters as well. Another ap-
proach by Careil et al. [12] fine-tunes a pre-trained text-
conditioned latent diffusion model. Conditioned on text
provided by a pre-trained image captioning model, their
proposed model (PerCo) restores details lost during the
quantization of the latent, reconstructing high-realism im-
ages at very low bitrates.

2.3. Sampling of diffusion models
The original formulation of Denoising Diffusion Probabilis-
tic Models (DDPM) [25] requires the same number of steps
during sampling as was used during training. However,
most works now employ alternative sampling schemes,
such as Denoising Diffusion Implicit Models (DDIM) [37],
which can generate images using significantly fewer sam-
pling steps.

The DDIM sampling process is governed by several hy-
perparameters that influence the final result. The number
of DDIM steps controls the number of timesteps for which
the diffusion model is sampled. Furthermore, η controls the
probabilistic component of the sampling, with η = 0 repre-
senting the fully deterministic DDIM and η = 1 represent-
ing the probabilistic DDPM. For more details, refer to the
original DDIM paper [37]. Another parameter to consider
is γ, which represents the standard deviation of the initial
noise distribution N (0, γ2I) used at the beginning of the
diffusion sampling process.

CDC [40] and PerCo [12] diffusion-based compression

methods are evaluated in this paper and both use DDIM for
sampling by default. In this work, we only consider the
numeric DDIM parameters γ, η, and the number of DDIM
steps. For the Stable Diffusion [36]-based PerCo [12], we
also consider the guidance-scale parameter, which controls
the model’s adherence to the text conditioning.

3. Proposed method
Our approach is based on existing diffusion-based image
compression methods and does not require any additional
training. Although most diffusion-based methods use sensi-
ble default parameters, such as the number of DDIM steps,
these values may not be optimal for any specific image.

We propose improving the quality of the reconstruction
by selecting the optimal decoding parameters for each im-
age individually. This requires additional computational
effort during encoding; however, the decoding process of
the underlying learned image compression method remains
mostly unchanged. Since most images are only compressed
once, we argue that it is worthwhile to invest the additional
effort during encoding to enhance the quality of the decoded
image. A conceptual overview of the proposed method is
provided in Fig. 1.

3.1. Optimizing DDIM parameters during encoding
Since the final result significantly depends on the param-
eters chosen for the sampling procedure, we propose in-
vesting additional computational effort during the encod-
ing process to store the optimal parameters for each image.
Although well-chosen default diffusion parameters provide
adequate results, optimizing these parameters for specific
images can further improve reconstruction quality and, in
some cases, expedite the decoding process by using fewer
sampling steps.

In this work, we consider the parameters of two differ-
ent diffusion-based image compression methods: CDC [40]
and PerCo [12]. For CDC, we focus on the parameters γ,
η, and DDIM steps. As PerCo uses a text-conditioned la-
tent diffusion model, we use DDIM steps and the guidance
scale. We limit the possible options explored to a reason-
able range around the default parameters.

Future approaches might also consider optimizing other
parameters, such as the timestep schedule.

3.2. Optimization criterion
Selecting the best parameters for decoding requires choos-
ing an appropriate optimization metric. There is an inherent
tradeoff between perceptual quality and distortion, as high-
lighted by previous studies [9]. Therefore, the optimal pa-
rameters for the diffusion process are subjective and depend
on the targeted tradeoff between perceptual quality and dis-
tortion. Solely optimizing for PSNR can significantly de-
grade perceptual quality, and vice versa.
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Following the existing literature, we evaluate our results
using LPIPS [41] as a perceptual measure and PSNR as
a distortion measure. Although diffusion models are opti-
mized to produce images of good perceptual quality, there
are diminishing returns when optimizing solely for LPIPS,
with an increasing loss in quality in terms of PSNR.

To balance perceptual quality and distortion, we propose
an optimization criterion that combines both metrics. The
optimization objective is given by the following tradeoff
term, which we seek to maximize:

T = (1− α) · PSNR↑ − α · LPIPS↓ (1)

Here, α ∈ [0, 1] controls the relative importance of PSNR
versus LPIPS. When α = 1, this is equivalent to minimizing
LPIPS, while α = 0 is equivalent to maximizing PSNR.
Since LPIPS typically operates on a much smaller scale than
PSNR, we expect α to be close to 1 in practice.

For our experiments, we selected α = 0.992, which pro-
vides a good balance between the two metrics, as shown in
Fig. 3. This means that a 1 dB increase in PSNR is consid-
ered equivalent to a reduction in LPIPS of about −0.008.

3.3. Note on additional bit-cost
The added bits-per-pixel (BPP) overhead of transmitting the
parameters for the diffusion process is negligible. Even as-
suming full-precision 32-bit values for each parameter, the
additional cost is minimal—about 12 bytes for all three pa-
rameters. Given the overall size of a high-resolution image,
the increase in BPP is insignificant. In practice, even allo-
cating 8 bits for every parameter is more than enough (limit-
ing the parameters to 256 different values). Thus, the over-
all impact on the bits-per-pixel is negligible (i.e. < 0.0003
bpp for Kodak images).

4. Experiments
4.1. Experimental setup
Datasets For most of our experiments and ablations, we
use the Kodak [15] dataset, which contains 24 images with
a resolution of 512 by 768 pixels. We also provide addi-
tional results for the DIV2K [1] validation set, which con-
tains 100 images with a width of 2040 pixels and varying
height, as well as the validation set of the CLIC2022 [13]
dataset, which contains 30 images with the larger side being
2048 pixels.

Measures To assess the effectiveness of our proposed ap-
proach, we use two standard image quality metrics: PSNR
and LPIPS [41] (using AlexNet).

Evaluated methods We apply our approach to two dif-
ferent diffusion-based image compression methods, with
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Figure 3. Different configurations of CDC x0 in terms of PSNR
and LPIPS for the first Kodak image. Color represents the amount
of DDIM steps. The CDC x0 default is marked as a black dot.
The tradeoff T between PSNR and LPIPS for α = 0.992 is shown
as a black line.

publicly available codes and pre-trained checkpoints. The
primary method for most of our experiments is the CDC2

model [40]. Additionally, we provide results for the Stable-
Diffusion-based PerCo3 [12].

4.2. Effect of DDIM parameters for CDC
In order to determine the benefits of per-image parame-
ter optimization, we use the mid-quality checkpoint of the
CDC x0 model (optimized for perceptual quality) and per-
form a grid search over the DDIM parameters. We limit our
search grid, as detailed in Tab. 1 and evaluate the resulting
3600 parameter combinations on the Kodak images. For ev-
ery configuration, we sample the model twice and average
the result.

In Fig. 3 we show the effect of different sampling param-
eters on the reconstruction quality of the CDC [40] methods
for the first image of the Kodak image suite. The default
configuration of CDC performs very well across the differ-
ent images, but it is rarely the optimal setting for any partic-
ular image, regardless of the choice for α. Although there
are some general trends, such as the use of more DDIM
steps for better perceptual quality, the optimal parameters
vary significantly between images. For many images, it is
beneficial for performance in LPIPS to use more than the
default 17 DDIM sampling steps, while fewer steps are suf-
ficient when optimizing for PSNR. By finding and trans-
mitting/encoding these parameters for the individual image,
the reconstruction quality can be increased at virtually no
cost in terms of bits-per-pixel. We provide a more detailed
analysis in the supplementary material.

2CDC: https : / / github . com / buggyyang / CDC _
compression

3PerCo: https://github.com/Nikolai10/PerCo
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On the Kodak images, the parameter optimization allows
for an average improvement of −0.002 in terms of LPIPS
(for α = 0.992) at roughly the same PSNR, compared to
the default configuration of CDC. When optimizing only
for LPIPS (α = 1.0), the improvement increases to −0.004,
with a reduction in PSNR of −0.295dB on average. Sim-
ilarly, when optimizing for PSNR (α = 0), we observe an
average increase in PSNR of 1dB, while increasing the av-
erage LPIPS by 0.015. This effect can also be seen visually,
as shown in Fig. 2, where images optimized for PSNR are
slightly more blurry, whereas images optimized for LPIPS
can be slightly more noisy.

Parameter Min Max Step Default (CDC x0)

DDIM steps 5 41 2 17
γ 0.0 1.0 0.05 0.8
η 0.0 0.5 0.05 0.0

Table 1. Parameter-bounds for the CDC x0 models.

4.3. Blackbox optimization
Performing a full grid search over all DDIM parameters
is very resource intensive. To address this, we compare
a variety of blackbox optimization techniques that reduce
the number of required iterations while still yielding high-
quality results.

A simple random search, which randomly samples a
fixed number of configurations of the parameter space,
serves as a simple baseline. Additionally, we compare three
different surrogate models for Bayesian optimization.
• Gaussian Processes (GP), implemented in Skopt4.
• Hyperbands (HB) [14], implemented in blackboxopt5.
• Probabilistic Random Forests (PRF), implemented in

OpenBox [29].
All of these methods are evaluated with 10, 20, 30, 50, 100
and 200 iterations. We select our optimization criterion T
with α = 0.992. This choice of α was primarily designed
to optimize both LPIPS and PSNR compared to the default
configuration of CDC [40]. However, other values for α are
also reasonable and depend on the specific use case.

Results We present our results on the Kodak dataset in
Fig. 4, where the grid-search result is labeled as Grid. The
dotted line indicates the targeted tradeoff with α = 0.992.
Any point to the top-left of this line is considered a better re-
sult according to the criterion T . For a direct comparison of
the different methods w.r.t. T and the number of iterations,
see Fig. 6.

4Skopt: https://scikit-optimize.github.io
5Blackboxopt: https://github.com/boschresearch/

blackboxopt
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Figure 4. Comparing CDC x0 default with CDC optimized by
different methods for up to 200 iterations, in terms of average
PSNR and average LPIPS on Kodak [15].

Even Random search (Random) already provides clear
improvements over the default configuration using signifi-
cantly fewer iterations. More sophisticated methods—such
as Bayesian Optimization using Gaussian Processes (GP)—
achieve similar or better results with even fewer iterations.

Generally, increasing the number of iterations has dimin-
ishing returns. Bayesian Optimization using GP already al-
most matches the performance of the grid search with only
100 iterations and provides a decent improvement over the
default configuration with 30-50 iterations. With 200 iter-
ations it even outperforms the grid search, which is limited
by the predefined grid of parameters.

BD-rate As seen in Fig. 5, the performance gains remain
constant across different bitrates. Using 30 iterations of
Bayesian Optimization using GP, we achieve consistent im-
provements in both PSNR and LPIPS on the Kodak dataset
with BD-rate [8] improvement of −4.6% for PSNR and
−4.8% for LPIPS.

We also compare with the results for HiFiC [31] which
serves as a baseline for generative compression methods
and BPG [7] for non-learned compression. HiFiC performs
significantly better than CDC in terms of PSNR and LPIPS.
While our method improves the performance of CDC in
these metrics, it does not reach the performance of HiFiC.

Dataset optimized parameters For completeness, we
also evaluate the configuration that performs best according
to T across all images in the Kodak dataset. This configura-
tion achieves better LPIPS compared to the default configu-
ration (−0.02), with similar PSNR (+0.03dB). However, it
still falls short of the performance achieved by our proposed
per-image optimization approach.
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Figure 5. CDC x0 default [40] vs. our optimized CDC model in terms of average PSNR and average LPIPS on Kodak [15] dataset. For
ours we employed Bayesian Optimization using Gaussian Processes and 30 iterations.
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Figure 6. Differences for various optimization methods to the
CDC x0 default [40] configuration with regard to the optimization
criterion T vs. number of iterations on Kodak [15].

4.4. Evaluation on high-resolution images

To test the scalability of our approach, we evaluate it on
the validation splits of the high-resolution DIV2K [1] and
CLIC2022 [13] datasets. We apply three blackbox opti-
mization methods: Bayesian Optimization with Gaussian
Processes (GP), Hyperbands (HB), and Random Search,
with a maximum of 50 iterations.

As shown in Fig. 7 and Fig. 8, we observe consistent
improvements in both PSNR and LPIPS compared to the
default configuration of CDC. Performance trends mirror
those seen on the Kodak dataset: Bayesian Optimization
with GP delivers the largest gains, followed by Hyperbands
and Random Search.
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Figure 7. CDC x0 default [40] vs. CDC optimized with different
methods with 10, 20, 30 or 50 iterations in terms of average PSNR
and average LPIPS on DIV2K [1].

4.5. Extreme tradeoffs

For our main experiments, we select α = 0.992, which im-
proves over the default configuration of CDC in both PSNR
and LPIPS. However, depending on the application, other
values of α may be preferable to emphasize either percep-
tual quality or distortion.

In Fig. 9, we compare results for extreme tradeoff set-
tings with α = 0 and α = 1 against the default of CDC
x0 [40] on the Kodak dataset across varying bitrates. As
expected [9], optimizing for either PSNR (α = 0) or LPIPS
(α = 1) results in a drop in the other metric compared to
the default configuration.
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Figure 8. CDC x0 default [40] vs. CDC optimized with different
methods with 10, 20, 30, or 50 iterations in terms of average PSNR
and average LPIPS on CLIC2022 [13].
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Figure 9. Extreme tradeoffs for CDC x0 [40] with α = 0 and
α = 1 and the default configuration. For the optimized configu-
rations we employed Bayesian Optimization using Gaussian Pro-
cesses and 30 iterations. The proposed method allows to select
a tradeoff between PSNR and LPIPS performance without any
retraining. However, when optimizing only for a single metric
(PSNR or LPIPS), performance in the other metric drops.

4.6. Computational effort
Since sampling a diffusion model is many times slower than
the normal encoding process (which normally takes less
than one second), our method requires significantly more
time during encoding. However, decoding remains unaf-
fected apart from potential adjustments to the number of
DDIM sampling steps.

On an RTX 4090, sampling a DIV2K [1] image with the
CDC x0 model [40] using 17 steps takes approximately 5.6
seconds. The time required for the optimization depends

on the number of iterations and the average step count. For
example, 10 iterations of Bayesian Optimization with GP
(at α = 0.992) use an average of 23.7 steps, resulting in an
average optimization time of 82 seconds per image. This
scales linearly with the number of optimization iterations,
but is further influenced by the selection of α. As discussed
before, higher values of α often lead to more DDIM steps,
which in turn increases the optimization time.

Given that images are typically only encoded once and
then stored, this time investment can be justified by the im-
proved reconstruction quality that our method delivers.

Decoding steps The number of DDIM steps used during
decompression is a parameter that will influence the decod-
ing speed of the learned image compression method. In
many cases, it might be beneficial to perceptual quality to
increase the number of DDIM steps. As a consequence, op-
timizing the parameter configuration for LPIPS will often
result in a higher number of DDIM steps than the default
(given the parameter bounds selected in Tab. 1). For exam-
ple, using significantly fewer DDIM steps than the default
(17) harms performance in terms of LPIPS, as shown for the
first Kodak image in Fig. 3. Furthermore, most of the best
configurations use more than the default 17 steps. However,
increasing the number of steps also slows down the decod-
ing process, which can be undesirable when decoding speed
is a critical factor.

To evaluate the tradeoff between quality and decoding
efficiency, we repeat the optimization while constraining
the maximum number of DDIM steps to 17. As shown in
Fig. 10, limiting the maximum number of decoding steps
reduces performance in both PSNR and LPIPS relative to
the unconstrained search, but still improves over the CDC
default.

If the number of DDIM steps is a concern, it might also
be worthwhile to include them in the optimization criterion,
balancing possible performance improvements against the
increase in decoding time.

Optimizing on crops Preliminary experiments on a
smaller image crop show some further potential to reduce
the computational impact. Optimizing using Gaussian Pro-
cesses for 30 iterations on a 256x256 center-crop of DIV2K
reduces the time needed significantly, to less than 10s per
image. However, this comes at the cost of reduced perfor-
mance. Compared to the default configuration of CDC, this
approach achieves a +0.45dB increase in PSNR at the cost
of a small increase in LPIPS (+0.0016) when evaluated on
the full-size DIV2K images.

4.7. Generalizability to other methods
In addition to our primary experiments with the CDC [40]
model, we also evaluate the effectiveness of our approach
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Figure 10. CDC x0 default [40] vs. our CDC configurations
optimized using Gaussian Processes or Hyperbands in terms of
average PSNR and average LPIPS on Kodak with α = 0.992.
Comparing the normal optimization settings to limiting the num-
ber of DDIM sampling steps to 17.

on the PerCo [12] method. For this model, we optimize
two easily accessible parameters: the number of DDIM
steps ([2, 60]) and the guidance scale ([0.0, 5.0]), which con-
trols how strongly the diffusion model adheres to the text-
conditioning information. As before, we optimize for the
tradeoff objective T with α = 0.992 using 30 iterations of
Bayesian Optimization with GP.

Results As shown in Fig. 11, our approach yields im-
provements in both LPIPS and PSNR. Specifically, we
achieve an improvement in BD-Rate [8] of −3.8% for
PSNR and −16.3% for LPIPS compared to the default con-
figuration.

Interestingly, at the highest bitrate, the gains in PSNR
and LPIPS are modest (+0.07 and −0.002). However, the
average number of decoding steps required decreases sig-
nificantly from 20 to 13 steps, resulting in faster decoding.
At the lowest bitrate, the improvements are much more sub-
stantial (+0.3 for PSNR and −0.06 for LPIPS), although
this comes at the cost of using a higher number of DDIM
steps (increasing to 40 on average).

These results confirm the general applicability of our
per-image optimization strategy across different generative
compression frameworks.

5. Conclusion
In this work, we propose using blackbox optimization tech-
niques during image compression for diffusion-based meth-
ods to optimize the sampling parameters used during de-
coding. By applying additional compute once during the
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Figure 11. PerCo [12] vs. our optimized PerCo model in terms
of average PSNR and average LPIPS on Kodak. For ours we em-
ployed Bayesian Optimization using Gaussian Processes and 30
iterations. Significant improvements are achieved for low (< 0.1)
bpp.

compression process, we show that it is possible to improve
the final reconstruction of existing diffusion-based image
compression methods at virtually no cost in terms of bits-
per-pixel (less than 3 additional bytes per image). This ap-
proach also allows users to decide on the tradeoff between
perceptual quality and distortion when encoding the image
and does not require any sort of further model training.

We demonstrate that our approach can be applied to dif-
ferent pre-trained diffusion-based learned image compres-
sion methods (e.g., CDC [40], PerCo [12]), showing con-
sistent improvements on Kodak [15], as well as DIV2K [1]
and CLIC2022 [13].

5.1. Future work
Although our approach shows promising results, it currently
requires multiple samplings of the diffusion model during
encoding, which increases the computational cost during
that phase. Future work could explore methods to enable
the heuristic prediction of optimal decoding parameters, po-
tentially reducing the time and resources needed during the
compression process.
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