MedShift: Implicit Conditional Transport for X-Ray Domain Adaptation

Supplementary Material

The supplementary material is organized as follows: Ap-
pendix A describes the implementation details of MedShift.
Appendix B contains empiric proof of the shared manifold
assumption of Section 3.

A. Implementation Details

The model was trained on a workstation equipped with an
NVIDIA RTX 3090 Ti GPU (24GB VRAM), an Intel Xeon
Silver 4216 CPU (2.10 GHz), and 192GB of RAM. We used
mixed-precision training via the Accelerate [9] library
to reduce memory consumption without compromising per-
formance. The hyperparameters used to train MedShift are
summarized in Table 7.

Table 7. Model and training configuration used in our experiments.
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Parameter | Value
Input size 512
Model channels 256
Number of residual blocks 2
Channel multiplier 1,2,2,2
Attention resolutions 2,4
Number of attention heads 4
Head channels 64
Label Dropout probability 0.2
Learning rate le-4
Number of epochs 1,000
Batch size 24
Warmup steps 100
EMA rate 0.999

B. Latent Distributions

To directly address the assumption of a shared manifold be-
tween synthetic and real domains, we add a UMAP analysis
of the latent encodings for different 7 values in Figure 4. At
7=1.0, where no noise is applied, the embeddings of syn-
thetic and real images remain clearly separated. However,
as 7 decreases and the model integrates backward, the la-
tent representations become progressively noisier and the
two distributions begin to overlap. This analysis supports
the core design of our method: by moving to an interme-
diate, noise-conditioned state, the model converges toward
the shared latent space hypothesized in Section 3, enabling
the subsequent domain translation.
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Figure 4. UMAP visualization of the latent-space features for dif-
ferent 7 levels.



