/ccm N\

x x x x

- & 3 = | Q| 3

(a] 2 Q @ (o] 2 (a] R
® 2 ®
w =
w =

N

Figure 9. CCM(Convolutional Channel Mixer) proposed in
SAFMN [40].

J

HQ Image Reconstruction

O

3

2 %

_—

T ® T = T
X w X Eh X
2 w g = g
o) a (1) X

Figure 10. High Quality Image Reconstruction module.

A. CCM and HQ Image Reconstruction

CCM instead of MLP. Since the feed-forward network
(FFN) in the original transformer [45] is a fully connected
layer, we assume that using it in ViT might disrupt the spa-
tial information of the features. Therefore, we apply the
convolutional channel mixer (CCM) [40] instead, an FFN
based on FMBConv [42], to preserve spatial information.
CCM is a module that mixes each convolution channel.
Specifically, the features pass through two convolution lay-
ers. The first layer has a 3 x 3 kernel and expands the chan-
nels. Then, GELU [15] is applied for non-linear mapping.
Finally, a convolution layer with a 1 x 1 kernel restores the
channels to their original state. In our method, the features
pass through Layer Normalization [2], LMLT, and another
Layer Normalization before being input to CCM [40]. De-
tailed structure can be seen in Figure 9.

HQ Image Reconstruction. PixelShuffle [38] is a
technique effective for converting low-resolution images to
high-resolution ones. The core idea of PixelShuffle is to re-
arrange the channel dimension of the image tensor into the
spatial dimension to increase spatial resolution. This tech-
nique spatially expands the information contained in each

Table 8. Quantitative comparison of SwinIR-light, CAMixer, and
the proposed model on Test4k and Test8k. The values for #GPU
Mem and #Time indicate the memory usage and inference time
when processing Testdk (left) and Test8k (right), respectively. A
dash (’-") denotes that the measurement is not feasible due to GPU
memory limitations on an RTX 3090 GPU. The best results are
highlighted in bold.

Method #GPU Mem [M] #Time [ms] Testdk | Test8k

SwinIR-light [25] 2997.69 / - 1824.85/ - 27.79 | 33.67
CAMixerSR-M [48] | 2266.56 / 14866.0 | 380.34/2027.1 | 27.80 | 33.72
LMLT-Large(Ours) | 1830.43/10682.3 | 233.68/1155.7 | 27.82 | 33.75

channel, thereby increasing the resolution.

Specifically, the input tensor is first processed through
an initial convolutional layer, which increases the number
of channels. PixelShuffle then divides these channels by
the square of the upscaling factor and rearranges them spa-
tially to enhance the resolution of the final output image.
For example, with an upscaling factor of 2, four channels
are transformed into a 2 x 2 spatial block, effectively dou-
bling the image size.

This process can be summarized as follows. First,
nn.Conv2d(dim, 3 x upscaling,factOTQ, 3,1, 1) is ap-
plied to increase the number of channels in the input tensor.
Next, nn.PixelShuffle(upscaling_factor) rearranges
the channels into the spatial dimensions, thereby increas-
ing the image resolution. This method enables HQ Image
Reconstruction module to enhance the input image’s resolu-
tion and restore fine details effectively. The detailed struc-
ture is shown in Figure 10.

B. Realworld Scenario

Comparisons on LMLT with Real-world Scenario. In
Table 8, we analyze the performance of our model on large-
image SR tasks, such as Test4K and Test8K, using SwinIR-
light and CAMixerSR as baselines on an RTX 3090 GPU.
Here, the GPU memory usage and inference time are mea-
sured based on the inference on the Testdk and Test8k
datasets. As shown in the Table 8, our proposed LMLT-
Large model reduces memory requirements on the Test4k
dataset by 39% and inference time by 87% compared to
SwinIR-light [25], while also reducing memory usage by
19% and inference time by 38% compared to CAMixerSR-
M [48], all while achieving better performance. Addition-
ally, on the Test8k dataset, SwinIR-light cannot run due to
insufficient memory, whereas CAMixerSR-M is executable.
However, the proposed model reduces GPU memory usage
by 28% and inference time by 43% compared to CAMixer-
M, while maintaining a clear performance advantage.

Table 9. Performance results when the low-to-high element-wise connection removed. Better results are highlighted.

Scale Method Set5 Setl4 B100 Urban100 Mangal(09

LMLT-Tiny 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775

%2 LMLT-Tiny w/o connection | 38.00/0.9606 | 33.58/0.9181 | 32.18/0.8999 | 31.99/0.9268 | 38.88/0.9775
LMLT-Large 38.18/0.9612 | 33.96/0.9212 | 32.33/0.9017 | 32.75/0.9336 | 39.41/0.9786

LMLT-Large w/o connection | 38.19/0.9613 | 33.83/0.9199 | 32.33/0.9018 | 32.75/0.9338 | 39.43/0.9787
LMLT-Tiny 34.36/0.9271 | 30.37/0.8427 | 29.12/0.8057 | 28.10/0.8503 | 33.72/0.9448

3 LMLT-Tinyw/o connection | 34.40/0.9272 | 30.35/0.8425 | 29.11/0.8056 | 28.05/0.8496 | 33.71/0.9448
LMLT-Large 34.64/0.9293 | 30.60/0.8471 | 29.26/0.8097 | 28.72/0.8626 | 34.43/0.9491
LMLT-Largew/o connection | 34.64/0.9293 | 30.59/0.8473 | 29.26/0.8097 | 28.69/0.8622 | 34.43/0.9492
LMLT-Tiny 32.19/0.8947 | 28.64/0.7823 | 27.60/0.7369 | 26.08/0.7838 | 30.60/0.9083

! LMLT-Tiny w/o connection | 32.16/0.8944 | 28.64/0.7823 | 27.60/0.7368 | 26.04/0.7827 | 30.64/0.9078
LMLT-Large 32.48/0.8987 | 28.87/0.7879 | 27.75/0.7421 | 26.63/0.8001 | 31.32/0.9163

LMLT-Large w/o connection | 32.47/0.8987 | 28.88/0.7877 | 27.75/0.7422 | 26.63/0.7999 | 31.30/0.9163

Table 10. The comparison table between SAFMN and its variant

results are highlighted in bold.

with low-to-high element-wise sum added.

For each model, the better

Scale Method Set5 Setl4 B100 Urban100 Mangal09
<2 SAFMN [40] 38.00/0.9605 | 33.54/0.9177 | 32.16/0.8995 | 31.84/0.9256 | 38.71/0.9771
SAFMN [40] w/ connection | 37.99/0.9604 | 33.52/0.9174 | 32.17/0.8996 | 31.86/0.9257 | 38.77/0.9773
3 SAFMN [40] 34.34/0.9267 | 30.33/0.8418 | 29.08/0.8048 | 27.95/0.8474 | 33.52/0.9437
SAFMN [40] w/ connection | 34.34/0.9269 | 30.32/0.8418 | 29.09/0.8049 | 27.96/0.8476 | 33.55/0.9438
4 SAFMN [40] 32.18/0.8948 | 28.60/0.7813 | 27.58/0.7359 | 25.97/0.7809 | 30.43/0.9063
SAFMN [40] w/ connection | 32.10/0.8937 | 28.59/0.7812 | 27.58/0.7358 | 25.96/0.7799 | 30.44/0.9063

C. Low-to-high connection and Pooling

Effects of Low-to-high connection. In the Table 5 and Ta-
ble 9, we confirm performance differences when the low-
to-high connection is not applied to LMLT. Notably, at
LMLT-Tiny, we observe performance improvements across
all scales, particularly on the Urban100 dataset. Inspired by
this, we also apply low-to-high connections between heads
in SAFMN [40] and verify the experimental results. Ta-
ble 10 shows that adding low-to-high connection to the up-
per head in SAFMN [40] does not yield significant perfor-
mance differences. Moreover, at the x4 scale, the SSIM
for the Urban100 [18] and Set5 [3] datasets decreases by
0.0010 and 0.0011, respectively, indicating a reduction in
performance.

We then visualize the features of LMLT-Tiny to under-
stand the effect of the low-to-high connection. Each col-
umn of Figure 11 illustrates the original image, the ag-
gregated feature visualization of LMLT-Tiny combining
all heads 11(a), and the aggregated feature visualization
of LMLT-Tiny without low-to-high connection 11(b). In
11(b), the images show pronounced boundaries in areas
such as stairs, buildings, and the sky. In contrast, 11(a)
shows these boundaries as less pronounced. This demon-
strates that the low-to-high connection can address the bor-

der communication issues inherent in WSA.

To further validate the architectural benefits of the low-
to-high connection, we visualize the Layer Activation Maps
(LAM) for LMLT-Large with and without this compo-
nent(Fig 12). This analysis provides clear evidence that
the connection enables the model to capture features from a
significantly wider receptive field. As further substantiated
in Figure 14, this capability allows our proposed architec-
ture to reference a broader spatial context than even stan-
dard Multi-Head Self-Attention, demonstrating its superior
effectiveness in aggregating global information.

Effects of Pooling. In this section, we experiment with the
efficiency of our LMLT, which varies spatial size for each
head. Unlike LMLT, which divides features by head and
then applies query, key, and value mapping while varying
the spatial size for each feature, here we keep the spatial
size of all features the same without reduction, and there-
fore, the low-to-high connection is not applied. The re-
sults of this experiment and the proposed LMLT-Tiny model
can be found in Table 11. Experimental results show that
LMLT-Tiny outperforms the model without pooling across
all datasets, indicating that harmoniously combining local
and global information is more effective than merely retain-
ing spatial information.

img096(x4) frorﬁ Urban100 (a) (b)
Figure 11. Visualization of features with low-to-high connection(a) and without connection(b) on Urban100x4. As shown in the images,
without the low-to-high connection, the boundaries between windows are clearly visible.

(a) DI: 1634 (b) DI: 2031
W W W W W W

. =

.
(b) DI:23.33

- e 1
| <

(a) DI : 20,00
r

Wﬂln
s

Figure 12. Visualization of LAM-Large. From left to right: (a) LMLT-Large without low-to-high connection and (b) LMLT-Large.

Subsequently, we investigate the reason behind this The leftmost image is the original Urban100 [18] image.
through feature visualization. Figure 13 visualizes the fea- Figure 13(a) shows the aggregated features of all heads in
tures when no pooling is applied to any head in LMLT. LMLT-Tiny. Column Figure 13(b) visualizes the features

Table 11. Performance with or without pooling and merging. Best results are highlighted in bold.

Scale Method #Params | #FLOPs Set5 Setl4 B100 Urban100 Mangal09

LMLT-Tiny 239K 59G 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775

x2 LMLT-Tiny w/o pool 239K 67G 37.98/0.9605 | 33.56/0.9178 | 32.16/0.8996 | 31.87/0.9255 | 38.79/0.9773
LMLT-Tiny w/o pool and merge | 229K 64G 37.95/0.9604 | 33.51/0.9173 | 32.14/0.8993 | 31.76/0.9245 | 38.68/0.9771
LMLT-Tiny 244K 28G 34.36/0.9271 | 30.37/0.8427 | 29.12/0.8057 | 28.10/0.8503 | 33.72/0.9448

x3 LMLT-Tiny w/o pool 244K 32G 34.36/0.9270 | 30.34/0.8421 | 29.10/0.8051 | 28.02/0.8488 | 33.66/0.9445
LMLT-Tiny w/o pool and merge | 234K 31G 34.28/0.9265 | 30.31/0.8417 | 29.07/0.8044 | 27.94/0.8467 | 33.55/0.9438
LMLT-Tiny 251K 15G 32.19/0.8947 | 28.64/0.7823 | 27.60/0.7369 | 26.08/0.7838 | 30.60/0.9083

x4 LMLT-Tiny w/o pool 251K 17G 32.12/0.8940 | 28.61/0.7820 | 27.58/0.7362 | 26.01/0.7815 | 30.51/0.9074
LMLT-Tiny w/o pool and merge | 240K 17G 32.07/0.8934 | 28.60/0.7817 | 27.56/0.7355 | 25.95/0.7795 | 30.45/0.9064

img081(x4) from Urban100

Figure 13. Comparison without pooling on Urban100 x4 scale. From left to right: (a) LMLT with pooling applied, (b) without any pooling,
(c) without pooling and without multiplication by activation. In (b) and (c), the boundaries between windows are visible.

without pooling, and Figure 13(c) visualizes the features indicating that the disadvantages of being limited to local
without both pooling and merging, all at the x4 scale. In windows outweigh the benefits of maintaining the original
13(b) and 13(c), grid patterns are evident across the images, spatial size.

HR (a) DI=227

\/\\\\T\}\\\(i

N
;\\\\\\/\\\\\ =
§\/\A\§§%\\§ i “
(a) DI = 2.98
. ==

W

(b) DI = 10.43 (c) DI = 10.87

)

»

(b) DI = 16.20 (c) DI = 17.57

Hi

Figure 14. Visualization of LAM-Tiny. From left to right: (a) LMLT-Tiny without pooling, (b) LMLT-Tiny without low-to-high connection

and (c) LMLT-Tiny.

Additionally, we compare the LAM of our proposed
model, LMLT-Tiny (Figure 14(c)), with a version of the
model that does not include pooling for each head (Fig-
ure 14(a)), and a version where the low-to-high connection
is removed (Figure 14(b)), demonstrating that our proposed
model effectively references a broader region. The results
show that, even when the spatial size of the model is main-
tained without pooling, it fails to process information from
a wider area. Moreover, the low-to-high connection proves
to be effective in enabling the model to capture information
from a larger region.

D. LMLT with Multi-Head Self Attention

In this section, we demonstrate how our proposed LMLT
is more efficient than traditional Multi-Head Self-Attention
(MHSA) across various datasets. Table 12 shows that
the proposed Low-to-high Multi-Level Self Attention re-
duces maximum GPU memory usage while maintaining
performance. At each scale, our model achieves an av-
erage reduction of 8% in the number of parameters, 18%
in FLOPs, and 59% in memory usage compared to LMLT
with MHSA. Meanwhile, it achieves increases in SSIM of
0.0009, 0.0008, and 0.0002 on the Urban100 dataset, re-
spectively. Furthermore, Figure 15 uses the LAM [12]
to illustrate that proposed model effectively references a
broader area of information compared to MHSA.

E. Analysis of FLOPs

This section analyzes the relationship between theoretical
computational cost (FLOPs) and practical execution time
for the core modules of our LMLT-Large model and the
SwinIR-Light [25] baseline.

As detailed in Table 13, our analysis of SwinlIR-
Light [25] indicates that its self-attention module accounts
for approximately 50% of the total FLOPs, while the MLP
contributes about 32%. However, a significant discrepancy

appears in the runtime analysis. Across all scales, the self-
attention module’s execution time shows a significant dif-
ference compared to the MLP, ranging from a minimum of
three times to well over ten times longer. This identifies the
standard self-attention operation as the primary computa-
tional bottleneck, as its runtime is substantially higher than
its theoretical FLOP count would suggest. This discrep-
ancy arises because the runtime of self-attention is dom-
inated by the cost of large matrix multiplications (QK 7)
and (Attention x V') and the handling of large intermediate
tensors (@, K, V, and the attention map). These operations
incur substantial GPU memory access latency in addition
to their quadratic computational complexity with respect to
spatial size, resulting in poor scaling between FLOPs and
actual runtime.

Our proposed LMLT architecture, however, is designed
to address this specific bottleneck. By replacing the stan-
dard monolithic self-attention with four parallel, spatially
downscaled streams, the attention mechanism in LMLT-
Large constitutes only 8.5% of the total FLOPs (an over
80% reduction compared to SwinIR-Light), and its run-
time is correspondingly reduced by approximately 89%.
Although the CCM module is responsible for nearly 90%
of the model’s FLOPs, executes approximately 30% faster
than our attention module. This demonstrates the practi-
cal efficiency of our proposed attention design, which is not
fully captured by FLOPs alone.

Additionally, in Figure 16, we visualize the peak
GPU memory usage of each module during a x4
upscaling task for both LMLT-Large and SwinlR-
Light [25]. The memory footprint was measured
at the end of each module’s execution step using
torch.cuda.max memory_allocated.

For our proposed LMLT-Large, the memory profile
shows a controlled and stable pattern. The CCM mod-
ule records the highest peak memory at approximately
180MB, slightly higher than the LHSB module’s peak

Table 12. Comparison of the results between LMLT-Tiny and LMLT-Tiny with Multi-Head Self-Attention (MHSA) applied instead of

Multi-Level Self-Attention. Better results are highlighted.

Scale Method #Param | #FLOPs | GPU Mem Set5 Setl4 B100 Urban100 Mangal09
<9 LMLT-Tiny 239K 59G 324.01M | 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775
LMLT-T w/ MHSA | 260K 72G 789.67M | 38.01/0.9607 | 33.57/0.9178 | 32.18/0.8998 | 31.97/0.9264 | 38.84/0.9775
3 LMLT-Tiny 244K 28G 151.96M | 34.36/0.9271 | 30.37/0.8427 | 29.12/0.8057 | 28.10/0.8503 | 33.72/0.9448
LMLT-Tw/ MHSA | 265K 34G 369.97M | 34.36/0.9270 | 30.38/0.8428 | 29.11/0.8056 | 28.06/0.8495 | 33.68/0.9448
4 LMLT-Tiny 251K 15G 81.44M | 32.19/0.8947 | 28.64/0.7823 | 27.60/0.7369 | 26.08/0.7838 | 30.60/0.9083
LMLT-T w/ MHSA | 271K 19G 198.356M | 32.15/0.8945 | 28.66/0.7829 | 27.60/0.7370 | 26.08/0.7836 | 30.61/0.9087
HR (a) DI =3.28 (b) DI = 10.87
WEmwm=
== = \‘\\
=
/\\/\% §§§\€ s . '3
/\,\\\\\ \\3\\ 2\
HR (a) DI =3.76 (b) DI =17.57

I\

i

M

Y

Figure 15. Visualization of LAM-Tiny. From left to right: (a) LMLT-Tiny with Multi-Head Self Attention, (b) LMLT-Tiny.

of around 170MB, due to differences in their internal
processing. While LHSB processes features in parallel
across downscaled channels, CCM employs a channel ex-
pansion layer (Conv2d (D, Dxgrowth_rate)) on the
full-dimensional features, which transiently requires more
memory. The other modules, such as the Shallow Extractor
and HQ Image Reconstruction, have a negligible memory
footprint.

In sharp contrast, the profile of SwinIR-Light [25] re-
veals that the Self-Attention module is a major memory bot-
tleneck. The Self-Attention block produces sharp, periodic
spikes, demanding more than 300 MB of memory. The sub-
sequent MLP block peaks at around 170 MB, roughly half
the Self-Attention’s requirement. Although the MLP also
contains a channel expansion structure, it lacks the multi-
ple linear projections and matrix multiplications on large,
full-dimensional feature maps that make Self-Attention so
memory-intensive. This clearly illustrates the inherently
memory-hungry nature of ViT-based architectures.

F. Impact of Blocks, Channels, and Heads

In this section, we analyze how the performance of our pro-
posed model changes based on the number of blocks, heads
and channels.

Impact of Number of Blocks. First, We evaluate the per-

formance by varying the number of blocks to 4, 6, 8, 10, and
12. Experiments are conducted on %2 scale and the perfor-
mance is evaluated using benchmark datasets, and analyzed
in terms of the number of parameters, FLOPs, GPU mem-
ory usage, and average inference time.

As shown in Table 14, the increase in the number of
parameters, FLOPs and inference time tends to be propor-
tional to the number of blocks, and performance also gradu-
ally improves. For the Mangal09 [36] dataset, as the num-
ber of blocks increases from 4 to 12 in increments of 2,
PSNR increases by 0.27 db, 0.16 db, 0.10 db, and 0.10 db,
respectively. Interestingly, despite the increase in the num-
ber of blocks from 4 to 12, the GPU memory usage remains
almost unchanged. While the number of parameters nearly
triples, the GPU memory usage remains stable, 323.5M to
324.5M. We observe the overall increase in PSNR with the
increase in the number of blocks and designate the model
with 8 blocks as LMLT-Tiny and the model with 12 blocks
as LMLT-Small.

Impact of Number of Channels. Next, we evaluate how
performance changes with the number of channels. Sim-
ilar to the performance evaluation based on the number of
blocks, this experiment evaluates performance using bench-
mark datasets, the number of parameters, FLOPs, GPU
memory usage, and average inference time as performance

Table 13. Analysis of the FLOPs and runtime of Self-Attention and MLP(CCM [40]) modules.

scale | method | Attention Runtime ~ Attention FLOPs | MLP(CCM) Runtime ~ MLP(CCM) FLOPs
o | SwinIR-Light [25] 1084.57ms 122.1G (50.0%) 89.33ms 79.6G(32.6%)
LMLT-Large(Ours) 68.97ms 26.2G (8.5%) 48.99ms 277.4G(90.6%)
3 | SwinIR-Light [25] 336.00ms 54.9G (49.6%) 36.55ms 35.8G(32.3%)
LMLT-Large(Ours) 32.72ms 12.2G (8.5%) 23.58ms 129.5G(89.9%)
4 | SwinIR-Light [25] 185.23ms 31.2G (49.1%) 48.99ms 20.4G(32.0%)
LMLT-Large(Ours) 22.66ms 6.5G (8.4%) 13.22ms 69.4G(88.8%)

GPU Memory vs Step

180 A

160

140

120 A

100 A

GPU Memory (MB)

80 1

[

401 [] —@— Shallow Extractor ~®— LHSB —@- CCM —@— HQ Reconstruction

0 50 100 150 200
Execution Step (module end)

(a) LMLT-Large

GPU Memory vs Step

350 1

300 A

GPU Memory (MB)
N N
o o
o o

=

v

o
L

100
507 : @ PatchEmbed -® ATTN -@ MLP —@— CONV
0 50 100 150 200 250 300 350
Execution Step (module end)
(b) SwinIR-light
Figure 16. The memory consumption of each execution step on (a) LMLT-Large and (b) SwinIR-light.
metrics. with channels, along with parameters and FLOPs. However,

. , . unlike the variations in the number of blocks, increasing the
As shown in Table 15, LMLT’s performance increases

Table 14. Performance difference of LMLT based on the number of blocks.

#Block | #Params | #FLOPs | #GPU Mem | #AVG Time Set5 Setl4 B100 Urban100 Mangal09
4 122K 30G 323.52M 29.75ms 37.88/0.9601 | 33.40/0.9166 | 32.06/0.8984 | 31.49/0.9217 | 38.47/0.9765
6 181K 44G 323.77TM 43.51ms 37.94/0.9601 | 33.52/0.9175 | 32.15/0.8995 | 31.82/0.9253 | 38.74/0.9771
8 239K 59G 324.01M 57.37ms 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775
10 298K 73G 324.26M 70.55ms 38.05/0.9608 | 33.66/0.9188 | 32.22/0.9003 | 32.17/0.9286 | 39.00/0.9778
12 357K 88G 324.5M 84.22ms 38.05/0.9608 | 33.65/0.9187 | 32.24/0.9006 | 32.31/0.9298 | 39.10/0.9780
Table 15. Performance difference of LMLT based on the number of channels.
#Channel | #Params | #FLOPs | #GPU MEM | #AVG Time Set5 Setl4 B100 Urban100 Mangal09
24 109K 27G 255.7TM 38.34ms 37.91/0.9602 | 33.44/0.9169 | 32.09/0.8988 | 31.62/0.9231 | 38.58/0.9768
36 239K 59G 324.01M 57.3Tms 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775
48 420K 103G 460.32M 65.66ms 38.06/0.9609 | 33.67/0.9189 | 32.25/0.9007 | 32.33/0.9299 | 39.14/0.9780
60 652K 158G 567.75M 81.64ms 38.10/0.9610 | 33.76/0.9201 | 32.28/0.9012 | 32.52/0.9316 | 39.24/0.9783
72 935K 226G 684.82M 108.74ms | 38.17/0.9612 | 33.83/0.9205 | 32.32/0.9016 | 32.65/0.9329 | 39.36/0.9786
84 1,270K 306G 717.31M 123.07ms | 38.18/0.9612 | 33.96/0.9212 | 32.33/0.9017 | 32.75/0.9336 | 39.41/0.9786

number of channels results in a more significant increase
in the number of parameters, FLOPs, and memory usage.
Inference time, however, increases proportionally with the
number of channels. For instance, with 36 channels, the av-
erage inference time is 57.16ms, and when doubled, it re-
quires approximately 108.74ms, nearly twice the time. As
the number of channels increases from 24 to 84 in incre-
ments of 12, the PSNR on the Urban100 [18] dataset in-
creases by 0.42 db, 0.29 db, 0.19 db, 0.13 db, and 0.10 db,
respectively. Based on the overall performance increase,
we designate the model with 60 channels as the Base model
and the model with 84 channels as the Large model. In this
context, the Small model has an inference time about 3ms
longer than the Base model, but it has fewer parameters,
lower memory usage, and fewer FLOPs, thus justifying its
designation.

Impact of Number of Heads. In this paragraph, we com-
pare the performance differences based on the number of
heads. In our model, as the number of heads decreases, the
channel and the number of downsizing operations for each
head decrease. For example, in our baseline with 4 heads
and 36 channels, the lowest head has a total of 9 channels
and is pooled 3 times. However, if there are 2 heads, the
lowest head has 18 channels and is pooled once. Addition-
ally, the maximum pooling times and the number of heads
are related to the number of windows and the amount of
self-attention computation. According to equation 2, as the
number of heads decreases, the computation increases. As
a result, as the number of heads decreases, the number of
parameters, FLOPs, and GPU memory usage increase.

As shown in Table 16, the performance with 4 heads

and 3 heads is similar across all scales and test datasets.
However, reducing the number of heads to 1 significantly
degrades performance, despite an increase in parameters,
FLOPs, and GPU memory usage. Notably, on the Ur-
ban100 [18] dataset at scale x2, the LMLT with 4 heads
achieves a PSNR of 32.04 dB with 239K parameters, 59G
FLOPs, and 324M memory usage. In contrast, with 1 head,
the parameters increase to 270K, FLOPs to 75G, and mem-
ory usage to 437M, while the PSNR drops to 31.93 dB, a de-
crease of 0.11 dB. This highlights the inefficiency of relying
on fewer heads despite increased computational demands.
Additionally, when the scale is x3 and x4, the PSNR de-
creases by 0.05 dB and 0.04 dB, respectively. This suggests
that while maintaining the spatial size of all features with a
single head increases parameters, FLOPs, and channels per
head, incorporating global and cross-window information is
more beneficial for achieving better performance.

G. LMLT with the Other Components

Importance of Aggregation and Activation. We analyze
the impact of aggregating features from each head using a
1 x 1 convolution or applying activation before multiply-
ing with the original input. Results are shown in the ‘Act
/ Aggr’ row of Table 17. Without aggregation, PSNR de-
creases by 0.10 dB on the Urban100 [18] dataset. If features
are directly output without applying activation and without
multiplying with the original input, PSNR decreases by 0.12
dB. Omitting both steps leads to an even greater decrease of
0.22 dB, indicating that including both aggregation and ac-
tivation is more efficient. Conversely, multiplying features
directly to the original feature without the activation func-

Table 16. Performance difference of LMLT based on the number of heads. #Chan is the number of channels in each heads. Best results are

highlighted.
Scale | #Levels | #Chan | #Params | #FLOPs #GPU Setl4 B100 Urban100 Mangal09
1 36 270K 75G 437.21M | 38.00/0.9606 | 33.58/0.9179 | 32.17/0.8997 | 31.93/0.9260 | 38.83 /0.9774
%9 2 18 250K 64G 385.96M | 38.01/0.9606 | 33.59/0.9180 | 32.18/0.8999 | 32.02/0.9270 | 38.87/0.9776
3 12 243K 60G 346.71M | 38.00/0.9606 | 33.59/0.9182 | 32.19/0.8999 | 32.02/0.9273 | 38.88/0.9775
4 9 239K 59G 324.01M | 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775
1 36 275K 35G 205.52M | 34.37/0.9271 | 30.39/0.8431 | 29.11/0.8054 | 28.05/0.8495 | 33.71/0.9449
<3 2 18 255K 30G 181.14M | 34.37/0.9271 | 30.37/0.8427 | 29.11/0.8056 | 28.05/0.8496 | 33.73/0.9450
3 12 248K 29G 161.90M | 34.41/0.9273 | 30.37/0.8426 | 29.12/0.8059 | 28.09/0.8502 | 33.73/0.9449
4 9 244K 28G 151.96M | 34.36/0.9271 | 30.37/0.8427 | 29.12/0.8057 | 28.10/0.8503 | 33.72/0.9448
1 36 282K 19G 111.28M | 32.14/0.8943 | 28.65/0.7826 | 27.60/0.7366 | 26.04/0.7825 | 30.57/0.9080
d 2 18 261K 17G 98.6OM | 32.18/0.8948 | 28.63/0.7826 | 27.60/0.7370 | 26.07/0.7839 | 30.59/0.9085
3 12 254K 16G 87.04M | 32.19/0.8947 | 28.63/0.7821 | 27.60/0.7367 | 26.08/0.7834 | 30.58/0.9080
4 9 251K 15G 81.44M | 32.19/0.8947 | 28.64/0.7823 | 27.60/0.7369 | 26.08/0.7838 | 30.60/0.9083

tion improves performance by 0.1 dB.

Therefore, inspired by this, we experiment with a ver-

sion of LMLT without GeLU [15] across various scales. Ta-
ble 18 shows the results for our LMLT and the model with-
out the activation function across different scales and chan-
nels. As shown, with 36 channels, there is minimal perfor-
mance difference across all scales, with the largest being a
0.04 higher PSNR on the Set5 [3] x4 scale when GeLU [15]
is removed. However, when expanded to 60 channels, our
LMLT performs better on most benchmark datasets for both
x 3 and x4 scales. Specifically, on the x4 scale of the Ur-
ban100 [18] dataset, PSNR and SSIM are higher by 0.05
dB and 0.0013, respectively. This demonstrates that adding
GeLU [15] after aggregating features is more beneficial for
performance improvement.
Importance of Positional Encoding. Lastly, we examine
the role of Positional Encoding (PE) in performance im-
provement. Results are shown in the ‘PE’ row of Table 17.
Removing PE results in decreased performance across all
benchmark datasets, notably with a PSNR drop of 0.06 dB
and an SSIM decrease of 0.0006 on the Urban100 [18]
dataset. Using RPE [29] results in a maximum PSNR in-
crease of 0.03 dB on the Setl4 [51] dataset, but has little
effect on other datasets. Additionally, parameters and GPU
memory increase by 5K and 45M, respectively.

H. Comparisons with Other Methods

Image Reconstruction comparisons. Here, we first com-
pare the LMLT-Tiny and LMLT-Small with other CNN-
based image super-resolution models such as CARN-m,
CARN [1], EDSR-baseline [26], PAN [62], LAPAR-A [24],
ECBSR-M16C64 [55], SMSR [46], Shuffle-Mixer [39],
and SAFMN [40], so that we can demonstrate that our
LMLT is not only lighter but also achieves superior per-

formance compared to other CNN-based state-of-the-art
models. Table 19 shows that our LMLT significantly re-
duces number of parameters and computation overheads
while achieving substantial performance gains on various
datasets. LMLT-Small performs well on most datasets,
and the LMLT-Tiny also performs second and third best
on the BSD100 [35] and MangalQ9 [36] datasets, except
for the Mangal09 x4 SSIM [49]. In particular, the num-
ber of parameters and FLOPs are the second smallest after
SAFMN [40].

In Table 20, we compare our proposed LMLT model
with ViT-based SR models, where LMLT-Base is evalu-
ated against efficient SR models [4, 10, 11, 19, 27, 33, 61]
and LMLT-Large is compared with lightweight SR mod-
els [4, 25, 28, 31, 47, 52, 56, 58, 63, 64]. As shown in
Table 20, LMLT-Base achieves the best or second-best per-
formance across almost all scales and datasets. Notably,
on the Mangal(Q9 dataset, it demonstrates significant per-
formance improvements, achieving 0.27dB, 0.29dB, and
0.29dB higher PSNR at scales x2, x3, and x4, re-
spectively, while reducing the number of parameters by
approximately 30% compared to the second-best model,
NGswin [4].

Similarly, LMLT-Large also achieves the best or second-
best performance across several scales and datasets, with
particularly notable results on the Setl4 dataset. In addi-
tion to this, we demonstrate that our model has a significant
advantage in inference time and GPU memory usage in the
next paragraph.

Memory and Running time Comparisons. In this para-
graph, we present the memory usage and average infer-
ence time of our proposed LMLT compared to other super-
resolution methods. Similar to the experimental setup
in Table 2, #GPU Mem represents the maximum mem-
ory usage during inference, measured using PyTorch’s

Table 17. Ablation studies on each component of our method at scale x2. LMLT-Tiny is used.

Ablation Variants #Param | #Flops | #GPU Mem Set5 Setl4 B100 Urban100 Mangal09
Baseline - 239K 59G 324M 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775
No Aggregation 229K 56G 324M 37.99/0.9606 | 33.55/0.9178 | 32.17/0.8997 | 31.94/0.9262 | 38.84/0.9774
Act/ Ager No Activation 239K 59G 324M 37.99/0.9605 | 33.55/0.9180 | 32.16/0.8997 | 31.92/0.9260 | 38.83/0.9774
No Aggr,No Act | 229K 56G 324M 37.95/0.9606 | 33.53/0.9175 | 32.15/0.8994 | 31.82/0.9250 | 38.73/0.9771
GELU — None 239K 59G 324M 38.03/0.9606 | 33.60/0.9184 | 32.19/0.9000 | 32.05/0.9272 | 38.91/0.9776
PE No PE 236K 59G 309M 37.98/0.9606 | 33.55/0.9176 | 32.18/0.8998 | 31.98/0.9267 | 38.86/0.9774
LePE — RPE[29] | 244K 59G 369M 38.02/0.9606 | 33.62/0.9182 | 32.20/0.9000 | 32.05/0.9275 | 38.90/0.9775

Table 18. Performance difference of LMLT with GELU and without GELU. The better results are highlighted in bold.

Scale Ablation #Channel Set5 Set14 B100 Urban100 Mangal09

LMLT 36 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775

o | LMLT w /o GELU 36 38.03/0.9606 | 33.60/0.9184 | 32.19/0.9000 | 32.05/0.9272 | 38.91/0.9776
LMLT 60 38.10/0.9610 | 33.76/0.9201 | 32.28/0.9012 | 32.52/0.9316 | 39.24/0.9783

LMLT w/o GELU 60 38.10/0.9610 | 33.80/0.9200 | 32.28/0.9011 | 32.51/0.9315 | 39.26/0.9783

LMLT 36 34.36/0.9271 | 30.37/0.8427 | 29.12/0.8057 | 28.10/0.8503 | 33.72/0.9448

<3 LMLT w/o GELU 36 34.37/0.9272 | 30.36/0.8425 | 29.11/0.8057 | 28.08/0.8502 | 33.71/0.9447
LMLT 60 34.58/0.9285 | 30.53/0.8458 | 29.21/0.8084 | 28.48/0.8581 | 34.18/0.9477

LMLT w/o GELU 60 34.53/0.9283 | 30.51/0.8457 | 29.20/0.8080 | 28.45/0.8576 | 34.17/0.9476

LMLT 36 32.19/0.8947 | 28.64/0.7823 | 27.60/0.7369 | 26.08/0.7838 | 30.60/0.9083

4 LMLT w/o GELU 36 32.23/0.8949 | 28.62/0.7820 | 27.60/0.7369 | 26.08/0.7836 | 30.59/0.9082
LMLT 60 32.38/0.8971 | 28.79/0.7859 | 27.70/0.7403 | 26.44/0.7947 | 31.09/0.9139

LMLT w/o GELU 60 32.39/0.8973 | 28.78/0.7858 | 27.69/0.7399 | 26.39/0.7934 | 31.04/0.9132

torch.cuda.max_memory_allocated(). #AVG ence speed of LMLT-Base, LMLT-Large, and other ViT-

Time indicates the average time taken to upscale a total
of 50 random images by x2, x3, and x4 scales. The
experiments were conducted three times, and the average
inference time is reported. Each random image has sizes
of 640x360 for x2 scale, 427x240 for x3 scale, and
320x 180 for x4 scale.

As shown in Table 21, our proposed LMLT-Tiny uses
less memory at all scales compared to all models except
SAFMN [40]. Although LMLT-Small requires more infer-
ence time compared to other models, its GPU usage is al-
most similar to LMLT-Tiny, and its performance is signifi-
cantly superior as demonstrated in Table 19.

Particularly, compared to EDSR [26], which has the
next highest GPU memory usage after LMLT, LMLT-Tiny
achieves a 44%, 72%, and 83% reduction in memory us-
age at scales x2, x3, and x4, respectively, while deliv-
ering 0.02dB, 0.09dB, and 0.06dB higher performance on
the Setl4 dataset. Similarly, LMLT-Small reduces mem-
ory usage by the same percentages at each scale, while out-
performing EDSR on the Set14 dataset by 0.08dB, 0.19dB,
and 0.16dB, respectively. These results highlight that the
proposed model is not only lightweight but also achieves
higher performance compared to CNN-based SR models.

Additionally, we discuss the memory usage and infer-

based SR models [4, 11, 25, 28, 52, 56, 58, 63, 64]. We
observe that LMLT-Base and LMLT-Large are highly effi-
cient in terms of inference speed and memory usage com-
pared to other ViT-based SR models. Specifically, com-
pared to NGswin [4], LMLT-Base maintains similar perfor-
mance while reducing memory usage by 61%, 62%, and
61% at scales x2, x3, and x4, respectively, and decreasing
inference time by an average of 78%, 76%, and 78%. Simi-
larly, compared to SwinlIR-light [25], LMLT-Large achieves
a 44%, 43%, and 46% reduction in memory usage at each
scale, while reducing inference time by 87%, 80%, and
81%, respectively, while maintaining similar performance.
Notably, as discussed in Table 2, our most complex
model, LMLT-Large, is lighter and faster than all ViT-based
comparison models. Furthermore, as shown in Table 21,
LMLT-Large achieves 40%, 38%, and 40% lower mem-
ory usage than HNCT, while reducing inference time by
65%, 50%, and 51% at scales x2, x3, and x4, respec-
tively. Moreover, LMLT-Large achieves 0.31dB, 0.16dB,
and 0.16dB higher PSNR on the Set14 dataset, demonstrat-
ing both the efficiency and effectiveness of the proposed
model.
Qualitative Comparisons. In this paragraph, we examine
the qualitative comparisons of the LMLT-Tiny model and

Table 19. Comparisons with existing methods. Best and second-best performance are in red and blue, and third-best is underlined.
Unreported results are left blank.

Scale Method #Params | #FLOPs Set5 Setl4 B100 Urban100 Mangal09
CARN-M [1] 412K 91G 37.53/0.9583 | 33.26/0.9141 | 31.92/0.8960 | 31.23/0.9193 -
CARN [1] 1,592K 223G | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 -
EDSR-baseline [26] 1,370K 316G | 37.99/0.9604 | 33.57/0.9175 | 32.16/0.8994 | 31.98/0.9272 | 38.54/0.9769
PAN [62] 261K 71G 38.00/0.9605 | 33.59/0.9181 | 32.18/0.8997 | 32.01/0.9273 | 38.70/0.9773
LAPAR-A [24] 548K 171G | 38.01/0.9605 | 33.62/0.9183 | 32.19/0.8999 | 32.10/0.9283 | 38.67/0.9772
x2 | ECBSR-M16C64 [55] | 596K 137G | 37.90/0.9615 | 33.34/0.9178 | 32.10/0.9018 | 31.71/0.9250 -
SMSR [46] 985K 132G | 38.00/0.9601 | 33.64/0.9179 | 32.17/0.8990 | 32.19/0.9284 | 38.76/0.9771
ShuffleMixer [39] 394K 91G 38.01/0.9606 | 33.63/0.9180 | 32.17/0.8995 | 31.89/0.9257 | 38.83/0.9774
SAMEN [40] 228K 52G 38.00/0.9605 | 33.54/0.9177 | 32.16/0.8995 | 31.84/0.9256 | 38.71/0.9771

LMLT-Tiny(Ours) 239K 59G 38.01/0.9606 | 33.59/0.9183 | 32.19/0.8999 | 32.04/0.9273 | 38.90/0.9775
LMLT-Small(Ours) 357K 88G 38.05/0.9608 | 33.65/0.9187 | 32.24/0.9006 | 32.31/0.9298 | 39.10/0.9780

CARN-M [1] 415K 46G 33.99/0.9236 | 30.08/0.8367 | 28.91/0.8000 | 27.55/0.8385 -

CARN [1] 1,592K 119G | 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 -
EDSR-baseline [26] 1,555K 160G | 34.37/0.9270 | 30.28/0.8417 | 29.09/0.8052 | 28.15/0.8527 | 33.45/0.9439
PAN [62] 261K 39G 34.40/0.9271 | 30.36/0.8423 | 29.11/0.8050 | 28.11/0.8511 | 33.61/0.9448
<3 LAPAR-A [24] 594K 114G | 34.36/0.9267 | 30.34/0.8421 | 29.11/0.8054 | 28.15/0.8523 | 33.51/0.9441
SMSR [46] 993K 68G 34.40/0.9270 | 30.33/0.8412 | 29.10/0.8050 | 28.25/0.8536 | 33.68/0.9445
ShuffleMixer [39] 415K 43G 34.40/0.9272 | 30.37/0.8423 | 29.12/0.8051 | 28.08/0.8498 | 33.69/0.9448
SAFMN [40] 233K 23G 34.34/0.9267 | 30.33/0.8418 | 29.08/0.8048 | 27.95/0.8474 | 33.52/0.9437
LMLT-Tiny(Ours) 244K 28G 34.36/0.9271 | 30.37/0.8427 | 29.12/0.8057 | 28.10/0.8503 | 33.72/0.9448
LMLT-Small(Ours) 361K 41G 34.50/0.9280 | 30.47/0.8446 | 29.16/0.8070 | 28.29/0.8544 | 33.99/0.9464

CARN-M [1] 412K 33G 31.92/0.8903 | 28.42/0.7762 | 27.44/0.7304 | 25.62/0.7694 -

CARN [1] 1,592K 91G 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 -
EDSR-baseline [26] 1,518K 114G | 32.09/0.8938 | 28.58/0.7813 | 27.57/0.7357 | 26.04/0.7849 | 30.35/0.9067
PAN [62] 272K 28G 32.13/0.8948 | 28.61/0.7822 | 27.59/0.7363 | 26.11/0.7854 | 30.51/0.9095
LAPAR-A [24] 659K 94G 32.15/0.8944 | 28.61/0.7818 | 27.61/0.7366 | 26.14/0.7871 | 30.42/0.9074

x4 | ECBSR-M16C64 [55] 603K 35G 31.92/0.8946 | 28.34/0.7817 | 27.48/0.7393 | 25.81/0.7773 -
SMSR [46] 1,006K 42G 32.12/0.8932 | 28.55/0.7808 | 27.55/0.7351 | 26.11/0.7868 | 30.54/0.9085
ShuffleMixer [39] 411K 28G 32.21/0.8953 | 28.66/0.7827 | 27.61/0.7366 | 26.08/0.7835 | 30.65/0.9093
SAFMN [40] 240K 14G 32.18/0.8948 | 28.60/0.7813 | 27.58/0.7359 | 25.97/0.7809 | 30.43/0.9063

LMLT-Tiny(Ours) 251K 15G 32.19/0.8947 | 28.64/0.7823 | 27.60/0.7369 | 26.08/0.7838 | 30.60/0.9083
LMLT-Small(Ours) 368K 23G 32.31/0.8968 | 28.74/0.7846 | 27.66/0.7387 | 26.26/0.7894 | 30.87/0.9117

other models on the Urban100 [18] x4 scale. The com-
parison includes CARN [1], EDSR [26], PAN [62], Shuf-
fleMixer [39], and SAFMN [40]. The results can be seen
in Figure 17. As mentioned in section 4.1, we observe that
our model reconstructs images with continuous stripes bet-
ter than other models.

Additionally, we compare our proposed mod-
els LMLT-Base and LMLT-Large with IMDN [19],
NGswin [4], SwinIR-light [25], and SwinIR-NG [4] on the
Mangal09 [36] dataset atx 4 scale. As explained earlier in
section 4.1, our model shows strength in areas with contin-
uous lines compared to other models. Figure 18 illustrates
the differences between our LMLT-Base, LMLT-Large and
other state-of-the-arts models.

Table 20. Comparisons with our LMLT-Small, LMLT-Base, LMLT-Large and other Super-Resolution models on multiple benchmark
datasets. Best and second-best performance are in red and blue color.
Scale Method #Params | #FLOPs Set5 Set14 B100 Urban100 Mangal09

IMDN [19] 694K 156G 38.00/0.9605 | 33.63/0.9177 | 32.19/0.8996 | 32.17/0.9283 | 38.88/0.9774

LatticeNet [33] 756K 170G 38.06/0.9607 | 33.70/0.9187 | 32.20/0.8999 | 32.25/0.9288 | 38.94/0.9774

RFDN-L [27] 626K 146G 38.08/0.9606 | 33.67 /0.9190 | 32.18/0.8996 | 32.24/0.9290 | 38.95/0.9773
SRPN-Lite [61] 609K 140G 38.10/0.9608 | 33.70/0.9189 | 32.25/0.9005 | 32.26/0.9294 -

HNCT [11] 357K 82G 38.08/0.9608 | 33.65/0.9182 | 32.22/0.9001 | 32.22/0.9294 | 38.87/0.9774

FMEN [10] 748K 172G 38.10/0.9609 | 33.75/0.9192 | 32.26/0.9007 | 32.41/0.9311 | 38.95/0.9778

NGswin [4] 990K 140G 38.05/0.9610 | 33.79/0.9199 | 32.27/0.9008 | 32.53/0.9324 | 38.97/0.9777

%2 LMLT-Base(Ours) 652K 158G 38.10/0.9610 | 33.76/0.9201 | 32.28/0.9012 | 32.52/0.9316 | 39.24/0.9783

SwinIR-light [25] 910K 244G 38.14/0.9611 | 33.86/0.9206 | 32.31/0.9012 | 32.76/0.9340 | 39.12/0.9783

ESRT [31] 751K - 38.03/0.9600 | 33.75/0.9184 | 32.25/0.9001 | 32.58/0.9318 | 39.12/0.9774

ELAN [56] 621K 203G 38.17/0.9611 | 33.94/0.9207 | 32.30/0.9012 | 32.76/0.9340 | 39.11/0.9782

SwinIR-NG [4] 1,181K 274G 38.17/0.9612 | 33.94/0.9205 | 32.31/0.9013 | 32.78/0.9340 | 39.20/0.9781

SRformer-Light [64] 853K 236G 38.23/0.9613 | 33.94/0.9209 | 32.36/0.9019 | 32.91/0.9353 | 39.28/0.9785

OSFFNet [47] 516K 83G 38.11/0.9610 | 33.72/0.9190 | 32.29/0.9012 | 32.67/0.9331 | 39.09/0.9780

SMFANet+ [63] 480K 108G 38.19/0.9611 | 33.92/0.9207 | 32.32/0.9015 | 32.70/0.9331 | 39.46/0.9787

LMLT-Large(Ours) | 1,270K 306G 38.18/0.9612 | 33.96/0.9212 | 32.33/0.9017 | 32.75/0.9336 | 39.41/0.9786

IMDN [19] 703K 72G 34.36/0.9270 | 30.32/0.8417 | 29.09/0.8046 | 28.17/0.8519 | 33.61/0.9445

LatticeNet [33] 765K 76G 34.40/0.9272 | 30.32/0.8416 | 29.10/0.8049 | 28.19/0.8513 | 33.63/0.9442

RFDN-L [27] 633K 66G 34.47/0.9280 | 30.35/0.8421 | 29.11/0.8053 | 28.32/0.8547 | 33.78/0.9458
SRPN-Lite [61] 615K 63G 34.47/0.9280 | 30.38/0.8425 | 29.16/0.8061 | 28.22/0.8534 -

HNCT [11] 363K 38G 34.47/0.9275 | 30.44/0.8439 | 29.15/0.8067 | 28.28/0.8557 | 33.81/0.9459

FMEN [10] 757K 771G 34.45/0.9275 | 30.40/0.8435 | 29.17/0.8063 | 28.33/0.8562 | 33.86/0.9462

NGswin [4] 1,007K 67G 34.52/0.9282 | 30.53/0.8456 | 29.19/0.8078 | 28.52/0.8603 | 33.89/0.9470

<3 LMLT-Base(Ours) 660K 75G 34.58/0.9285 | 30.53/0.8458 | 29.21/0.8084 | 28.48/0.8581 | 34.18/0.9477

SwinIR-light [25] 918K 111G 34.62/0.9289 | 30.54/0.8463 | 29.20/0.8082 | 28.66/0.8624 | 33.98/0.9478

ESRT [31] 751K - 34.42/0.9268 | 30.43/0.8433 | 29.15/0.8063 | 28.46/0.8574 | 33.95/0.9455

ELAN [56] 629K 90G 34.61/0.9288 | 30.55/0.8463 | 29.21/0.8081 | 28.69/0.8624 | 34.00/0.9478

SwinIR-NG [4] 1,190K 114G 34.64/0.9293 | 30.58/0.8471 | 29.24/0.8090 | 28.75/0.8639 | 34.22/0.9488

SRformer-Light [64] 861K 105G 34.67/0.9296 | 30.57/0.8469 | 29.26/0.8099 | 28.81/0.8655 | 34.19/0.9489

OSFFNet [47] 524K 38G 34.58/0.9287 | 30.48/0.8450 | 29.21/0.8080 | 28.49/0.8595 | 34.00/0.9472

SMFANet+ [63] 487K 48G 34.66/0.9292 | 30.57/0.8461 | 29.25/0.8090 | 28.67/0.8611 | 34.45/0.9490

LMLT-Large(Ours) | 1,279K 144G 34.64/0.9293 | 30.60/0.8471 | 29.26/0.8097 | 28.72/0.8626 | 34.43/0.9491

IMDN [19] 715K 41G 32.21/0.8948 | 28.58/0.7811 | 27.56/0.7353 | 26.04/0.7838 | 30.45/0.9075

LatticeNet [33] 777K 44G 32.18/0.8943 | 28.61/0.7812 | 27.57/0.7355 | 26.14/0.7844 | 30.54/0.9075

RFDN-L [27] 643K 38G 32.28/0.8957 | 28.61/0.7818 | 27.58/0.7363 | 26.20/0.7883 | 30.61/0.9096
SRPN-Lite [61] 623K 36G 32.24/0.8958 | 28.69/0.7836 | 27.63/0.7373 | 26.16/0.7875 -

HNCT [11] 373K 22G 32.31/0.8957 | 28.71/0.7834 | 27.63/0.7381 | 26.20/0.7896 | 30.70/0.9112

FMEN [10] 769K 44G 32.24/0.8955 | 28.70/0.7839 | 27.63/0.7379 | 26.28/0.7908 | 30.70/0.9107

NGswin [4] 1,019K 36G 32.33/0.8963 | 28.78/0.7859 | 27.66/0.7396 | 26.45/0.7963 | 30.80/0.9128

LMLT-Base(Ours) 672K 41G 32.38/0.8971 | 28.79/0.7859 | 27.70/0.7403 | 26.44/0.7947 | 31.09/0.9139

w4 SwinlIR-light [25] 930K 64G 32.44/0.8976 | 28.77/0.7858 | 27.69/0.7406 | 26.47/0.7980 | 30.92/0.9151

ESRT [31] 751K - 32.19/0.8947 | 28.69/0.7833 | 27.69/0.7379 | 26.39/0.7962 | 30.75/0.9100

ELAN-light [56] 640K 54G 32.43/0.8975 | 28.78/0.7858 | 27.69/0.7406 | 26.54/0.7982 | 30.92/0.9150

HPINet-S [28] 463K 88G 32.47/0.8987 | 28.80/0.7872 | 27.69/0.7416 | 26.59/0.8016 | 30.92/0.9143

SwinIR-NG [4] 1,201K 63G 32.44/0.8980 | 28.83/0.7870 | 27.73/0.7418 | 26.61/0.8010 | 31.09/0.9161

SRformer-Light [64] 873K 63G 32.51/0.8988 | 28.82/0.7872 | 27.73/0.7422 | 26.67/0.8032 | 31.17/0.9165

SPIN [52] 555K 42G 32.48/0.8983 | 28.80/0.7862 | 27.70/0.7415 | 26.55/0.7998 | 30.98/0.9156

OSFFNet [47] 537K 22G 32.39/0.8976 | 28.75/0.7852 | 27.66/0.7393 | 26.36/0.7950 | 30.84/0.9125

HIT-SIR [58] 792K 54G 32.51/0.8991 | 28.84/0.7873 | 27.73/0.7424 | 26.71/0.8045 | 31.23/0.9176

SMFANet+ [63] 496K 28G 32.51/0.8985 | 28.87/0.7872 | 27.74/0.7412 | 26.56/0.7976 | 31.29/0.9163

LMLT-Large(Ours) | 1,295K 718G 32.48/0.8987 | 28.87/0.7879 | 27.75/0.7421 | 26.63/0.8001 | 31.32/0.9163

Table 21. The memory consumption and inference times are reported. All experiments were conducted on a single RTX 3090 GPU.
Methods marked with | are CNN-based, while unmarked methods are ViT-based.

Scale Method #GPU Mem [M] | #Avg Time [ms] Setl4
CARN-M [1] 2707.82 67.56 33.26/0.9141
CARN [1] 2716.80 73.55 33.52/0.9166
EDSR-baseline [26] 577.61 43.58 33.57/0.9175
LAPAR-A [24] 1812.60 43.50 33.62/0.9183
SAFMN [40] 259.56 33.61 33.54/0.9177
LMLT-Tiny(Ours) 324.01 57.37 33.59/0.9183
LMLT-Small(Ours) 324.5 84.22 33.65/0.9187
X2 HNCT [11] 1200.55 351.49 33.65/0.9182
NGswin [4] 1440.40 375.19 33.79/0.9199
SwinIR-light [25] 1278.64 944.11 33.86/0.9206
SwinIR-NG [4] 1,227.0 1126.53 33.94/0.9205
SRformer-Light [64] 1176.15 1006.48 33.94/0.9209
LMLT-Base(Ours) 567.75 81.64 33.76/0.9201
LMLT-Large(Ours) 717.31 123.07 33.96/0.9212
CARN-M [1] 1213.10 37.56 30.08/0.8367
CARN [1] 1222.08 41.08 30.29/0.8407
EDSR-baseline [26] 541.61 26.14 30.28/0.8417
LAPAR-A [24] 1813.84 35.95 30.34/0.8421
SAFMN [40] 114.70 17.38 30.33/0.8418
LMLT-Tiny(Ours) 151.96 31.06 30.37/0.8427
LMLT-Small(Ours) 152.5 44.22 30.47/0.8446
x3 HNCT [11] 545.64 117.20 30.44/0.8439
NGswin [4] 696.97 168.49 30.53/0.8456
SwinIR-light [25] 587.63 287.96 30.54/0.8463
SwinIR-NG [4] 564.7 393.68 30.58/0.8471
SRformer-Light [64] 529.28 312.37 30.57/0.8469
LMLT-Base(Ours) 266.31 41.43 30.53/0.8458
LMLT-Large(Ours) 338.36 58.68 30.60/0.8471
CARN-M [1] 680.84 21.39 28.42/0.7762
CARN [1] 689.83 20.50 28.60/0.7806
EDSR-baseline [26] 492.39 19.86 28.58/0.7813
LAPAR-A [24] 1811.47 32.24 28.61/0.7818
SAFMN [40] 65.26 11.28 28.60/0.7813
LMLT-Tiny(Ours) 81.44 23.54 28.64/0.7823
LMLT-Small(Ours) 81.92 31.01 28.74/0.7846
HNCT [11] 312.72 69.61 28.71/0.7834
NGswin [4] 372.94 118.13 28.78/0.7859
x4 SwinIR-light [25] 342.46 176.76 28.77/0.7858
ELAN:-light [56] 241.3 4293 28.78/0.7858
HPINet-S [28] 445.9 100.4 28.80/0.7872
SwinIR-NG [4] 329.6 239.64 28.83/0.7870
SRformer-Light [64] 320.95 180.42 28.82/0.7872
SPIN [52] 441.5 701.29 28.80/0.7862
SMFANet+ [63] T 247.5 18.12 28.87/0.7872
HIT-SIR [58] 1,339.0 139.84 28.84/0.7873
LMLT-Base(Ours) 144.00 26.15 28.79/0.7859
LMLT-Large(Ours) 185.68 34.07 28.87/0.7879

(b) Bicubic

img061(x4) from Urban100 (e) PAN (ﬂ ShuffleMixer

(b) Bicubic

img073(x4) from Urban100 (e) PAN (f) ShuffleMixer

Figure 17. Visual comparisons for x4 SR on Urban100 dataset. Compared with the results in (c) to (g), the Ours(LMLT-Tiny, (h)) restore

much more accurate and clear images.

(c) CARN

1))

(g) SAFMN

I (c) CARN

(2) SAFMN

(c) CARN

(g) SAFMN

(h) LMLT-Tiny

(h) LMLT-Tiny

(d) EDSR

(h) LMLT-Tiny

YumeiroCooking from Mangal09

7
A

e
(a) GT

(a) GT

(e) SwinIR-light

A vJSreS

(e) SwinIR- hght

(b) Bicubic

(f) SwinIR-NG

(b) Bicubic

’M

(f) SwinIR-NG

/

/

L LR 0

(f) SwinIR-NG

(c) IMDN

(g) LMLT-Base

(c) IMDN

(g) LMLT-Base

e —
—
N

.f (s f”’f
(c) IMDN

//

(g) LMLT-Base

r’"’i

J /; //’

(d) NGswin

(h) LMLT-Large

(d) NGswin

(h) LMLT-Large

;*\llf‘ll ('“':] | /

1

|
y

(d) NGswm

]IJ

L | \
LACAAINY
(h) LMLT-Large

WY

TENEN

(e) SwinIR-light

S o

|

| ALY
AL FLRALAN L

Figure 18. Visual comparisons for x4 SR on Mangal09 dataset. Compared with the results in (c) to (f), the Ours(LMLT-Base and
LMLT-Large, (g) to (h)) restore much more accurate and clear images.

	CCM and HQ Image Reconstruction
	Realworld Scenario
	Low-to-high connection and Pooling
	LMLT with Multi-Head Self Attention
	Analysis of FLOPs
	Impact of Blocks, Channels, and Heads
	LMLT with the Other Components
	Comparisons with Other Methods

