DMS: Diffusion-Based Multi-Baseline Stereo Generation for Improving
Self-Supervised Depth Estimation

Supplementary Material

In this supplementary material, we provide additional
details and results to complement the main paper. Sec-
tion 5.1 outlines the experimental setup, including dataset
configurations and hyperparameters. Section 5.2 provides
more experimental results both in the image quality of the
DMS and subsequent training of the self-supervised stereo-
matching networks. Finally, in Section 5.3 we illustrate
more multi-baseline stereo image results across different
datasets using the proposed DMS.

5.1. Additional Implementation Details.

5.1.1. Additional Implementation Details of Diffusion-
Based Multi-Baseline Stereo Generator (DMS).

In this section, we detail the training process of the
Diffusion-based Multi-baseline Stereo Generator (DMS)
across various datasets to ensure reproducibility. We imple-
ment the DMS using Pytorch with the diffusers [67] as the
code base and utilizing the Stable DiffusionV2 [55] as the
initial parameter weight. We further report the computation
resources that are needed in the inference stage in Table 8.
SceneFlow. For training on the SceneFlow dataset, we em-
ploy the widely-used FlyingThings3D test set [36, 45, 46,
71, 80, 81, 91] and a training subset of 19,984 images
from the FlyingThings3D set, filtering out scenes where
occlusion exceeds 80%. To conform to the input size re-
quirements of the Stable Diffusion Model, which necessi-
tates divisibility by 8, the original images are resized from
540 x 960 to 576 x 960 using top padding. We optimize
memory usage by employing a batch size of 1 with a gra-
dient accumulation equivalent to a batch size of 16. Opti-
mization is performed using the Adam optimizer with a con-
stant learning rate of 2e — 5 under half-precision (float16)
settings. The training spans 20 epochs, with the resultant
model used for both evaluation and generating new views.
Inference utilizes a DDPM scheduler with a step of 50 de-
noising process for view synthesis. The efficacy of the gen-
erated views is quantitatively assessed in Table 2.

KITTI 2015 & 2012. For the limited view of the
KITTI 2015 and 2012 datasets, we fine-tune the Diffusion
model on the KITTI raw dataset [20] which compromises
over 43,482 stereo images, where we split the 400 images
and 394 images containing in KITTI 2015 and KITTI 2012
dataset and use the left views for training. We pad the origi-
nal resolution of 375 x 1242 and 374 x 1238 into 284 x 1248
to meet the input size requirements of the Stable Diffusion
Model. We use the same optimizer and learning rate that is
adopted in training the ScenceFlow model and training for

10 epochs to get the final model. Inference utilizes a DDPM
scheduler with a step of 32 denoising process for view syn-
thesis. For further used in unsupervised stereo matching, we
fine-tune the KITTI-raw pre-trained model on KITTI 2012
and KITTI 2015 datasets, respectively. Note that we both
generate views on the KITTI raw dataset for improvement
in the performance of monocular depth estimators as out-
lined in Section 4.4.

MPI-Sintel Dataset. For the MPI-Sintel dataset, we parti-
tion the dataset into a training set and an evaluation set using
a9 : 1 ratio. The training utilizes the “final pass” images,
and we adjust the original resolution from 436 x 1024 to
4401024 to accommodate the model’s input requirements.
The optimization parameters, including the optimizer and
learning rate, are consistent with those used for the Scene-
Flow model. The training duration is set to 50 epochs to
finalize the model. During inference, view synthesis is per-
formed using a DDPM scheduler with a 50-step denoising
process.

CARLA Dataset. Existing stereo datasets typically contain
only left and right views, making it challenging to evalu-
ate the quality of extended multi-baseline images. To ad-
dress this, we utilize the CARLA simulator [15] to generate
a synthetic multi-baseline stereo dataset with 1000 image
pairs (left, center, right, left-left, right-right) under 15 di-
verse weather conditions (e.g., ClearNoon, WetNight). The
dataset is split into training and testing sets with a 9:1 ratio.
For fine-tuning DMS, we adopt the same training protocol
as the KITTI dataset, training for 50 epochs with KITTI
pre-trained weights as initialization. During inference, we
also utilize a DDPM scheduler with a step of 32 denoising
processes for view synthesis. The performance of the gen-
erated multi-baseline images can be outlined in Table 10.

5.1.2. Additional Implementation Details of Training the
Self-Supervised Depth Estimators.

In this section, we provide a detailed description of the
implementation details used for training self-supervised
depth networks with multi-baseline images generated by
DMS. This includes ablation studies settings and exper-
iments across different datasets on both self-supervised
stereo matching and monocular depth estimation.

Implementation Details of the Ablation Studies. We
leveraged PASMNet [71] as our baseline to evaluate the ef-
fectiveness of our multi-baseline stereo images in improv-
ing disparity estimation in self-supervised stereo matching
settings. We conduct ablation studies on two NVIDIA 3090
GPUs with PyTorch. For the SceneFlow dataset, training



was performed on the FlyThings3D subset (as detailed in
Section 5.1.1) and evaluated on the SceneFlow official test
set. The model was trained with a batch size of 8, a dis-
parity range of 192, and 100,000 steps. The initial learning
rate was set to 1 x 10~ and reduced using cosine decay.
The checkpoint with the lowest End-Point Error (EPE) on
the validation set was selected for final evaluation, the re-
sults of which are presented in Table 5. Fine-tuning on the
KITTI dataset followed the protocol in [95], using 160 im-
age pairs for training and 40 for validation, with weights
pre-trained on SceneFlow. The training procedure was con-
sistent with SceneFlow, incorporating data augmentation
techniques from [81], such as random cropping and adjust-
ments to brightness, saturation, and contrast. For the Sintel-
MPI dataset, the model was trained from scratch using the
same parameters as SceneFlow to ensure methodological
consistency. This approach validates the robustness of our
method across diverse datasets.

Implementation Details of Training the Self-Supervised
Stereo Matching Networks. Besides the SceneFlow
dataset, we further test the performance of the DMS inte-
grated into existing stereo-matching networks to validate
the ’plug-in-and-play’ ability on the KITTI dataset. For the
KITTI 2015 benchmark, we deployed the model which was
initially pre-trained on the SceneFlow dataset and subse-
quently fine-tuned on a combined dataset of KITTI 2012
and 2015, encompassing 394 images. We selected the
model with the optimal D1 value for submission to the of-
ficial KITTI 2015 benchmark to obtain our final results.
Considering the limited availability of open-source self-
supervised stereo-matching methods, we extended the ap-
plicability of our proposed DMS by adapting supervised
networks like RaftStereo [39] and IGEV Stereo [80] to self-
supervised settings using photometric warping loss, demon-
strating the method’s versatility and broad potential for
adaptation.

Implementation Details of Training the Self-Supervised
Monocular Depth Estimators. All models were trained
on the full KITTI Eigen training set (45,200 stereo image
pairs) and validated on a small set (4,424 images). We se-
lected models with the lowest validation error and tested
them on the KITTI Eigen test set (697 images). For SD-
FANet [97], marked as * in the main paper, we made small
changes to its original loss computation to incorporate our
proposed DMS properly during training. SDFANet predicts
a disparity cost volume with shape B x C'x D* x H x W,
where D* is the number of disparity candidates. Dispar-
ity is estimated using Soft Argmin on the third dimension.
The loss is computed by warping the left image with all dis-
parity candidates, warping each sub-cost of one disparity
candidate with shape B x C' x H x W using the corre-
sponding disparity, and calculating a weighted sum to syn-
thesize the right image. The loss is then computed using

the synthesized right image and the input right image. To
match other methods and incorporate the proposed DMS,
we used the same warping loss as the other three compared
methods. We warped the right image to the left using the
estimated disparity from SDFANet and computed the loss
with the input left image. Similarly, by incorporating DMS,
the disparity is used to warp the left-left image, right-right
image, and center image to compute additional losses.

5.1.3. Evaluation Details of the Self-Supervised Depth
Estimations.

Occlusion and Out-of-Frame Mask Generation for
Evaluation. The MPI-Sintel dataset provides the ground
truth occlusion and the out-of-frame mask for evaluation,
but SceneFlow and KITTI did not provide such specific
masks for evaluation. To address this issue, we use the same
strategy used in [46] by using the left-right consistency to
generate the occlusion mask and the ground disparity to cal-
culate the out-of-frame mask. The process can be described
as follows:

1 if D >1
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0 otherwise,
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where M,.. and M,y represents the generated occlusion
masks and the out-of-frame mask, respectively. And the
d; and d,. are the ground truth disparity map. For the reason
that the KITTTI dataset only provides the ground-truth sparse
disparity maps for the left images, which makes it difficult
to directly apply the left-right consistency check to generate
the occlusion masks, following the strategy utilized in [46],
we use a pre-trained model [11] to generate the pseudo-left
and pseudo-left disparities, the left-right consistency check
between the pseudo disparity maps for the left view and the
right view is applied to generate a pseudo occlusion mask
for performance evaluation.

Evaluation Metrics for Self-Supervised Stereo Match-
ing. To showcase the effectiveness of our proposed DMS,
especially on ill-conditioned regions, we report the End-
Point-Error (EPE) and the > 3px outliers(percentage of the
error bigger than 3 pixels) on overall regions, the occluded
regions, and out-of-frame regions, respectively. The defini-
tion of the EPE is as follows:

EPE(d,d) = |d —d|. (11)

For the performance on the KITTI 2015 validation set, we
report the > 3px which describes the outliner ratio of the



Table 8. Computation resources for utilizing the DMS to generate
multi-baseline stereo images across different datasets with differ-
ent resolutions. Note the inference time and GPU Memory are
tested on a single NVIDIA A6000 GPU.

Dataset Denoising Steps Inference Time GPU Memory
Per Image
SceneFlow [47] 50 534s 761G
KITTI [19] 32 4.12s 6.82G
MPI-Sintel [6] 50 6.04 s 6.72G
CARLA [15] 32 4.30s 7.05G

predicted disparity. where can be described as follows:

NAe>3pw

. Ae=|d—d|, 12
Ntotal | | ( )

> 3pxr =
where N means the number of pixels.
For the KITTI 2015 testing benchmark, we follow the offi-
cial evaluation protocol to report the D1-value as shown in
Table 6.
Evaluation Metrics for Self-Supervised Monocular
Depth Estimation. We evaluate each method using sev-
eral metrics from prior work [16], which uses the predicted
depth d* and GT depth d* in meters to compute the errors:
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Tl £
d* dx
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where T" denotes all the test pixels in all test image samples,
and Al, A2, A3 denote the thr be set as 1.25, 1.252, and
1.253 respectively.

5.2. Addition Experimental Results.

In addition to the experimental results presented in the
main paper, this section provides supplementary evalua-
tions to thoroughly demonstrate the validity of our pro-
posed Diffusion-Based Multi-Baseline Stereo Generation
(DMS) and its impact on improving the performance of self-
supervised depth estimation methods.

5.2.1. Diffusion-Based Multi-Baseline Stereo Generation

More Ablations on Rescale-Factor X. We select a rescale-
factor of 2.0 in the paper as the center view provides the

Table 9. Additional ablations on the KITTI2015 validation set with
varying rescale factors. *Generate left-left and right-right images
with a 0.5 scale.

Factor Views EPE| D1}
X Used |All Occ Oof |[All Occ Oof

- Lr 1.48 4.38 9.26|7.7 39.6 64.2
0.5 + Il *+rr*|1.37 3.97 7.90(6.8 36.1 48.0
1.0 + [+rr |1.34 3.83 7.82|6.5 344 42.8
1.5 +%l%r 1.40 422 8.17|7.1 38.1 51.7
2.0 +c 1.36 4.14 7.64|6.7 37.0 49.6
3.0 +%l%r 1.41 4.16 8.33|7.1 36.7 52.9

All Above + all 1.22 3.44 7.20|5.6 31.7 39.3

most effective representation of the intermediate view be-
tween left and right images. To further justify this choice,
we extend the ablation studies in Table 9 with additional
candidates (0.5, 1.5, 3.0), as shown in Table.1 below. These
factors produce denser intermediate views, such as % I —
r and % I — r, improving performance over the baseline.
However, the most effective configurations remain the de-
fault left-left (+1I), right-right (+rr), and center view (+c),
highlighted in gray, which cover most out-of-view and oc-
cluded regions. Moreover, applying all new views together
further improves overall EPE to 1.22, closely matching the
1.24 achieved with only +I/[+rr+c. Considering both per-
formance and efficiency, we chose a rescale-factor of 2.0
for intermediate view generation in the paper.
Computation Resources Analysis. We report the compu-
tation resources for utilizing the DMS to generate multi-
baseline stereo images using an NVIDIA A6000 GPU and
Intel 19-13900KF CPU. The image resolutions for inference
are 540 x 960, 384 x 1280, 436 x 1024, and 540 x 960 for
SceneFlow, KITTI, MPI-Sintel, and CARLA datasets, re-
spectively. This demonstrates that our DMS can efficiently
perform inference on a single GPU with less than 8GB of
memory, highlighting its practical applicability.
Multi-Baseline Stereo Image Evaluation on CARLA.
Stereo datasets typically provide only left and right views,
limiting the evaluation of extended multi-baseline images.
To address this, we generate a synthetic multi-baseline
stereo dataset using the CARLA simulator [15], consisting
of 1000 image pairs (left, center, right, left-left, right-right)
across 15 weather conditions (e.g., ClearNoon, WetNight).
During training, we also only used the left and right view to
train the DMS and used the pre-trained DMS model to gen-
erate multi-baseline stereo images. As shown in Table 10,
we report the PSNR and SSIM of the generated views in-
cluding the novel view left-left, right-right, and center view,
respectively. The check-marked annotations indicate the
newly generated perspectives (left-left and right-right) ob-
tained using our proposed inference method. These views
exhibit the comparable performance of PSNR and SSIM to



Table 10. Novel view quality evaluations on synthesis dataset created by CARLA [15] simulator. We report the PSNR and SSIM for both
the left view, right view, left-left view, right-right view, and center view, respectively.

Generated View | Input View | Direction Prompt | Upscaling | Novel View | PSNR | SSIM
Left Right to left - 23.52 | 0.76

Right Left to right - 23.06 | 0.75
Left-Left Left to left - v 23.63 | 0.76
Right-Right Right to right - v 22.71 | 0.72
Center Left to right X2 v 21.44 | 0.72
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Center [§
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Right-Right

Figure 9. Multi-baseline stereo images generation using proposed
DMS on the CARLA synthesis dataset.

the rendered left and right views, despite the absence of
ground truth left-left and right-right views during training.
While the generated intermediate views show a slight de-
crease in PSNR, their SSIM remains consistent with other
views. This demonstrates that the multi-baseline images
produced by DMS maintain geometric consistency, mak-
ing them valuable for improving self-supervised depth esti-
mation. Further visualization results are illustrated in Sec-
tion 5.2.2 in this supplementary material.

5.2.2. Self-Supervised Stereo Matching

In addition to the ablation studies presented in the main pa-
per, we further evaluated the impact of multi-baseline stereo
images generated by our DMS on self-supervised stereo-
matching performance using the KITTI 2012 dataset. Same
as the main paper, we also use PASMNet [71] as the base-
line for self-supervised stereo-matching training.

As detailed in Table 11, the results show that adding I/
and rr significantly reduces both EPE and outlier ratios in
all regions compared to the baseline, particularly improv-
ing occluded and out-of-frame areas. Further incorporating
the center view (c) yields the best performance, achieving

Table 11. Ablation Studies On KITTI 2012 dataset for self-
supervised streo matching.The terms /[, rr, and c refer to the left-
left, right-right, and center views, respectively. Results include
End-Point Error (EPE) and outlier ratios (errors > 3px) across
general, occluded, and out-of-frame regions.”Occ” and ”Oof” rep-
resent the occluded regions and the out-of-frame regions, respec-
tively.

KITTI 2012
Method EPE| >3px(%).|
All Occ Oof | Al Occ Oof
Baseline | 1.44 5.01 1558 | 7.5 40.0 66.3
+I+rr | 124 458 10.65| 6.0 377 534
+c 141 496 1483 | 6.8 40.1 65.6

+U+rr+c|1.16 439 977 |581 36.1 514

Figure 10. Multi-baseline stereo images generation using pro-
posed DMS on the KITTI 2015 dataset.

the lowest EPE and outlier percentages, demonstrating the
effectiveness of multi-baseline integration in enhancing ge-
ometric consistency and depth estimation robustness.

5.3. Additional Visualization Results.

5.3.1. Multi-Baseline Stereo Image Generation Results
Visualization.

Figure 10, Figure 11, Figure 12, and Figure 9 showcase
additional visualizations of the proposed DMS model ap-
plied to the SceneFlow, KITTI, MPI-Sintel, and CARLA
datasets. These figures illustrate the model’s capability to
synthesize novel views along the epipolar line, leveraging
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Multi-baseline stereo images generation using pro-

posed DMS on the SceneFlow dataset.

|

Figure 12. Multi-baseline stereo images generation using pro-
posed DMS on the MPI-Sintel dataset.

directional prompts to extend stereo baselines. The results
highlight the versatility and robustness of DMS in handling
diverse scenarios, from highly controlled synthetic datasets

to ¢

omplex real-world environments, while maintaining ge-

ometric consistency.
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