
Practical Manipulation Model for Robust Deepfake Detection

Supplementary Material

Overview
This document provides additional information omitted
from the main paper for brevity. Appendix A explains the
inference process on the images in Fig. 1. Appendix B pro-
vides additional example images of our Practical Manipula-
tion Model, in the same way as in Fig. 2. Additional details
for our method are described in Appendix C, whereas Ap-
pendix D provides more details on the ablation study. Ap-
pendix E provides additional robustness examples, similar
to Sec. 4.4 in the main paper and Appendix F qualitatively
evaluates robustness using GradCAM [35]. Finally, Ap-
pendix G provides more qualitative examples of our model
and LAA [29], while Appendix H presents a metric for
the hardness of our degradations and Appendix I describes
some details of our implementation.

A. Inference on the assassination attempt im-
age

Figure 1 shows a real image [28] and its corresponding real-
world deepfake [13], which can avoid detection due to being
slightly blurry. In the image, the faces of the two Secret
Service agents have been modified to make them smile.

We tested the detection on the agent on the right because
he is more obviously visible, properly exposed, and looking
at the camera. Since both detectors are meant to be applied
to crops of faces, we manually created a crop around the
agent’s head and performed detection on that.

B. More example images
Figure A shows some additional training images. The table
follows the same concept as Fig. 2 in the main paper, pro-
viding more examples that could not be included for space
reasons.

C. Method details
This section provides explanations of two details of our
method, which were omitted from the paper due to space
constraints.

C.1. Noise
Channel-wise correlated Gaussian noise is given by

Σ′ =
∣∣∣(l′2 · s)2 · UTDU

∣∣∣ (1)

for some orthogonal matrix U and diagonal matrix D.
The diagonal elements of D are randomly sampled from
Uniform(0, 1). U is entirely randomly sampled from

LAA [29] ours
real fake real fake

Figure A. Additional example images from our method and
LAA [29]. This is an extension of Fig. 2. The original images
are taken from the FaceForensics++ dataset [33].

Uniform(0, 1) and then orthogonalized. l′2 = l2
255 is the

noise level in range [0, 1]. When calculating in range
{0, 1, ..., 255}, the result has to be scaled back up: Σ =
255 · Σ′

C.2. Distractors

Multiple distractors per image. As described in the pa-
per, multiple distractors may be added to a single image.



Variant example training images

Original (LAA)

+ Degradations

+ Additional Masks

+ Poisson blending

+ Distractors

+ Generator Artifacts (PMM)

Table A. Sample images during our ablation study. The images are examples of the kind of fake data the model sees during the ablation.
Note that not all changes are visible to the human eye. Images are selected to emphasize the effect of the visible steps, avoiding cases
where a change is randomly not used. Original images are taken from FaceForensics++ [33].

The number of distractors is geometrically distributed. This
means they are added until the random decision with prob-
ability pd fails. Alternatively, we limit the number of dis-
tractors to 10 to avoid cluttering the image too much for
large values of pd. However, since we use pd = 0.2,
this case is only expected to happen with a probability of
0.211 ≈ 2 · 10−8 and should, therefore, not have much ef-
fect in our experiments.

Text settings. The following settings are chosen for the
overlaid text:
1. The text itself is a concatenation of n ∼ Uniform(0, 10)

randomly selected characters, chosen from the list of all
printable characters.

2. The text is placed at position (lower left cor-
ner) x ∼ Uniform(−100,WIDTH ) and y ∼
Uniform(0, HEIGHT +100). Positions outside of the
image region result in the text being partially visible.

3. Font face is uniformly chosen from {0, ..., 7}.
4. Font scale is chosen from Uniform(0, 8).
5. Color is uniformly chosen from {0, ..., 255}3.
6. Line thickness is uniformly chosen from {1, 2, ..., 8}.
7. Line type is uniformly chosen from {0, 1, 2}.

D. Details on the ablation study

Table A shows examples of the types of images our model
sees while training each of the ablation study variants. The
images are selected to show the change of each variant
(where possible), so the distribution is skewed towards our
changes and away from the baseline. However, all images
shown can appear during training.

Parameters. During training, we use degradations with
p = 50% and strength s = 0.5. Poisson blending is
used pp = 50% of the time, and distractors are placed in
pd = 20% of the images, as described in Appendix C.2. Fi-
nally, we use both types of Generator Artifacts in pg = 25%
of the images, each.

From our testing, the model is relatively robust to hy-
perparameter choice, except for p ≈ 1, where clean im-
ages appear too rarely. Especially small values of p and s
have never been observed to hurt performance (e.g. +3.42%
AUC on DFDCP for p = s = 0.3).

E. Additional robustness evaluation

We present an extended version of Fig. 4 in Fig. B, where
we additionally tested the robustness of LAA [29], SBI [36]



Deepfake- Gaussian Noise real fake
detector σ = 20 Original DF [9] FS [19] F2F [39] NT [40]

SBI [36]

SBI [36] ✓

LAA [29]

LAA [29] ✓

LAA+PMM (ours)

LAA+PMM (ours) ✓

Table B. GradCAM visualization of our PMM compared to SBI [36] and LAA [29]. Note that for noisy images, both SBI and LAA
fail to capture useful information and therefore classify all images as real. Images are taken from the FaceForensics++ dataset [33].

(EfficientNet [38] and Xception [6] backbones), and ours
(+PMM) to speckle noise and low resolution. For a descrip-
tion of the Gaussian noise, Gaussian blur, JPEG compres-
sion, and motion blur, see Sec. 4.4. The diagram shown
here is just an enlarged version for better readability.

Speckle noise. Similar to the results for Gaussian noise,
both SBI and LAA lose performance, even at small noise
levels. At σ = 20, LAA performs at chance level (0.54
AUC), whereas SBI (both) is better at > 0.6 AUC. How-
ever, our methods can beat both baselines by a large margin:
SBI by ≥ 26% and LAA by ≥ 35%. Even at the strongest
settings σ = 60 (much larger than the 25·s = 12.5 used dur-
ing training), our methods still beat all baselines by ≥ 25%.

Resolution. For large scale-factors of 1
4 and above, all

tested models are relatively robust, showing more than 0.89
AUC, except for Xception, which only scores 0.85 AUC.
For small scale factors of 1

16 and 1
32 , our model clearly out-

performs the baselines, e.g. by 7.7%, 10.8% and 11.8% for
LAA+PMM vs. LAA, EfficientNet and Xception respec-
tively at 1

32 .

Leave-one-out training. As described in the main pa-
per, we also test models that use the entire PMM model,
except for the specific test degradation, during training
(PMM\deg). They perform worse than the full PMM
model, but better than LAA, indicating generalization to un-
seen degradations. Gaussian noise is similar but about three
to 5 percent worse than PMM until σ = 20. For stronger
noise, the no-Gaussian-noise model drops off significantly,
reaching about chance level at σ = 60. This is still much
better than LAA, which drops to chance performance by
σ = 10. For Gaussian blur, performance is better than LAA
(up to 12%), but worse than full PMM (up to 6.7%). JPEG
compression also leads to a smaller performance drop than
LAA, but larger than PMM (e.g. 68% vs. 63% vs. 58% for
PMM, PMM\deg and LAA, respectively, at quality 0). For
speckle noise, performance is worse than PMM, by at most
5.6%, but much better than vanilla LAA, which is at chance
performance, already at σ ≤ 10. For small resize factors
(≤ 1

8 ), the model trained without resize is about 2.5% worse
than PMM. However, this is still about 6% better than LAA.

These results suggest that due to the variety of degrada-
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Figure B. Additional robustness evaluation of the s-o-t-a deepfake detectors LAA [29] and SBI [36] (EfficientNet [38] and Xception [6]
backbones) vs. ours (+PMM), tested on the test-split of FF++ [33]. The first four plots show the same data as Fig. 4 in the main paper.
Similar to these, our models outperform the baselines for the low-quality settings of Speckle noise and Resizing.



tions in our PMM, it is capable of generalizing to unseen
degradations that were not part of the training data. This
also aligns with our findings for motion blur. We therefore
expect our model to generalize to novel degradations that
we did not model during training.

New dataset. As describes in the main paper, our method
can outperform LAA on the CDF based part of the face-
swap and face-reenactment subsets of DF40 [45]. We also
tested on the FF-based data. Here, LAA performs better
than LAA+PMM (0.942 vs. 0.925 AUC). However, using
data from the same source as the training data is not a true
cross-dataset test and therefore not a good approximation
to a real-world scenario, as it cannot be assumed that the
real world follows the training distribution. The result is
therefore only given for completeness.

F. GradCAM evaluation
Following related work [5, 23, 29, 36, 42], we visualize the
inner workings of our model using GradCAM [35], com-
paring to SBI [36] and LAA [29]. The results are shown in
Tab. B. All models work well on clean images, but ours fo-
cuses more cleanly on the blending boundary, with very few
other points in the image activated. This indicates that our
method focuses almost exclusively on the artifact regions
and neither on the face (like SBI) nor the background (like
LAA).

We also test on images, with added Gaussian noise (σ =
20), to explore the failure cases of the other models. In this
case, both models focus on the image corners instead of
the face. The focus of our model barely changes and only
loses some strength. This is consistent with the observation
that we can still correctly classify the fake images, whereas
LAA and SBI cannot.

G. Qualitative demonstration
Figure C shows additional qualitative evaluations of LAA
[29] and our model. All images are taken from the Celeb-
DF-v2 dataset [22].

Figure Ca shows a failure case for LAA. Despite the
image being sourced from the high-quality Celeb-DF-v2
dataset, the image is slightly blurry. LAA fails to recognize
the image as fake, whereas ours can recognize it.

Figure Cb shows a failure case for both models. Again,
the image is slightly blurry, but it also seems to be a very
good fake, as neither LAA nor our model can recognize
it as fake. From a human perspective, we also cannot tell
any visible signs of the image being fake. This emphasizes
the need to also continue developing models towards high-
quality fakes. In this paper, we mainly concern ourselves
with robustness to low-quality data.

Finally, Fig. Cc shows an example of the increased ro-
bustness of our model. We add Gaussian noise (σ = 40),

(a) Fake image: LAA [29] predicts real, ours predicts fake.

(b) Fake image: LAA [29] predicts real, ours predicts real.

(c) Fake image: LAA [29] predicts real, ours predicts fake.

Figure C. Qualitative demonstration of LAA [29] and our
model. All images are taken from the Celeb-DF-v2 dataset [22].
For image (c), we added strong Gaussian noise to showcase the
robustness of our model.

and yet, our model can still recognize the image as fake,
while LAA considers it real. Again, from a human perspec-
tive, we cannot tell a sign of a fake, given that the image is
extremely noisy.

H. Recognizability
To measure the difficulty of our degradations, we provide
a metric that shows how recognizable faces remain. For
this purpose, we train an EfficientNet-b4 [38] to recognize
the identities of the faces in the FaceForensics++ [33] train
split (720 identities). Then, we test the model under several
kinds of degradations. Figure D shows the results under our
degradation model. At the PMM settings, the face detec-
tor still achieves an accuracy of 67%, so our settings are of
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Figure D. Recognizability of faces under our degradation model.
✖ marks our settings during PMM training.
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Figure E. Robustness of the face detector to the degradations from
Fig. 4 and Fig. B

reasonable hardness. Furthermore, we can see (Fig. E) that
most individual degradations shown in Figures 4 and B still
allow for an accuracy of > 50% (at 720 possible identities).
The only exception is noise; however, here, the face detec-
tor is still robust (accuracy > 85%) until a value of σ = 20,
where previous deepfake detectors already fail.

We can, therefore, show that our degradations are of rea-
sonable difficulty, as faces still remain recognizable under
these conditions.

I. Implementation details
We mainly use the settings from LAA [29] with some ex-
ceptions. We use a batch size of 7 to fit into the 24GB of
VRAM of the NVIDIA RTX 3090 that we use for train-
ing. Furthermore, we use a learning rate scheduler, which
reduces the learning rate by a factor of 0.2 every time the
validation loss does not decrease for 10 epochs. We make
this change to avoid having to tune the schedule for our ex-
periments manually. Since we do not make any changes to
the model itself, we can start from the pretrained checkpoint
provided by [29], to save compute and ensure we start from
the s-o-t-a point.
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