
Optuna vs Code Llama:
Are LLMs a New Paradigm for Hyperparameter Tuning?

Supplementary Material

6. RMSE Comparison

6.1. Models from train dataset
Computer vision models. Table 2 presents a detailed com-
parison of RMSE values for each model and epoch under
three conditions: baseline Optuna, Code Llama after the
first fine-tuning cycle (FT Cycle 1), and Code Llama af-
ter the second fine-tuning cycle (FT Cycle 2). The final two
columns (Difference 1 and Difference 2) show how much
RMSE changes relative to the baseline, with positive values
indicating that Code Llama yields a lower RMSE than Op-
tuna (i.e., an improvement), and negative values implying
the baseline outperforms Code Llama.

A number of architectures exhibit immediate gains in
the first fine-tuning cycle. For example, DenseNet, Mo-
bileNetV2, RegNet, ShuffleNet, SqueezeNet, SwinTrans-
former, and VGG consistently show positive differences
across their epochs, indicating a clear reduction in RMSE
relative to Optuna. ConvNeXt also demonstrates improve-
ments in both epochs, confirming Code Llama’s ability
to quickly adapt to a variety of high-performance models.
AlexNet shows a notable positive difference in epoch 2, re-
flecting early and meaningful gains in hyperparameter rec-
ommendations. In contrast, some models — such as Effi-
cientNet and GoogLeNet (epoch 1) — register negative dif-
ferences, implying that for certain configurations, Optuna
remains more effective in finding lower-RMSE settings.

The second fine-tuning cycle further improves RMSE in
several models. AlexNet continues to perform well, with
both epochs showing additional gains over the first cycle.
Similarly, GoogLeNet and SqueezeNet exhibit further im-
provements across both epochs, highlighting the benefits
of iterative tuning. In models such as ConvNeXt and Mo-
bileNetV3 (epoch 2), the second cycle also yields enhanced
performance compared to the first, mitigating earlier short-
comings.

However, not all models benefit equally from iterative
LLM-based fine-tuning. For instance, MNASNet shows a
drop in performance in the second epoch, indicating a po-
tential limitation in its adaptability to the fine-tuning pro-
cess. Similarly, ResNet and RegNet show a decline in
RMSE improvements in the second cycle, pointing to possi-
ble instability in the learned hyperparameter patterns. These
observations highlight the importance of carefully assess-
ing trade-offs and potential limitations when applying fine-
tuning to specific model types.

When comparing the fine-tuning results to the Optuna

baseline, it becomes clear that fine-tuning effectively re-
duces RMSE for the majority of models and epochs — par-
ticularly for computationally demanding architectures, such
as ConvNeXt, SwinTransformer, and VGG. These results
affirm that fine-tuning is a robust optimization strategy ca-
pable of surpassing or complementing traditional hyperpa-
rameter search methods like Optuna for many computer vi-
sion tasks. At the same time, the variability across models
and epochs underscores the need for architecture-specific
tuning strategies to maximize the benefits of fine-tuning.

Text generation models. The analysis of RMSE differ-
ences for the first fine-tuning cycle, as shown in Table 3,
provides detailed insight into the impact of fine-tuning
on text generation models. For the RNN model, fine-
tuning results in a small but consistent improvement in
RMSE—approximately 0.0185 lower than the Optuna base-
line at epoch 2 — indicating stable and beneficial adjust-
ments from the LLM.

The LSTM model also shows improvement, reducing
RMSE by about 0.0127 at epoch 1 compared to Optuna,
although a minor performance drop is observed at epoch 2.
This variation suggests that LSTM responds positively to
fine-tuning overall, though tuning depth may affect consis-
tency.

In contrast, the Llama model shows a slight decline
in performance across both epochs, with RMSE values
marginally worse than Optuna. This may point to the chal-
lenges of adapting large, complex architectures like Llama
using the current tuning strategy.

6.2. Models from test dataset
The analysis of the RMSE differences between Optuna
and the second fine-tuning cycle for models from the test
dataset, as shown in Table 4, evaluates the impact of fine-
tuning on previously unseen computer vision models.

Among the evaluated models, MaxVit and VisionTrans-
former show substantial improvements after fine-tuning.
MaxVit achieves positive RMSE differences of 0.1919 and
0.2941 for epochs 1 and 2, respectively, while VisionTrans-
former improves by 0.1884 and 0.2406. These results indi-
cate that the fine-tuning process significantly enhances the
accuracy of these architectures, even though they were not
part of the original training set. Such outcomes suggest that
Code Llama generalizes well to new models, successfully
adapting its hyperparameter recommendations to unfamil-
iar architectures.



Model Epochs RMSE Optuna RMSE
FT Cycle 1

Difference
Cycle 1

RMSE
FT Cycle 2

Difference
Cycle 2

AlexNet 1 0.8258 0.8421 -0.0163 0.5779 0.2479
AlexNet 2 0.8236 0.6912 0.1324 0.4221 0.4015
ConvNeXt 1 0.7924 0.7460 0.0464 0.7493 0.0431
ConvNeXt 2 0.7426 0.6861 0.0565 0.6863 0.0563
DenseNet 1 0.4930 0.4526 0.0404 0.5899 -0.0969
DenseNet 2 0.3525 0.3325 0.0201 0.4307 -0.0782
EfficientNet 1 0.4835 0.6250 -0.1415 0.6498 -0.1663
EfficientNet 2 0.3370 0.5486 -0.2116 0.5563 -0.2193
GoogLeNet 1 0.5158 0.5865 -0.0707 0.5093 0.0065
GoogLeNet 2 0.3956 0.3857 0.0099 0.3044 0.0912
MNASNet 1 0.4613 0.5309 -0.0696 0.5132 -0.0519
MNASNet 2 0.3682 0.4308 -0.0626 0.4620 -0.0938
MobileNetV2 1 0.4654 0.4155 0.0499 0.4316 0.0338
MobileNetV2 2 0.3617 0.2854 0.0763 0.4279 -0.0662
MobileNetV3 1 0.4852 0.7328 -0.2476 0.8186 -0.3334
MobileNetV3 2 0.3368 0.6797 -0.3429 0.6567 -0.3199
RegNet 1 0.5677 0.5392 0.0285 0.6254 -0.0577
RegNet 2 0.4368 0.3865 0.0503 0.5484 -0.1116
ResNet 1 0.4692 0.5153 -0.0461 0.5847 -0.1155
ResNet 2 0.3371 0.4325 -0.0954 0.5601 -0.2230
ShuffleNet 1 0.4832 0.4282 0.0550 0.5222 -0.0390
ShuffleNet 2 0.3471 0.3236 0.0235 0.4638 -0.1167
SqueezeNet 1 0.8597 0.7200 0.1397 0.6888 0.1709
SqueezeNet 2 0.8532 0.6676 0.1856 0.5829 0.2703
SwinTransformer 1 0.7500 0.6527 0.0973 0.6746 0.0754
SwinTransformer 2 0.6726 0.5676 0.1050 0.6237 0.0489
VGG 1 0.8192 0.5898 0.2295 0.5364 0.2829
VGG 2 0.7961 0.3741 0.4220 0.3743 0.4218

Table 2. Comparison of RMSE differences for fine-tuning cycles 1 and 2 for each computer vision model and epoch from the training
dataset. The table highlights the RMSE values obtained using Optuna as a baseline (RMSE Optuna) and compares them with the RMSE
values achieved during the first and second fine-tuning cycles of Code Llama (RMSE FT Cycle 1 and RMSE FT 2, respectively). The
Difference Cycle 1 and Difference Cycle 2 columns indicate the changes in RMSE relative to Optuna for the first and second fine-tuning
cycles, respectively. Positive values in the difference columns represent improvements, while negative values indicate an increase in RMSE.

In contrast, InceptionV3 demonstrates a notable de-
cline in performance following the second fine-tuning cycle.
RMSE values increase by –0.2363 and -0.3364 for epochs 1
and 2, respectively, compared to the Optuna baseline. While
these results indicate that the current fine-tuning setup may
not fully optimize InceptionV3, they also point to valuable
opportunities for future enhancement. With refined prompt
design, adjusted parameter initialization, or extended fine-
tuning schedules, there is strong potential to better align
the model’s architecture with the optimization process and
achieve improved outcomes.

7. Best Accuracy Comparison

7.1. Models from train dataset

Table 5 presents a detailed result of the best accuracy
achieved by Optuna and fine-tuned Code Llama across two
fine-tuning cycles for a diverse range of computer vision
models and epochs.

The fine-tuning process demonstrates its ability to en-
hance accuracy for many models, with notable improve-
ments observed during the second cycle. For instance,
MNASNet and MobileNetV2 achieve significant gains in
the first epoch of the second fine-tuning cycle, underscor-
ing the effectiveness of fine-tuning in refining hyperparame-
ters to better align with the models’ architectures. Similarly,
RegNet and SqueezeNet show consistent accuracy improve-



Model Epochs RMSE
Optuna

RMSE
FT 1 Difference

RNN 1 0.7959 0.7880 0.0079
RNN 2 0.7888 0.7703 0.0185
LSTM 1 0.7691 0.7564 0.0127
LSTM 2 0.7468 0.7478 -0.0010
Llama 1 0.9988 0.9990 -0.0002
Llama 2 0.9987 0.9991 -0.0004

Table 3. Comparison of RMSE values for text generation mod-
els from the training dataset during fine-tuning cycle 1. The table
highlights the differences in RMSE between the baseline results
(Optuna) and the fine-tuned results (FT 1). Positive differences in-
dicate an improvement in RMSE after fine-tuning, while negative
differences suggest a potential decline in performance.

ments across cycles, particularly excelling in the second cy-
cle, showcasing the iterative benefits of Code Llama’s fine-
tuning framework.

The results also highlight the stability achieved through
fine-tuning, as models such as DenseNet and ResNet
demonstrate consistent accuracy across multiple epochs
and cycles. This stability reflects the robustness of Code
Llama’s fine-tuning methodology, positioning it as a reli-
able tool for hyperparameter optimization. In many cases,
the fine-tuning process achieves accuracy results compara-
ble to or exceeding those of Optuna, reinforcing its utility
as a competitive alternative.

While certain models, such as MobileNetV3 and Swin-
Transformer, exhibit moderate or variable improvements
across cycles, these findings underscore the importance of
tailoring fine-tuning strategies to the specific requirements
of each architecture. For models that are well-optimized
in the initial cycle, additional fine-tuning may yield dimin-
ishing returns, suggesting the need for a balanced approach
that considers computational costs alongside expected per-
formance gains. This variability highlights the importance
of model-specific strategies in leveraging the full potential
of fine-tuning.

7.2. Models from test dataset
The results presented in Table 6 provide a detailed evalua-
tion of the accuracy differences between the baseline Op-
tuna approach and the second fine-tuning cycle (FT Cycle
2) for models in the test dataset.

The fine-tuning process introduces significant changes
in model accuracy, with varying results depending on the
architecture. For InceptionV3, fine-tuning in FT Cycle 2
results in a notable reduction in accuracy compared to Op-
tuna, with differences of -0.3001 for one epoch and -0.2423
for two epochs. These findings suggest that while fine-
tuning significantly adjusts the model’s parameters, it may
not always align with the specific optimization needs of

complex architectures like InceptionV3. This highlights the
potential necessity of more customized hyperparameter tun-
ing strategies for such models to better leverage fine-tuning.

For VisionTransformer, the differences between Optuna
and FT Cycle 2 are less pronounced, with values of -0.0523
for one epoch and -0.0427 for two epochs. This stability in
performance suggests that the second cycle of fine-tuning
effectively preserves the model’s baseline accuracy while
introducing modest refinements. The relatively small vari-
ations indicate that VisionTransformer may require fewer
fine-tuning adjustments to reach or maintain optimal perfor-
mance, reflecting its robustness to the fine-tuning process.

MaxVit demonstrates the most consistent and positive
results among the evaluated models. The difference is
minimal for one epoch (-0.0018), and for two epochs, FT
Cycle 2 outperforms Optuna with a positive difference of
0.0249. This improvement underscores MaxVit’s adaptabil-
ity to fine-tuning, highlighting its potential for further opti-
mization.

8. Prediction Dynamics Across Epochs
The results of one-shot predictions across 13 computer vi-
sion models, which are not covered in Section 4.4 of this
paper, for different numbers of epochs (1, 2, 5, 10, 15, and
20), shown in Figures 6-7, demonstrate a clear trend of in-
creasing accuracy with additional training epochs for these
models. This improvement reflects the expected behavior,
as extended training allows models to refine their predic-
tions and optimize performance. For many architectures,
including ConvNeXt, ShuffleNet, and ResNet, accuracy sta-
bilizes after 10 epochs, indicating that these models reach
their optimal performance within this training range.

Interestingly, models such as GoogLeNet, ShuffleNet,
and DenseNet exhibit high accuracy even at early epochs,
showcasing their ability to converge quickly and effectively.
These results highlight their potential for efficient training
in scenarios where computational resources or time are lim-
ited. Additionally, one-shot predictions for several mod-
els, such as MobileNetV3 and EfficientNet, reveal that their
learning dynamics can vary across epochs, reflecting the
unique characteristics of their architectures and the data.

However, not all models exhibit consistent improve-
ments in accuracy. For instance, MobileNetV3 shows a
significant drop in performance after 15 epochs before re-
covering at 20 epochs, suggesting potential overfitting or
instability during certain training phases. Similarly, Incep-
tionV3, which originates from the test dataset and was not
included in the fine-tuning process of Code Llama, strug-
gles to maintain accuracy gains as training progresses, with
a notable decline in performance by the 20th epoch. These
results indicate that certain architectures, particularly those
not exposed to fine-tuning, may face challenges in sustain-
ing accuracy improvements across extended training, poten-



Model Epochs RMSE Optuna RMSE FT 2 Difference
InceptionV3 1 0.5906 0.8269 -0.2363
InceptionV3 2 0.4323 0.7687 -0.3364
MaxVit 1 0.8349 0.6430 0.1919
MaxVit 2 0.8297 0.5356 0.2941
VisionTransformer 1 0.7768 0.5884 0.1884
VisionTransformer 2 0.7659 0.5253 0.2406

Table 4. Comparison of RMSE differences between Optuna and Fine-tuning Cycle 2 for models from the test dataset. Positive differences
indicate an improvement in RMSE after fine-tuning, while negative differences suggest a potential decline in performance.

Model Epochs Best Accuracy
Optuna

Best Accuracy
FT Cycle 1

Difference
Cycle 1

Best Accuracy
FT Cycle 2

Difference
Cycle 2

MNASNet 1 0.6449 0.6390 -0.0059 0.7184 0.0735
MNASNet 2 0.7480 0.7476 -0.0004 0.7420 -0.0060
MobileNetV2 1 0.6452 0.6424 -0.0028 0.7365 0.0913
MobileNetV2 2 0.7493 0.7457 -0.0036 0.7446 -0.0047
AlexNet 1 0.5364 0.5392 0.0028 0.6282 0.0918
AlexNet 2 0.6640 0.6623 -0.0017 0.6680 0.0040
MobileNetV3 1 0.6322 0.6228 -0.0094 0.6174 -0.0148
MobileNetV3 2 0.7488 0.7314 -0.0174 0.7149 -0.0339
ConvNeXt 1 0.3454 0.3393 -0.0061 0.3020 -0.0434
ConvNeXt 2 0.4085 0.3962 -0.0123 0.4119 0.0034
VGG 1 0.5829 0.5859 0.0030 0.5804 -0.0025
VGG 2 0.7031 0.6828 -0.0203 0.6973 -0.0058
SwinTransformer 1 0.4548 0.4365 -0.0183 0.4345 -0.0203
SwinTransformer 2 0.5311 0.5180 -0.0131 0.5029 -0.0282
DenseNet 1 0.6316 0.6177 -0.0139 0.6216 -0.0100
DenseNet 2 0.7438 0.7420 -0.0018 0.7461 0.0023
SqueezeNet 1 0.4017 0.3848 -0.0169 0.4006 -0.0011
SqueezeNet 2 0.4742 0.4662 -0.0080 0.4820 0.0078
EfficientNet 1 0.6170 0.6198 0.0028 0.5935 -0.0235
EfficientNet 2 0.7374 0.7387 0.0013 0.7037 -0.0337
GoogLeNet 1 0.6405 0.6746 0.0341 0.6538 0.0133
GoogLeNet 2 0.7494 0.7402 -0.0092 0.7630 0.0136
ShuffleNet 1 0.6346 0.6369 0.0023 0.6321 -0.0025
ShuffleNet 2 0.7185 0.7246 0.0061 0.7177 -0.0008
RegNet 1 0.5289 0.5331 0.0042 0.5466 0.0177
RegNet 2 0.6498 0.6523 0.0025 0.6629 0.0131
ResNet 1 0.6255 0.6241 -0.0014 0.6282 0.0027
ResNet 2 0.7378 0.7399 0.0021 0.7399 0.0021

Table 5. Comparison of the best accuracy differences for fine-tuning cycles 1 and 2 across various computer vision models and epochs,
alongside the best accuracy achieved using Optuna. Each row represents a model evaluated for 1 or 2 epochs, comparing the performance
of fine-tuned models (FT Cycle 1 and FT Cycle 2) with the baseline Optuna results. Positive values in the Difference columns (Difference
Cycle 1 and Difference Cycle 2) indicate an improvement in accuracy after fine-tuning, while negative values suggest a decrease in
performance.

tially requiring more tailored hyperparameter adjustments
or regularization strategies.

Across all models, it is evident that fine-tuned hyper-

parameters provided by Code Llama contribute to strong
prediction performance. Notably, GoogLeNet, ShuffleNet,
and ResNet display consistently high stability and accuracy



Model Epochs Best Accuracy
Optuna

Best Accuracy
FT Cycle 2 Difference

InceptionV3 1 0.5137 0.2136 -0.3001
InceptionV3 2 0.6818 0.4395 -0.2423
VisionTransformer 1 0.4715 0.4192 -0.0523
VisionTransformer 2 0.533 0.4903 -0.0427
MaxVit 1 0.4323 0.4305 -0.0018
MaxVit 2 0.5096 0.5345 0.0249

Table 6. Comparison of the best accuracy between Optuna and Fine-tuned (FT Cycle 2) models for test dataset architectures. Each row
represents a specific model evaluated after 1 or 2 epochs, comparing the best accuracy achieved using Optuna with the accuracy obtained
after the second cycle of fine-tuning (FT Cycle 2). The Difference column highlights the variation in performance, where positive values
indicate an improvement in accuracy after fine-tuning, and negative values suggest a decline.

across the evaluated epochs, emphasizing their robustness
in various training settings. Even for architectures that show
more variability, such as MobileNetV3 and MNASNet, the
overall trend demonstrates the ability of Code Llama to en-
hance model performance efficiently.

These findings demonstrate the value of one-shot pre-
dictions and emphasize the need to account for the spe-
cific characteristics of each model when designing training
strategies. By using fine-tuned hyperparameters and adjust-
ing training durations to suit the unique requirements of
each architecture, it becomes possible to achieve high ac-
curacy while efficiently utilizing computational resources.

9. Training Trends and Performance Compar-
ison

The analysis of the accuracy performance of 14 computer
vision models from the train dataset, each trained on 1 and
2 epochs (resulting in 28 graphs), excludes six graphs al-
ready covered in Section 4.5 of this paper. The remaining
22 graphs, which are not presented in the main text, are il-
lustrated in Figures 8-10, showcasing key performance dy-
namics across models trained with Optuna over 100 trials,
fine-tuned Code Llama, and one-shot predictions.

Fine-tuned Code Llama consistently delivers superior
accuracy compared to Optuna’s results, as reflected by the
blue line surpassing the scattered green points for almost all
models. This highlights the fine-tuned model’s capability
to optimize hyperparameters effectively. Pronounced im-
provements are observed in models like ResNet, ShuffleNet,
and DenseNet, where the fine-tuning achieves significantly
higher accuracy than Optuna’s best results.

Fine-tuned Code Llama also offers enhanced stabil-
ity. Models like ConvNeXt, EfficientNet, and SwinTrans-
former, which show considerable variability in Optuna’s ac-
curacy values, achieve more consistent performance with
Code Llama. This consistency is particularly valuable in
applications requiring dependable predictions across differ-
ent conditions.

Increasing the number of epochs from one to two leads
to expected accuracy improvements across all models. This
trend is especially evident in models like EfficientNet and
MobileNetV3, where additional training allows the param-
eters to refine further, resulting in higher accuracy.

One-shot predictions (purple line) demonstrate strong
accuracy potential with minimal computational effort. In
EfficientNet and MobileNetV3, the one-shot accuracy is
nearly on par with the best results achieved through fine-
tuning, emphasizing its viability as a quick and efficient
method for generating robust predictions.

Certain models, such as SwinTransformer and
SqueezeNet, show marked benefits from fine-tuning,
overcoming the variability in their performance observed
with Optuna. Code Llama fine-tuning reduces perfor-
mance fluctuations and reliably enhances accuracy, even
for architectures that are initially more challenging to
optimize.



Figure 6. Part 1: Accuracy trends observed in one-shot predictions for 13 computer vision models over varying epochs (1, 2, 5, 10, 15, and
20). Each plot represents the accuracy performance of a specific model using the one-shot prediction approach. All models in this part are
derived from the train dataset, demonstrating the trends within the training data context.



Figure 7. Part 2: Accuracy trends observed in one-shot predictions for 13 computer vision models over varying epochs (1, 2, 5, 10, 15, and
20). Each plot represents the accuracy performance of a specific model using the one-shot prediction approach. All models in this part are
derived from the train dataset, except for InceptionV3, which is taken from the test dataset and was not involved in the fine-tuning of Code
Llama.



Figure 8. Part 1: Comparative analysis of accuracy performance for computer vision models evaluated over 100 trials using three distinct
approaches: Optuna (green lines), fine-tuning with hyperparameters derived from Code Llama in Cycle 1 (blue lines), and one-shot
predictions based on Code Llama (purple dashed lines). Each subplot represents a specific model and epoch configuration, illustrating
variations in accuracy metrics and highlighting comparative trends.



Figure 9. Part 2: Comparative analysis of the accuracy performance for the second set of computer vision models evaluated over 100 trials
using three distinct approaches: Optuna (green lines), fine-tuning with hyperparameters derived from Code Llama in Cycle 1 (blue lines),
and one-shot predictions based on Code Llama (purple dashed lines). Each subplot represents a specific model and epoch configuration,
illustrating the variations in accuracy metrics and the relative performance across methodologies.



Figure 10. Part 3: Final analysis of accuracy dynamics for remaining computer vision models evaluated across 100 trials using three
different approaches: Optuna (green lines), fine-tuning with hyperparameters obtained from Code Llama in Cycle 1 (blue lines), and
one-shot predictions based on Code Llama (purple dashed lines). Each subplot corresponds to a specific model and epoch configuration,
highlighting the variations in accuracy metrics.


