
CCM

C
o
nv@

3
3

C
o
nv@

1
1

G

H
×
W
×
C

H
×
W
×
C
’

H
×
W
×
C
’

H
×
W
×
C

Figure 9. CCM(Convolutional Channel Mixer) proposed in
SAFMN [40].

HQ Image Reconstruction

C
o

nv@
3

3

P
ixelS

h
u

ffle

H
×

W
×

C

H
×

W
×

C
’

H
’×
W
’×

3

Figure 10. High Quality Image Reconstruction module.

A. CCM and HQ Image Reconstruction

CCM instead of MLP. Since the feed-forward network
(FFN) in the original transformer [45] is a fully connected
layer, we assume that using it in ViT might disrupt the spa-
tial information of the features. Therefore, we apply the
convolutional channel mixer (CCM) [40] instead, an FFN
based on FMBConv [42], to preserve spatial information.
CCM is a module that mixes each convolution channel.
Specifically, the features pass through two convolution lay-
ers. The first layer has a 3× 3 kernel and expands the chan-
nels. Then, GELU [15] is applied for non-linear mapping.
Finally, a convolution layer with a 1× 1 kernel restores the
channels to their original state. In our method, the features
pass through Layer Normalization [2], LMLT, and another
Layer Normalization before being input to CCM [40]. De-
tailed structure can be seen in Figure 9.

HQ Image Reconstruction. PixelShuffle [38] is a
technique effective for converting low-resolution images to
high-resolution ones. The core idea of PixelShuffle is to re-
arrange the channel dimension of the image tensor into the
spatial dimension to increase spatial resolution. This tech-
nique spatially expands the information contained in each

Table 8. Quantitative comparison of SwinIR-light, CAMixer, and
the proposed model on Test4k and Test8k. The values for #GPU
Mem and #Time indicate the memory usage and inference time
when processing Test4k (left) and Test8k (right), respectively. A
dash (”-”) denotes that the measurement is not feasible due to GPU
memory limitations on an RTX 3090 GPU. The best results are
highlighted in bold.

Method #GPU Mem [M] #Time [ms] Test4k Test8k
SwinIR-light [25] 2997.69 / - 1824.85 / - 27.79 33.67

CAMixerSR-M [48] 2266.56 / 14866.0 380.34 / 2027.1 27.80 33.72
LMLT-Large(Ours) 1830.43 / 10682.3 233.68 / 1155.7 27.82 33.75

channel, thereby increasing the resolution.

Specifically, the input tensor is first processed through
an initial convolutional layer, which increases the number
of channels. PixelShuffle then divides these channels by
the square of the upscaling factor and rearranges them spa-
tially to enhance the resolution of the final output image.
For example, with an upscaling factor of 2, four channels
are transformed into a 2 × 2 spatial block, effectively dou-
bling the image size.

This process can be summarized as follows. First,
nn.Conv2d(dim, 3 × upscaling factor2, 3, 1, 1) is ap-
plied to increase the number of channels in the input tensor.
Next, nn.PixelShuffle(upscaling factor ) rearranges
the channels into the spatial dimensions, thereby increas-
ing the image resolution. This method enables HQ Image
Reconstruction module to enhance the input image’s resolu-
tion and restore fine details effectively. The detailed struc-
ture is shown in Figure 10.

B. Realworld Scenario

Comparisons on LMLT with Real-world Scenario. In
Table 8, we analyze the performance of our model on large-
image SR tasks, such as Test4K and Test8K, using SwinIR-
light and CAMixerSR as baselines on an RTX 3090 GPU.
Here, the GPU memory usage and inference time are mea-
sured based on the inference on the Test4k and Test8k
datasets. As shown in the Table 8, our proposed LMLT-
Large model reduces memory requirements on the Test4k
dataset by 39% and inference time by 87% compared to
SwinIR-light [25], while also reducing memory usage by
19% and inference time by 38% compared to CAMixerSR-
M [48], all while achieving better performance. Addition-
ally, on the Test8k dataset, SwinIR-light cannot run due to
insufficient memory, whereas CAMixerSR-M is executable.
However, the proposed model reduces GPU memory usage
by 28% and inference time by 43% compared to CAMixer-
M, while maintaining a clear performance advantage.



Table 9. Performance results when the low-to-high element-wise connection removed. Better results are highlighted.

Scale Method Set5 Set14 B100 Urban100 Manga109

×2

LMLT-Tiny 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90/0.9775
LMLT-Tiny w/o connection 38.00/0.9606 33.58/0.9181 32.18/0.8999 31.99/0.9268 38.88/0.9775

LMLT-Large 38.18/0.9612 33.96/0.9212 32.33/0.9017 32.75/0.9336 39.41/0.9786
LMLT-Large w/o connection 38.19/0.9613 33.83/0.9199 32.33/0.9018 32.75/0.9338 39.43/0.9787

×3

LMLT-Tiny 34.36/0.9271 30.37/0.8427 29.12/0.8057 28.10/0.8503 33.72/0.9448
LMLT-Tinyw/o connection 34.40/0.9272 30.35/0.8425 29.11/0.8056 28.05/0.8496 33.71/0.9448

LMLT-Large 34.64/0.9293 30.60/0.8471 29.26/0.8097 28.72/0.8626 34.43/0.9491
LMLT-Largew/o connection 34.64/0.9293 30.59/0.8473 29.26/0.8097 28.69/0.8622 34.43/0.9492

×4

LMLT-Tiny 32.19/0.8947 28.64/0.7823 27.60/0.7369 26.08/0.7838 30.60/0.9083
LMLT-Tiny w/o connection 32.16/0.8944 28.64/0.7823 27.60/0.7368 26.04/0.7827 30.64/0.9078

LMLT-Large 32.48/0.8987 28.87/0.7879 27.75/0.7421 26.63/0.8001 31.32/0.9163
LMLT-Large w/o connection 32.47/0.8987 28.88/0.7877 27.75/0.7422 26.63/0.7999 31.30/0.9163

Table 10. The comparison table between SAFMN and its variant with low-to-high element-wise sum added. For each model, the better
results are highlighted in bold.

Scale Method Set5 Set14 B100 Urban100 Manga109

×2
SAFMN [40] 38.00/0.9605 33.54/0.9177 32.16/0.8995 31.84/0.9256 38.71/0.9771

SAFMN [40] w/ connection 37.99/0.9604 33.52/0.9174 32.17/0.8996 31.86/0.9257 38.77/0.9773

×3
SAFMN [40] 34.34/0.9267 30.33/0.8418 29.08/0.8048 27.95/0.8474 33.52/0.9437

SAFMN [40] w/ connection 34.34/0.9269 30.32/0.8418 29.09/0.8049 27.96/0.8476 33.55/0.9438

×4
SAFMN [40] 32.18/0.8948 28.60/0.7813 27.58/0.7359 25.97/0.7809 30.43/0.9063

SAFMN [40] w/ connection 32.10/0.8937 28.59/0.7812 27.58/0.7358 25.96/0.7799 30.44/0.9063

C. Low-to-high connection and Pooling

Effects of Low-to-high connection. In the Table 5 and Ta-
ble 9, we confirm performance differences when the low-
to-high connection is not applied to LMLT. Notably, at
LMLT-Tiny, we observe performance improvements across
all scales, particularly on the Urban100 dataset. Inspired by
this, we also apply low-to-high connections between heads
in SAFMN [40] and verify the experimental results. Ta-
ble 10 shows that adding low-to-high connection to the up-
per head in SAFMN [40] does not yield significant perfor-
mance differences. Moreover, at the ×4 scale, the SSIM
for the Urban100 [18] and Set5 [3] datasets decreases by
0.0010 and 0.0011, respectively, indicating a reduction in
performance.

We then visualize the features of LMLT-Tiny to under-
stand the effect of the low-to-high connection. Each col-
umn of Figure 11 illustrates the original image, the ag-
gregated feature visualization of LMLT-Tiny combining
all heads 11(a), and the aggregated feature visualization
of LMLT-Tiny without low-to-high connection 11(b). In
11(b), the images show pronounced boundaries in areas
such as stairs, buildings, and the sky. In contrast, 11(a)
shows these boundaries as less pronounced. This demon-
strates that the low-to-high connection can address the bor-

der communication issues inherent in WSA.

To further validate the architectural benefits of the low-
to-high connection, we visualize the Layer Activation Maps
(LAM) for LMLT-Large with and without this compo-
nent(Fig 12). This analysis provides clear evidence that
the connection enables the model to capture features from a
significantly wider receptive field. As further substantiated
in Figure 14, this capability allows our proposed architec-
ture to reference a broader spatial context than even stan-
dard Multi-Head Self-Attention, demonstrating its superior
effectiveness in aggregating global information.

Effects of Pooling. In this section, we experiment with the
efficiency of our LMLT, which varies spatial size for each
head. Unlike LMLT, which divides features by head and
then applies query, key, and value mapping while varying
the spatial size for each feature, here we keep the spatial
size of all features the same without reduction, and there-
fore, the low-to-high connection is not applied. The re-
sults of this experiment and the proposed LMLT-Tiny model
can be found in Table 11. Experimental results show that
LMLT-Tiny outperforms the model without pooling across
all datasets, indicating that harmoniously combining local
and global information is more effective than merely retain-
ing spatial information.



img009(×4) from Urban100

img045(×4) from Urban100

img096(×4) from Urban100 (a) (b)

Figure 11. Visualization of features with low-to-high connection(a) and without connection(b) on Urban100×4. As shown in the images,
without the low-to-high connection, the boundaries between windows are clearly visible.

HR

HR

(a) DI : 16.34 (b) DI : 20.31

(a) DI : 20.00 (b) DI : 23.33

Figure 12. Visualization of LAM-Large. From left to right: (a) LMLT-Large without low-to-high connection and (b) LMLT-Large.

Subsequently, we investigate the reason behind this
through feature visualization. Figure 13 visualizes the fea-
tures when no pooling is applied to any head in LMLT.

The leftmost image is the original Urban100 [18] image.
Figure 13(a) shows the aggregated features of all heads in
LMLT-Tiny. Column Figure 13(b) visualizes the features



Table 11. Performance with or without pooling and merging. Best results are highlighted in bold.

Scale Method #Params #FLOPs Set5 Set14 B100 Urban100 Manga109

×2

LMLT-Tiny 239K 59G 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90/0.9775
LMLT-Tiny w/o pool 239K 67G 37.98/0.9605 33.56/0.9178 32.16/0.8996 31.87/0.9255 38.79/0.9773

LMLT-Tiny w/o pool and merge 229K 64G 37.95/0.9604 33.51/0.9173 32.14/0.8993 31.76/0.9245 38.68/0.9771

×3

LMLT-Tiny 244K 28G 34.36/0.9271 30.37/0.8427 29.12/0.8057 28.10/0.8503 33.72/0.9448
LMLT-Tiny w/o pool 244K 32G 34.36/0.9270 30.34/0.8421 29.10/0.8051 28.02/0.8488 33.66/0.9445

LMLT-Tiny w/o pool and merge 234K 31G 34.28/0.9265 30.31/0.8417 29.07/0.8044 27.94/0.8467 33.55/0.9438

×4

LMLT-Tiny 251K 15G 32.19/0.8947 28.64/0.7823 27.60/0.7369 26.08/0.7838 30.60/0.9083
LMLT-Tiny w/o pool 251K 17G 32.12/0.8940 28.61/0.7820 27.58/0.7362 26.01/0.7815 30.51/0.9074

LMLT-Tiny w/o pool and merge 240K 17G 32.07/0.8934 28.60/0.7817 27.56/0.7355 25.95/0.7795 30.45/0.9064

img023(×4) from Urban100

img031(×4) from Urban100

img081(×4) from Urban100 (a) (b) (c)

Figure 13. Comparison without pooling on Urban100 ×4 scale. From left to right: (a) LMLT with pooling applied, (b) without any pooling,
(c) without pooling and without multiplication by activation. In (b) and (c), the boundaries between windows are visible.

without pooling, and Figure 13(c) visualizes the features
without both pooling and merging, all at the ×4 scale. In
13(b) and 13(c), grid patterns are evident across the images,

indicating that the disadvantages of being limited to local
windows outweigh the benefits of maintaining the original
spatial size.



HR

HR

(a) DI = 2.27 (b) DI = 10.43 (c) DI = 10.87

(a) DI = 2.98 (b) DI = 16.20 (c) DI = 17.57

Figure 14. Visualization of LAM-Tiny. From left to right: (a) LMLT-Tiny without pooling, (b) LMLT-Tiny without low-to-high connection
and (c) LMLT-Tiny.

Additionally, we compare the LAM of our proposed
model, LMLT-Tiny (Figure 14(c)), with a version of the
model that does not include pooling for each head (Fig-
ure 14(a)), and a version where the low-to-high connection
is removed (Figure 14(b)), demonstrating that our proposed
model effectively references a broader region. The results
show that, even when the spatial size of the model is main-
tained without pooling, it fails to process information from
a wider area. Moreover, the low-to-high connection proves
to be effective in enabling the model to capture information
from a larger region.

D. LMLT with Multi-Head Self Attention

In this section, we demonstrate how our proposed LMLT
is more efficient than traditional Multi-Head Self-Attention
(MHSA) across various datasets. Table 12 shows that
the proposed Low-to-high Multi-Level Self Attention re-
duces maximum GPU memory usage while maintaining
performance. At each scale, our model achieves an av-
erage reduction of 8% in the number of parameters, 18%
in FLOPs, and 59% in memory usage compared to LMLT
with MHSA. Meanwhile, it achieves increases in SSIM of
0.0009, 0.0008, and 0.0002 on the Urban100 dataset, re-
spectively. Furthermore, Figure 15 uses the LAM [12]
to illustrate that proposed model effectively references a
broader area of information compared to MHSA.

E. Analysis of FLOPs

This section analyzes the relationship between theoretical
computational cost (FLOPs) and practical execution time
for the core modules of our LMLT-Large model and the
SwinIR-Light [25] baseline.

As detailed in Table 13, our analysis of SwinIR-
Light [25] indicates that its self-attention module accounts
for approximately 50% of the total FLOPs, while the MLP
contributes about 32%. However, a significant discrepancy

appears in the runtime analysis. Across all scales, the self-
attention module’s execution time shows a significant dif-
ference compared to the MLP, ranging from a minimum of
three times to well over ten times longer. This identifies the
standard self-attention operation as the primary computa-
tional bottleneck, as its runtime is substantially higher than
its theoretical FLOP count would suggest. This discrep-
ancy arises because the runtime of self-attention is dom-
inated by the cost of large matrix multiplications (QKT )
and (Attention ×V ) and the handling of large intermediate
tensors (Q ,K ,V , and the attention map). These operations
incur substantial GPU memory access latency in addition
to their quadratic computational complexity with respect to
spatial size, resulting in poor scaling between FLOPs and
actual runtime.

Our proposed LMLT architecture, however, is designed
to address this specific bottleneck. By replacing the stan-
dard monolithic self-attention with four parallel, spatially
downscaled streams, the attention mechanism in LMLT-
Large constitutes only 8.5% of the total FLOPs (an over
80% reduction compared to SwinIR-Light), and its run-
time is correspondingly reduced by approximately 89%.
Although the CCM module is responsible for nearly 90%
of the model’s FLOPs, executes approximately 30% faster
than our attention module. This demonstrates the practi-
cal efficiency of our proposed attention design, which is not
fully captured by FLOPs alone.

Additionally, in Figure 16, we visualize the peak
GPU memory usage of each module during a ×4
upscaling task for both LMLT-Large and SwinIR-
Light [25]. The memory footprint was measured
at the end of each module’s execution step using
torch.cuda.max memory allocated.

For our proposed LMLT-Large, the memory profile
shows a controlled and stable pattern. The CCM mod-
ule records the highest peak memory at approximately
180MB, slightly higher than the LHSB module’s peak



Table 12. Comparison of the results between LMLT-Tiny and LMLT-Tiny with Multi-Head Self-Attention (MHSA) applied instead of
Multi-Level Self-Attention. Better results are highlighted.

Scale Method #Param #FLOPs GPU Mem Set5 Set14 B100 Urban100 Manga109

×2
LMLT-Tiny 239K 59G 324.01M 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90/0.9775

LMLT-T w/ MHSA 260K 72G 789.67M 38.01/0.9607 33.57/0.9178 32.18/0.8998 31.97/0.9264 38.84/0.9775

×3
LMLT-Tiny 244K 28G 151.96M 34.36/0.9271 30.37/0.8427 29.12/0.8057 28.10/0.8503 33.72/0.9448

LMLT-Tw/ MHSA 265K 34G 369.97M 34.36/0.9270 30.38/0.8428 29.11/0.8056 28.06/0.8495 33.68/0.9448

×4
LMLT-Tiny 251K 15G 81.44M 32.19/0.8947 28.64/0.7823 27.60/0.7369 26.08/0.7838 30.60/0.9083

LMLT-T w/ MHSA 271K 19G 198.356M 32.15/0.8945 28.66/0.7829 27.60/0.7370 26.08/0.7836 30.61/0.9087

HR

HR

(a) DI = 3.28 (b) DI = 10.87

(a) DI = 3.76 (b) DI = 17.57

Figure 15. Visualization of LAM-Tiny. From left to right: (a) LMLT-Tiny with Multi-Head Self Attention, (b) LMLT-Tiny.

of around 170MB, due to differences in their internal
processing. While LHSB processes features in parallel
across downscaled channels, CCM employs a channel ex-
pansion layer (Conv2d(D, D*growth rate)) on the
full-dimensional features, which transiently requires more
memory. The other modules, such as the Shallow Extractor
and HQ Image Reconstruction, have a negligible memory
footprint.

In sharp contrast, the profile of SwinIR-Light [25] re-
veals that the Self-Attention module is a major memory bot-
tleneck. The Self-Attention block produces sharp, periodic
spikes, demanding more than 300 MB of memory. The sub-
sequent MLP block peaks at around 170 MB, roughly half
the Self-Attention’s requirement. Although the MLP also
contains a channel expansion structure, it lacks the multi-
ple linear projections and matrix multiplications on large,
full-dimensional feature maps that make Self-Attention so
memory-intensive. This clearly illustrates the inherently
memory-hungry nature of ViT-based architectures.

F. Impact of Blocks, Channels, and Heads
In this section, we analyze how the performance of our pro-
posed model changes based on the number of blocks, heads
and channels.
Impact of Number of Blocks. First, We evaluate the per-

formance by varying the number of blocks to 4, 6, 8, 10, and
12. Experiments are conducted on ×2 scale and the perfor-
mance is evaluated using benchmark datasets, and analyzed
in terms of the number of parameters, FLOPs, GPU mem-
ory usage, and average inference time.

As shown in Table 14, the increase in the number of
parameters, FLOPs and inference time tends to be propor-
tional to the number of blocks, and performance also gradu-
ally improves. For the Manga109 [36] dataset, as the num-
ber of blocks increases from 4 to 12 in increments of 2,
PSNR increases by 0.27 db, 0.16 db, 0.10 db, and 0.10 db,
respectively. Interestingly, despite the increase in the num-
ber of blocks from 4 to 12, the GPU memory usage remains
almost unchanged. While the number of parameters nearly
triples, the GPU memory usage remains stable, 323.5M to
324.5M. We observe the overall increase in PSNR with the
increase in the number of blocks and designate the model
with 8 blocks as LMLT-Tiny and the model with 12 blocks
as LMLT-Small.

Impact of Number of Channels. Next, we evaluate how
performance changes with the number of channels. Sim-
ilar to the performance evaluation based on the number of
blocks, this experiment evaluates performance using bench-
mark datasets, the number of parameters, FLOPs, GPU
memory usage, and average inference time as performance



Table 13. Analysis of the FLOPs and runtime of Self-Attention and MLP(CCM [40]) modules.

scale method Attention Runtime Attention FLOPs MLP(CCM) Runtime MLP(CCM) FLOPs

×2
SwinIR-Light [25] 1084.57ms 122.1G (50.0%) 89.33ms 79.6G(32.6%)

LMLT-Large(Ours) 68.97ms 26.2G (8.5%) 48.99ms 277.4G(90.6%)

×3
SwinIR-Light [25] 336.00ms 54.9G (49.6%) 36.55ms 35.8G(32.3%)

LMLT-Large(Ours) 32.72ms 12.2G (8.5%) 23.58ms 129.5G(89.9%)

×4
SwinIR-Light [25] 185.23ms 31.2G (49.1%) 48.99ms 20.4G(32.0%)

LMLT-Large(Ours) 22.66ms 6.5G (8.4%) 13.22ms 69.4G(88.8%)

0 50 100 150 200
Execution Step (module end)

40

60

80

100

120

140

160

180

GP
U 

M
em

or
y 

(M
B)

GPU Memory vs Step

Shallow Extractor LHSB CCM HQ Reconstruction

(a) LMLT-Large

0 50 100 150 200 250 300 350
Execution Step (module end)

50

100

150

200

250

300

350

GP
U 

M
em

or
y 

(M
B)

GPU Memory vs Step

Patch Embed ATTN MLP CONV

(b) SwinIR-light

Figure 16. The memory consumption of each execution step on (a) LMLT-Large and (b) SwinIR-light.

metrics.

As shown in Table 15, LMLT’s performance increases

with channels, along with parameters and FLOPs. However,
unlike the variations in the number of blocks, increasing the



Table 14. Performance difference of LMLT based on the number of blocks.

#Block #Params #FLOPs #GPU Mem #AVG Time Set5 Set14 B100 Urban100 Manga109
4 122K 30G 323.52M 29.75ms 37.88/0.9601 33.40/0.9166 32.06/0.8984 31.49/0.9217 38.47/0.9765
6 181K 44G 323.77M 43.51ms 37.94/0.9601 33.52/0.9175 32.15/0.8995 31.82/0.9253 38.74/0.9771
8 239K 59G 324.01M 57.37ms 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90/0.9775

10 298K 73G 324.26M 70.55ms 38.05/0.9608 33.66/0.9188 32.22/0.9003 32.17/0.9286 39.00/0.9778
12 357K 88G 324.5M 84.22ms 38.05/0.9608 33.65/0.9187 32.24/0.9006 32.31/0.9298 39.10/0.9780

Table 15. Performance difference of LMLT based on the number of channels.

#Channel #Params #FLOPs #GPU MEM #AVG Time Set5 Set14 B100 Urban100 Manga109
24 109K 27G 255.77M 38.34ms 37.91/0.9602 33.44/0.9169 32.09/0.8988 31.62/0.9231 38.58/0.9768
36 239K 59G 324.01M 57.37ms 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90/0.9775
48 420K 103G 460.32M 65.66ms 38.06/0.9609 33.67/0.9189 32.25/0.9007 32.33/0.9299 39.14/0.9780
60 652K 158G 567.75M 81.64ms 38.10/0.9610 33.76/0.9201 32.28/0.9012 32.52/0.9316 39.24/0.9783
72 935K 226G 684.82M 108.74ms 38.17/0.9612 33.83/0.9205 32.32/0.9016 32.65/0.9329 39.36/0.9786
84 1,270K 306G 717.31M 123.07ms 38.18/0.9612 33.96/0.9212 32.33/0.9017 32.75/0.9336 39.41/0.9786

number of channels results in a more significant increase
in the number of parameters, FLOPs, and memory usage.
Inference time, however, increases proportionally with the
number of channels. For instance, with 36 channels, the av-
erage inference time is 57.16ms , and when doubled, it re-
quires approximately 108.74ms , nearly twice the time. As
the number of channels increases from 24 to 84 in incre-
ments of 12, the PSNR on the Urban100 [18] dataset in-
creases by 0.42 db, 0.29 db, 0.19 db, 0.13 db, and 0.10 db,
respectively. Based on the overall performance increase,
we designate the model with 60 channels as the Base model
and the model with 84 channels as the Large model. In this
context, the Small model has an inference time about 3ms
longer than the Base model, but it has fewer parameters,
lower memory usage, and fewer FLOPs, thus justifying its
designation.

Impact of Number of Heads. In this paragraph, we com-
pare the performance differences based on the number of
heads. In our model, as the number of heads decreases, the
channel and the number of downsizing operations for each
head decrease. For example, in our baseline with 4 heads
and 36 channels, the lowest head has a total of 9 channels
and is pooled 3 times. However, if there are 2 heads, the
lowest head has 18 channels and is pooled once. Addition-
ally, the maximum pooling times and the number of heads
are related to the number of windows and the amount of
self-attention computation. According to equation 2, as the
number of heads decreases, the computation increases. As
a result, as the number of heads decreases, the number of
parameters, FLOPs, and GPU memory usage increase.

As shown in Table 16, the performance with 4 heads

and 3 heads is similar across all scales and test datasets.
However, reducing the number of heads to 1 significantly
degrades performance, despite an increase in parameters,
FLOPs, and GPU memory usage. Notably, on the Ur-
ban100 [18] dataset at scale ×2, the LMLT with 4 heads
achieves a PSNR of 32.04 dB with 239K parameters, 59G
FLOPs, and 324M memory usage. In contrast, with 1 head,
the parameters increase to 270K, FLOPs to 75G, and mem-
ory usage to 437M, while the PSNR drops to 31.93 dB, a de-
crease of 0.11 dB. This highlights the inefficiency of relying
on fewer heads despite increased computational demands.
Additionally, when the scale is ×3 and ×4, the PSNR de-
creases by 0.05 dB and 0.04 dB, respectively. This suggests
that while maintaining the spatial size of all features with a
single head increases parameters, FLOPs, and channels per
head, incorporating global and cross-window information is
more beneficial for achieving better performance.

G. LMLT with the Other Components
Importance of Aggregation and Activation. We analyze
the impact of aggregating features from each head using a
1 × 1 convolution or applying activation before multiply-
ing with the original input. Results are shown in the ‘Act
/ Aggr’ row of Table 17. Without aggregation, PSNR de-
creases by 0.10 dB on the Urban100 [18] dataset. If features
are directly output without applying activation and without
multiplying with the original input, PSNR decreases by 0.12
dB. Omitting both steps leads to an even greater decrease of
0.22 dB, indicating that including both aggregation and ac-
tivation is more efficient. Conversely, multiplying features
directly to the original feature without the activation func-



Table 16. Performance difference of LMLT based on the number of heads. #Chan is the number of channels in each heads. Best results are
highlighted.

Scale #Levels #Chan #Params #FLOPs #GPU Set5 Set14 B100 Urban100 Manga109

×2

1 36 270K 75G 437.21M 38.00/0.9606 33.58/0.9179 32.17/0.8997 31.93/0.9260 38.83 /0.9774
2 18 250K 64G 385.96M 38.01/0.9606 33.59/0.9180 32.18/0.8999 32.02/0.9270 38.87/0.9776
3 12 243K 60G 346.71M 38.00/0.9606 33.59/0.9182 32.19/0.8999 32.02/0.9273 38.88/0.9775
4 9 239K 59G 324.01M 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90/0.9775

×3

1 36 275K 35G 205.52M 34.37/0.9271 30.39/0.8431 29.11/0.8054 28.05/0.8495 33.71/0.9449
2 18 255K 30G 181.14M 34.37/0.9271 30.37/0.8427 29.11/0.8056 28.05/0.8496 33.73/0.9450
3 12 248K 29G 161.90M 34.41/0.9273 30.37/0.8426 29.12/0.8059 28.09/0.8502 33.73/0.9449
4 9 244K 28G 151.96M 34.36/0.9271 30.37/0.8427 29.12/0.8057 28.10/0.8503 33.72/0.9448

×4

1 36 282K 19G 111.28M 32.14/0.8943 28.65/0.7826 27.60/0.7366 26.04/0.7825 30.57/0.9080
2 18 261K 17G 98.69M 32.18/0.8948 28.63/0.7826 27.60/0.7370 26.07/0.7839 30.59/0.9085
3 12 254K 16G 87.04M 32.19/0.8947 28.63/0.7821 27.60/0.7367 26.08/0.7834 30.58/0.9080
4 9 251K 15G 81.44M 32.19/0.8947 28.64/0.7823 27.60/0.7369 26.08/0.7838 30.60/0.9083

tion improves performance by 0.1 dB.
Therefore, inspired by this, we experiment with a ver-

sion of LMLT without GeLU [15] across various scales. Ta-
ble 18 shows the results for our LMLT and the model with-
out the activation function across different scales and chan-
nels. As shown, with 36 channels, there is minimal perfor-
mance difference across all scales, with the largest being a
0.04 higher PSNR on the Set5 [3] ×4 scale when GeLU [15]
is removed. However, when expanded to 60 channels, our
LMLT performs better on most benchmark datasets for both
×3 and ×4 scales. Specifically, on the ×4 scale of the Ur-
ban100 [18] dataset, PSNR and SSIM are higher by 0.05
dB and 0.0013, respectively. This demonstrates that adding
GeLU [15] after aggregating features is more beneficial for
performance improvement.
Importance of Positional Encoding. Lastly, we examine
the role of Positional Encoding (PE) in performance im-
provement. Results are shown in the ‘PE’ row of Table 17.
Removing PE results in decreased performance across all
benchmark datasets, notably with a PSNR drop of 0.06 dB
and an SSIM decrease of 0.0006 on the Urban100 [18]
dataset. Using RPE [29] results in a maximum PSNR in-
crease of 0.03 dB on the Set14 [51] dataset, but has little
effect on other datasets. Additionally, parameters and GPU
memory increase by 5K and 45M, respectively.

H. Comparisons with Other Methods

Image Reconstruction comparisons. Here, we first com-
pare the LMLT-Tiny and LMLT-Small with other CNN-
based image super-resolution models such as CARN-m,
CARN [1], EDSR-baseline [26], PAN [62], LAPAR-A [24],
ECBSR-M16C64 [55], SMSR [46], Shuffle-Mixer [39],
and SAFMN [40], so that we can demonstrate that our
LMLT is not only lighter but also achieves superior per-

formance compared to other CNN-based state-of-the-art
models. Table 19 shows that our LMLT significantly re-
duces number of parameters and computation overheads
while achieving substantial performance gains on various
datasets. LMLT-Small performs well on most datasets,
and the LMLT-Tiny also performs second and third best
on the BSD100 [35] and Manga109 [36] datasets, except
for the Manga109 ×4 SSIM [49]. In particular, the num-
ber of parameters and FLOPs are the second smallest after
SAFMN [40].

In Table 20, we compare our proposed LMLT model
with ViT-based SR models, where LMLT-Base is evalu-
ated against efficient SR models [4, 10, 11, 19, 27, 33, 61]
and LMLT-Large is compared with lightweight SR mod-
els [4, 25, 28, 31, 47, 52, 56, 58, 63, 64]. As shown in
Table 20, LMLT-Base achieves the best or second-best per-
formance across almost all scales and datasets. Notably,
on the Manga109 dataset, it demonstrates significant per-
formance improvements, achieving 0.27dB, 0.29dB, and
0.29dB higher PSNR at scales ×2, ×3, and ×4, re-
spectively, while reducing the number of parameters by
approximately 30% compared to the second-best model,
NGswin [4].

Similarly, LMLT-Large also achieves the best or second-
best performance across several scales and datasets, with
particularly notable results on the Set14 dataset. In addi-
tion to this, we demonstrate that our model has a significant
advantage in inference time and GPU memory usage in the
next paragraph.
Memory and Running time Comparisons. In this para-
graph, we present the memory usage and average infer-
ence time of our proposed LMLT compared to other super-
resolution methods. Similar to the experimental setup
in Table 2, #GPU Mem represents the maximum mem-
ory usage during inference, measured using PyTorch’s



Table 17. Ablation studies on each component of our method at scale ×2. LMLT-Tiny is used.

Ablation Variants #Param #Flops #GPU Mem Set5 Set14 B100 Urban100 Manga109
Baseline - 239K 59G 324M 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90/0.9775

Act / Aggr

No Aggregation 229K 56G 324M 37.99/0.9606 33.55/0.9178 32.17/0.8997 31.94/0.9262 38.84/0.9774
No Activation 239K 59G 324M 37.99/0.9605 33.55/0.9180 32.16/0.8997 31.92/0.9260 38.83/0.9774

No Aggr, No Act 229K 56G 324M 37.95/0.9606 33.53/0.9175 32.15/0.8994 31.82/0.9250 38.73/0.9771
GELU → None 239K 59G 324M 38.03/0.9606 33.60/0.9184 32.19/0.9000 32.05/0.9272 38.91/0.9776

PE
No PE 236K 59G 309M 37.98/0.9606 33.55/0.9176 32.18/0.8998 31.98/0.9267 38.86/0.9774

LePE → RPE[29] 244K 59G 369M 38.02/0.9606 33.62/0.9182 32.20/0.9000 32.05/0.9275 38.90/0.9775

Table 18. Performance difference of LMLT with GELU and without GELU. The better results are highlighted in bold.

Scale Ablation #Channel Set5 Set14 B100 Urban100 Manga109

×2

LMLT 36 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90 /0.9775
LMLT w/o GELU 36 38.03/0.9606 33.60/0.9184 32.19/0.9000 32.05/0.9272 38.91/0.9776

LMLT 60 38.10/0.9610 33.76/0.9201 32.28/0.9012 32.52/0.9316 39.24/0.9783
LMLT w/o GELU 60 38.10/0.9610 33.80/0.9200 32.28/0.9011 32.51/0.9315 39.26/0.9783

×3

LMLT 36 34.36/0.9271 30.37/0.8427 29.12/0.8057 28.10/0.8503 33.72/0.9448
LMLT w/o GELU 36 34.37/0.9272 30.36/0.8425 29.11/0.8057 28.08/0.8502 33.71/0.9447

LMLT 60 34.58/0.9285 30.53/0.8458 29.21/0.8084 28.48/0.8581 34.18/0.9477
LMLT w/o GELU 60 34.53/0.9283 30.51/0.8457 29.20/0.8080 28.45/0.8576 34.17/0.9476

×4

LMLT 36 32.19/0.8947 28.64/0.7823 27.60/0.7369 26.08/0.7838 30.60/0.9083
LMLT w/o GELU 36 32.23/0.8949 28.62/0.7820 27.60/0.7369 26.08/0.7836 30.59/0.9082

LMLT 60 32.38/0.8971 28.79/0.7859 27.70/0.7403 26.44/0.7947 31.09/0.9139
LMLT w/o GELU 60 32.39/0.8973 28.78/0.7858 27.69/0.7399 26.39/0.7934 31.04/0.9132

torch.cuda.max memory allocated(). #AVG
Time indicates the average time taken to upscale a total
of 50 random images by ×2, ×3, and ×4 scales. The
experiments were conducted three times, and the average
inference time is reported. Each random image has sizes
of 640×360 for ×2 scale, 427×240 for ×3 scale, and
320×180 for ×4 scale.

As shown in Table 21, our proposed LMLT-Tiny uses
less memory at all scales compared to all models except
SAFMN [40]. Although LMLT-Small requires more infer-
ence time compared to other models, its GPU usage is al-
most similar to LMLT-Tiny, and its performance is signifi-
cantly superior as demonstrated in Table 19.

Particularly, compared to EDSR [26], which has the
next highest GPU memory usage after LMLT, LMLT-Tiny
achieves a 44%, 72%, and 83% reduction in memory us-
age at scales ×2, ×3, and ×4, respectively, while deliv-
ering 0.02dB, 0.09dB, and 0.06dB higher performance on
the Set14 dataset. Similarly, LMLT-Small reduces mem-
ory usage by the same percentages at each scale, while out-
performing EDSR on the Set14 dataset by 0.08dB, 0.19dB,
and 0.16dB, respectively. These results highlight that the
proposed model is not only lightweight but also achieves
higher performance compared to CNN-based SR models.

Additionally, we discuss the memory usage and infer-

ence speed of LMLT-Base, LMLT-Large, and other ViT-
based SR models [4, 11, 25, 28, 52, 56, 58, 63, 64]. We
observe that LMLT-Base and LMLT-Large are highly effi-
cient in terms of inference speed and memory usage com-
pared to other ViT-based SR models. Specifically, com-
pared to NGswin [4], LMLT-Base maintains similar perfor-
mance while reducing memory usage by 61%, 62%, and
61% at scales ×2, ×3, and ×4, respectively, and decreasing
inference time by an average of 78%, 76%, and 78%. Simi-
larly, compared to SwinIR-light [25], LMLT-Large achieves
a 44%, 43%, and 46% reduction in memory usage at each
scale, while reducing inference time by 87%, 80%, and
81%, respectively, while maintaining similar performance.

Notably, as discussed in Table 2, our most complex
model, LMLT-Large, is lighter and faster than all ViT-based
comparison models. Furthermore, as shown in Table 21,
LMLT-Large achieves 40%, 38%, and 40% lower mem-
ory usage than HNCT, while reducing inference time by
65%, 50%, and 51% at scales ×2, ×3, and ×4, respec-
tively. Moreover, LMLT-Large achieves 0.31dB, 0.16dB,
and 0.16dB higher PSNR on the Set14 dataset, demonstrat-
ing both the efficiency and effectiveness of the proposed
model.
Qualitative Comparisons. In this paragraph, we examine
the qualitative comparisons of the LMLT-Tiny model and



Table 19. Comparisons with existing methods. Best and second-best performance are in red and blue, and third-best is underlined.
Unreported results are left blank.

Scale Method #Params #FLOPs Set5 Set14 B100 Urban100 Manga109

×2

CARN-M [1] 412K 91G 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 -
CARN [1] 1,592K 223G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 -

EDSR-baseline [26] 1,370K 316G 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
PAN [62] 261K 71G 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273 38.70/0.9773

LAPAR-A [24] 548K 171G 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
ECBSR-M16C64 [55] 596K 137G 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 -

SMSR [46] 985K 132G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
ShuffleMixer [39] 394K 91G 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 38.83/0.9774

SAMFN [40] 228K 52G 38.00/0.9605 33.54/0.9177 32.16/0.8995 31.84/0.9256 38.71/0.9771
LMLT-Tiny(Ours) 239K 59G 38.01/0.9606 33.59/0.9183 32.19/0.8999 32.04/0.9273 38.90/0.9775
LMLT-Small(Ours) 357K 88G 38.05/0.9608 33.65/0.9187 32.24/0.9006 32.31/0.9298 39.10/0.9780

×3

CARN-M [1] 415K 46G 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385 -
CARN [1] 1,592K 119G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 -

EDSR-baseline [26] 1,555K 160G 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
PAN [62] 261K 39G 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511 33.61/0.9448

LAPAR-A [24] 594K 114G 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
SMSR [46] 993K 68G 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445

ShuffleMixer [39] 415K 43G 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448
SAFMN [40] 233K 23G 34.34/0.9267 30.33/0.8418 29.08/0.8048 27.95/0.8474 33.52/0.9437

LMLT-Tiny(Ours) 244K 28G 34.36/0.9271 30.37/0.8427 29.12/0.8057 28.10/0.8503 33.72/0.9448
LMLT-Small(Ours) 361K 41G 34.50/0.9280 30.47/0.8446 29.16/0.8070 28.29/0.8544 33.99/0.9464

×4

CARN-M [1] 412K 33G 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 -
CARN [1] 1,592K 91G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -

EDSR-baseline [26] 1,518K 114G 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
PAN [62] 272K 28G 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854 30.51/0.9095

LAPAR-A [24] 659K 94G 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
ECBSR-M16C64 [55] 603K 35G 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 -

SMSR [46] 1,006K 42G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
ShuffleMixer [39] 411K 28G 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093

SAFMN [40] 240K 14G 32.18/0.8948 28.60/0.7813 27.58/0.7359 25.97/0.7809 30.43/0.9063
LMLT-Tiny(Ours) 251K 15G 32.19/0.8947 28.64/0.7823 27.60/0.7369 26.08/0.7838 30.60/0.9083
LMLT-Small(Ours) 368K 23G 32.31/0.8968 28.74/0.7846 27.66/0.7387 26.26/0.7894 30.87/0.9117

other models on the Urban100 [18] ×4 scale. The com-
parison includes CARN [1], EDSR [26], PAN [62], Shuf-
fleMixer [39], and SAFMN [40]. The results can be seen
in Figure 17. As mentioned in section 4.1, we observe that
our model reconstructs images with continuous stripes bet-
ter than other models.

Additionally, we compare our proposed mod-
els LMLT-Base and LMLT-Large with IMDN [19],
NGswin [4], SwinIR-light [25], and SwinIR-NG [4] on the
Manga109 [36] dataset at×4 scale. As explained earlier in
section 4.1, our model shows strength in areas with contin-
uous lines compared to other models. Figure 18 illustrates
the differences between our LMLT-Base, LMLT-Large and
other state-of-the-arts models.



Table 20. Comparisons with our LMLT-Small, LMLT-Base, LMLT-Large and other Super-Resolution models on multiple benchmark
datasets. Best and second-best performance are in red and blue color.

Scale Method #Params #FLOPs Set5 Set14 B100 Urban100 Manga109

×2

IMDN [19] 694K 156G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
LatticeNet [33] 756K 170G 38.06/0.9607 33.70/0.9187 32.20/0.8999 32.25/0.9288 38.94/0.9774
RFDN-L [27] 626K 146G 38.08/0.9606 33.67 /0.9190 32.18/0.8996 32.24/0.9290 38.95/0.9773

SRPN-Lite [61] 609K 140G 38.10/0.9608 33.70/0.9189 32.25/0.9005 32.26/0.9294 -
HNCT [11] 357K 82G 38.08/0.9608 33.65/0.9182 32.22/0.9001 32.22/0.9294 38.87/0.9774
FMEN [10] 748K 172G 38.10/0.9609 33.75/0.9192 32.26/0.9007 32.41/0.9311 38.95/0.9778
NGswin [4] 990K 140G 38.05/0.9610 33.79/0.9199 32.27/0.9008 32.53/0.9324 38.97/0.9777

LMLT-Base(Ours) 652K 158G 38.10/0.9610 33.76/0.9201 32.28/0.9012 32.52/0.9316 39.24/0.9783
SwinIR-light [25] 910K 244G 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783

ESRT [31] 751K - 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318 39.12/0.9774
ELAN [56] 621K 203G 38.17/0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782

SwinIR-NG [4] 1,181K 274G 38.17/0.9612 33.94/0.9205 32.31/0.9013 32.78/0.9340 39.20/0.9781
SRformer-Light [64] 853K 236G 38.23/0.9613 33.94/0.9209 32.36/0.9019 32.91/0.9353 39.28/0.9785

OSFFNet [47] 516K 83G 38.11/0.9610 33.72/0.9190 32.29/0.9012 32.67/0.9331 39.09/0.9780
SMFANet+ [63] 480K 108G 38.19/0.9611 33.92/0.9207 32.32/0.9015 32.70/0.9331 39.46/0.9787

LMLT-Large(Ours) 1,270K 306G 38.18/0.9612 33.96/0.9212 32.33/0.9017 32.75/0.9336 39.41/0.9786

×3

IMDN [19] 703K 72G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
LatticeNet [33] 765K 76G 34.40/0.9272 30.32/0.8416 29.10/0.8049 28.19/0.8513 33.63/0.9442
RFDN-L [27] 633K 66G 34.47/0.9280 30.35/0.8421 29.11/0.8053 28.32/0.8547 33.78/0.9458

SRPN-Lite [61] 615K 63G 34.47/0.9280 30.38/0.8425 29.16/0.8061 28.22/0.8534 -
HNCT [11] 363K 38G 34.47/0.9275 30.44/0.8439 29.15/0.8067 28.28/0.8557 33.81/0.9459
FMEN [10] 757K 77G 34.45/0.9275 30.40/0.8435 29.17/0.8063 28.33/0.8562 33.86/0.9462
NGswin [4] 1,007K 67G 34.52/0.9282 30.53/0.8456 29.19/0.8078 28.52/0.8603 33.89/0.9470

LMLT-Base(Ours) 660K 75G 34.58/0.9285 30.53/0.8458 29.21/0.8084 28.48/0.8581 34.18/0.9477
SwinIR-light [25] 918K 111G 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478

ESRT [31] 751K - 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455
ELAN [56] 629K 90G 34.61/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478

SwinIR-NG [4] 1,190K 114G 34.64/0.9293 30.58/0.8471 29.24/0.8090 28.75/0.8639 34.22/0.9488
SRformer-Light [64] 861K 105G 34.67/0.9296 30.57/0.8469 29.26/0.8099 28.81/0.8655 34.19/0.9489

OSFFNet [47] 524K 38G 34.58/0.9287 30.48/0.8450 29.21/0.8080 28.49/0.8595 34.00/0.9472
SMFANet+ [63] 487K 48G 34.66/0.9292 30.57/0.8461 29.25/0.8090 28.67/0.8611 34.45/0.9490

LMLT-Large(Ours) 1,279K 144G 34.64/0.9293 30.60/0.8471 29.26/0.8097 28.72/0.8626 34.43/0.9491

×4

IMDN [19] 715K 41G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
LatticeNet [33] 777K 44G 32.18/0.8943 28.61/0.7812 27.57/0.7355 26.14/0.7844 30.54/0.9075
RFDN-L [27] 643K 38G 32.28/0.8957 28.61/0.7818 27.58/0.7363 26.20/0.7883 30.61/0.9096

SRPN-Lite [61] 623K 36G 32.24/0.8958 28.69/0.7836 27.63/0.7373 26.16/0.7875 -
HNCT [11] 373K 22G 32.31/0.8957 28.71/0.7834 27.63/0.7381 26.20/0.7896 30.70/0.9112
FMEN [10] 769K 44G 32.24/0.8955 28.70/0.7839 27.63/0.7379 26.28/0.7908 30.70/0.9107
NGswin [4] 1,019K 36G 32.33/0.8963 28.78/0.7859 27.66/0.7396 26.45/0.7963 30.80/0.9128

LMLT-Base(Ours) 672K 41G 32.38/0.8971 28.79/0.7859 27.70/0.7403 26.44/0.7947 31.09/0.9139
SwinIR-light [25] 930K 64G 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151

ESRT [31] 751K - 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100
ELAN-light [56] 640K 54G 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150
HPINet-S [28] 463K 88G 32.47/0.8987 28.80/0.7872 27.69/0.7416 26.59/0.8016 30.92/0.9143
SwinIR-NG [4] 1,201K 63G 32.44/0.8980 28.83/0.7870 27.73/0.7418 26.61/0.8010 31.09/0.9161

SRformer-Light [64] 873K 63G 32.51/0.8988 28.82/0.7872 27.73/0.7422 26.67/0.8032 31.17/0.9165
SPIN [52] 555K 42G 32.48/0.8983 28.80/0.7862 27.70/0.7415 26.55/0.7998 30.98/0.9156

OSFFNet [47] 537K 22G 32.39/0.8976 28.75/0.7852 27.66/0.7393 26.36/0.7950 30.84/0.9125
HIT-SIR [58] 792K 54G 32.51/0.8991 28.84/0.7873 27.73/0.7424 26.71/0.8045 31.23/0.9176

SMFANet+ [63] 496K 28G 32.51/0.8985 28.87/0.7872 27.74/0.7412 26.56/0.7976 31.29/0.9163
LMLT-Large(Ours) 1,295K 78G 32.48/0.8987 28.87/0.7879 27.75/0.7421 26.63/0.8001 31.32/0.9163



Table 21. The memory consumption and inference times are reported. All experiments were conducted on a single RTX 3090 GPU.
Methods marked with † are CNN-based, while unmarked methods are ViT-based.

Scale Method #GPU Mem [M] #Avg Time [ms] Set14

×2

CARN-M [1] 2707.82 67.56 33.26/0.9141
CARN [1] 2716.80 73.55 33.52/0.9166

EDSR-baseline [26] 577.61 43.58 33.57/0.9175
LAPAR-A [24] 1812.60 43.50 33.62/0.9183
SAFMN [40] 259.56 33.61 33.54/0.9177

LMLT-Tiny(Ours) 324.01 57.37 33.59/0.9183
LMLT-Small(Ours) 324.5 84.22 33.65/0.9187

HNCT [11] 1200.55 351.49 33.65/0.9182
NGswin [4] 1440.40 375.19 33.79/0.9199

SwinIR-light [25] 1278.64 944.11 33.86/0.9206
SwinIR-NG [4] 1,227.0 1126.53 33.94/0.9205

SRformer-Light [64] 1176.15 1006.48 33.94/0.9209
LMLT-Base(Ours) 567.75 81.64 33.76/0.9201

LMLT-Large(Ours) 717.31 123.07 33.96/0.9212

×3

CARN-M [1] 1213.10 37.56 30.08/0.8367
CARN [1] 1222.08 41.08 30.29/0.8407

EDSR-baseline [26] 541.61 26.14 30.28/0.8417
LAPAR-A [24] 1813.84 35.95 30.34/0.8421
SAFMN [40] 114.70 17.38 30.33/0.8418

LMLT-Tiny(Ours) 151.96 31.06 30.37/0.8427
LMLT-Small(Ours) 152.5 44.22 30.47/0.8446

HNCT [11] 545.64 117.20 30.44/0.8439
NGswin [4] 696.97 168.49 30.53/0.8456

SwinIR-light [25] 587.63 287.96 30.54/0.8463
SwinIR-NG [4] 564.7 393.68 30.58/0.8471

SRformer-Light [64] 529.28 312.37 30.57/0.8469
LMLT-Base(Ours) 266.31 41.43 30.53/0.8458

LMLT-Large(Ours) 338.36 58.68 30.60/0.8471

×4

CARN-M [1] 680.84 21.39 28.42/0.7762
CARN [1] 689.83 20.50 28.60/0.7806

EDSR-baseline [26] 492.39 19.86 28.58/0.7813
LAPAR-A [24] 1811.47 32.24 28.61/0.7818
SAFMN [40] 65.26 11.28 28.60/0.7813

LMLT-Tiny(Ours) 81.44 23.54 28.64/0.7823
LMLT-Small(Ours) 81.92 31.01 28.74/0.7846

HNCT [11] 312.72 69.61 28.71/0.7834
NGswin [4] 372.94 118.13 28.78/0.7859

SwinIR-light [25] 342.46 176.76 28.77/0.7858
ELAN-light [56] 241.3 42.93 28.78/0.7858
HPINet-S [28] 445.9 100.4 28.80/0.7872
SwinIR-NG [4] 329.6 239.64 28.83/0.7870

SRformer-Light [64] 320.95 180.42 28.82/0.7872
SPIN [52] 441.5 701.29 28.80/0.7862

SMFANet+ [63] † 247.5 18.12 28.87/0.7872
HIT-SIR [58] 1,339.0 139.84 28.84/0.7873

LMLT-Base(Ours) 144.00 26.15 28.79/0.7859
LMLT-Large(Ours) 185.68 34.07 28.87/0.7879



(a) GT (b) Bicubic (c) CARN (d) EDSR

img024(×4) from Urban100 (e) PAN (f) ShuffleMixer (g) SAFMN (h) LMLT-Tiny

(a) GT (b) Bicubic (c) CARN (d) EDSR

img061(×4) from Urban100 (e) PAN (f) ShuffleMixer (g) SAFMN (h) LMLT-Tiny

(a) GT (b) Bicubic (c) CARN (d) EDSR

img073(×4) from Urban100 (e) PAN (f) ShuffleMixer (g) SAFMN (h) LMLT-Tiny

Figure 17. Visual comparisons for ×4 SR on Urban100 dataset. Compared with the results in (c) to (g), the Ours(LMLT-Tiny, (h)) restore
much more accurate and clear images.



(a) GT (b) Bicubic (c) IMDN (d) NGswin

Thatsizumiko from Manga109 (e) SwinIR-light (f) SwinIR-NG (g) LMLT-Base (h) LMLT-Large

(a) GT (b) Bicubic (c) IMDN (d) NGswin

UltraEleven from Manga109 (e) SwinIR-light (f) SwinIR-NG (g) LMLT-Base (h) LMLT-Large

(a) GT (b) Bicubic (c) IMDN (d) NGswin

YumeiroCooking from Manga109 (e) SwinIR-light (f) SwinIR-NG (g) LMLT-Base (h) LMLT-Large

Figure 18. Visual comparisons for ×4 SR on Manga109 dataset. Compared with the results in (c) to (f), the Ours(LMLT-Base and
LMLT-Large, (g) to (h)) restore much more accurate and clear images.


	CCM and HQ Image Reconstruction
	Realworld Scenario
	Low-to-high connection and Pooling
	LMLT with Multi-Head Self Attention
	Analysis of FLOPs
	Impact of Blocks, Channels, and Heads
	LMLT with the Other Components
	Comparisons with Other Methods

