
MedShift: Implicit Conditional Transport for X-Ray Domain Adaptation

Supplementary Material

The supplementary material is organized as follows: Ap-
pendix A describes the implementation details of MedShift.
Appendix B contains empiric proof of the shared manifold
assumption of Section 3.

A. Implementation Details
The model was trained on a workstation equipped with an
NVIDIA RTX 3090 Ti GPU (24GB VRAM), an Intel Xeon
Silver 4216 CPU (2.10 GHz), and 192GB of RAM. We used
mixed-precision training via the Accelerate [9] library
to reduce memory consumption without compromising per-
formance. The hyperparameters used to train MedShift are
summarized in Table 7.

Table 7. Model and training configuration used in our experiments.

Parameter Value

Input size 512
Model channels 256
Number of residual blocks 2
Channel multiplier 1, 2, 2, 2

Attention resolutions 2, 4
Number of attention heads 4
Head channels 64

Label Dropout probability 0.2
Learning rate 1e-4
Number of epochs 1,000
Batch size 24
Warmup steps 100
EMA rate 0.999

B. Latent Distributions
To directly address the assumption of a shared manifold be-
tween synthetic and real domains, we add a UMAP analysis
of the latent encodings for different τ values in Figure 4. At
τ=1.0, where no noise is applied, the embeddings of syn-
thetic and real images remain clearly separated. However,
as τ decreases and the model integrates backward, the la-
tent representations become progressively noisier and the
two distributions begin to overlap. This analysis supports
the core design of our method: by moving to an interme-
diate, noise-conditioned state, the model converges toward
the shared latent space hypothesized in Section 3, enabling
the subsequent domain translation.
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Figure 4. UMAP visualization of the latent-space features for dif-
ferent τ levels.


