
Supplementary Material for
LiteRT-Optimized INT8 LLM for Raspberry Pi4 Deployment

A. Efficiency Evaluation on Other Target Plat-
forms

To expand the scope of our evaluation beyond the Rasp-
berry Pi 4, we conducted additional experiments to assess
the inference efficiency of various LLMs on distinct type of
hardware platforms: a high-end server-class CPU and the
Raspberry Pi 5. Specifically, we measured the inference
throughput in terms of Token Per Second (TPS), evaluating
performance across short and long input sequences, as well
as their average. For the server-class CPU, we utilized an
AMD Ryzen 9 7950X processor equipped with 128GB of
RAM. On the edge device, we used the Raspberry Pi 5 for
benchmarking, as it provides a more realistic assessment of
low-power, resource-constrained deployment scenarios.

As shown in the main paper, we selected five represen-
tative LLMs with relatively small parameters and varying
architectures. Each model was evaluated using three dif-
ferent execution formats: FP16 and INT8 precision under
the standard PyTorch runtime, and INT8 execution through
LiteRT—an optimized inference framework designed for
high-throughput, low-latency CPU execution.

Table 1 presents the detailed TPS results. Across all
models and platforms, with the exception of the QWEN
model, the LiteRT backend consistently outperformed both
FP16 and PyTorch-based INT8 inference. This perfor-
mance advantage was particularly evident on the Raspberry
Pi 5, where LiteRT delivered 2× to 3× higher throughput
than PyTorch INT8 in most configurations. For example,
the Llama-3.2 1B model achieved 5.08 TPS using LiteRT,
compared to just 2.42 TPS using PyTorch INT8.

Similarly, larger models like DeepSeek-R1-Distill-Qwen
and compact architectures like TinyLlama showed substan-
tial performance gains when executed via LiteRT. TinyL-
lama reached up to 6.55 TPS on Raspberry Pi 5 under
LiteRT, nearly doubling its PyTorch INT8 performance.
These findings demonstrate not only the scalability of
LiteRT across a range of model sizes, but also its portability
and effectiveness in optimizing inference for heterogeneous
CPU platforms, from edge devices to desktop-class proces-
sors.

B. Additional Runtime Evaluation on Mobile
SoCs

To further assess the practicality of deploying large lan-
guage models (LLMs) on consumer devices, we conducted
a comprehensive runtime evaluation across several repre-
sentative mobile System-on-Chip (SoC) platforms. Specif-
ically, we benchmarked INT8 quantized versions of five
models using the LiteRT runtime on four mobile de-
vices: Galaxy S24 Ultra (Snapdragon Gen3), Galaxy Fold
4 (Snapdragon Gen1), Galaxy S24 (Exynos 2400), and
Galaxy Tab S7+ (Snapdragon 865). To ensure consistent
evaluation across all platforms, all tests were performed us-
ing the CPU configuration in the official Google AI Edge
Gallery application 1.

Table 2 demonstrated the TPS for each configuration.
The results reveal clear performance scaling with hardware
capability. Devices with more recent chipsets, such as the
Snapdragon Gen3 and Exynos 2400, exhibit significantly
higher TPS compared to older chips like the Snapdragon
865. For example, Qwen3 (0.6B) reaches an impressive
36.8 TPS on the S24 Ultra, indicating that LiteRT is highly
optimized to exploit modern CPU architectures without re-
lying on GPU or NPU acceleration.

We also observe that compact and well-optimized mod-
els like TinyLlama (1.1B) and Qwen3 (0.6B) outperform
heavier counterparts like Llama-3.2 3B, particularly on
resource-constrained hardware. For instance, Llama-3.2 3B
yields only 0.32 TPS on the Exynos 2400-based S24, high-
lighting the practical limitations of deploying large-scale
models on mobile CPUs. In contrast, TinyLlama achieves
23.5 TPS on the same device—over 70× faster.

Furthermore, LiteRT’s ability to maintain high through-
put with compact models such as Qwen3 and TinyLlama,
demonstrates its effectiveness in leveraging model effi-
ciency for devices with limited resources.

Overall, these findings reinforce the versatility and scal-
ability of LiteRT across a diverse set of mobile SoCs. They
also emphasize the critical importance of model efficiency
for achieving real-time LLM inference on handheld and em-
bedded devices without requiring specialized acceleration

1https://github.com/google-ai-edge/gallery

1

https://github.com/google-ai-edge/gallery


Token Per Second (TPS)
model Params format precision Server Raspbery Pi 5

short long avg short long avg

Llama-3.2 [1] 1B
PyTorch FP16 3.44 3.11 3.28 3.21 2.93 3.07
PyTorch INT8 21.11 21.67 21.39 2.48 2.36 2.42
LiteRT INT8 23.45 23.47 23.46 5.11 5.05 5.08

Llama-3.2 [1] 3B
PyTorch FP16 0.96 0.80 0.88 1.23 1.15 1.19
PyTorch INT8 9.65 9.72 9.69 - - -
LiteRT INT8 7.66 7.56 7.67 1.53 1.49 1.51

Qwen3 [32] 0.6B
PyTorch FP16 4.02 4.16 4.09 3.68 3.76 3.72
PyTorch INT8 23.14 23.38 23.26 2.83 2.81 2.82
LiteRT INT8 13.82 13.78 13.80 2.87 2.83 2.85

DeepSeek-R1-Distill-Qwen [12] 1.5B
PyTorch FP16 2.94 2.64 2.80 1.91 1.85 1.88
PyTorch INT8 16.60 16.39 16.50 1.88 1.81 1.85
LiteRT INT8 20.15 19.88 20.02 4.67 4.77 4.72

TinyLlama [36] 1.1B
PyTorch FP16 5.17 5.05 5.11 2.69 2.73 2.71
PyTorch INT8 24.26 23.32 23.79 3.97 3.92 3.95
LiteRT INT8 28.49 28.06 28.28 6.62 6.48 6.55

Table 1. Latency or throughput measurements for different LLMs across formats and precision on server-class CPU and Rasberry Pi 5.

Figure 1. Compare TPS between quantized methods and LLMs on server-class CPU and Raspberry Pi 5.

hardware. As edge AI becomes more popular, the portabil-
ity and extensibility of LiteRT will be essential for enabling
real-time LLMs applications.

C. Comparison with Llama.cpp on Raspberry
Pi

To better contextualize LiteRT’s performance in edge
environments, we conducted a direct comparison with

llama.cpp, a widely adopted framework for running large
language models efficiently on CPUs without requiring
GPU or accelerator support. Table 3 summarizes the re-
sults of this comparison across five representative models,
all quantized to INT8 and executed on both Raspberry Pi 4
and Raspberry Pi 5.

Across the configuration on Raspberry Pi, llama.cpp
demonstrates throughput that is competitive with LiteRT.



Token Per Second (TPS)

model Params S24 Ultra
(Snapdragon Gen3)

Fold 4
(Snapdragon Gen1)

S24
(Exynos 2400)

Tab S7+
(Snapdragon 865)

avg avg avg avg
Llama-3.2 [1] 1B 25.57 17.89 15.7 9.91
Llama-3.2 [1] 3B 8.82 6.85 0.32 2.84
Qwen3 [32] 0.6B 36.83 27.79 20.26 12.15
DeepSeek-R1-Distill-Qwen [12] 1.5B 21.28 16.23 13.48 8.08
TinyLlama [36] 1.1B 32.14 23.02 23.52 11.00

Table 2. LiteRT latency or throughput measurements for different LLMs on mobile devices.

model Params format Precision Model Size (GB) Token Per Second (TPS)
Raspberry Pi 4 Raspberry Pi 5

Llama-3.2 [1] 1B

Llama.cpp INT8

1.22 2.72 6.86
Llama-3.2 [1] 3B 3.18 1.05 2.6
Qwen3 [32] 0.6B 0.76 5.13 13.9
DeepSeek-R1-Distill-Qwen [12] 1.5B 1.76 2.17 5.59
TinyLlama [36] 1.1B 1.09 3.19 8.13

Table 3. Llama.cpp latency or throughput measurements for different LLMs on Raspberry Pi 4 and Raspberry Pi 5.

For instance, on Raspberry Pi 5, the Qwen3 model achieves
13.9 TPS using llama.cpp, outperforming most typical
LiteRT configurations for models of similar size.

Unlike llama.cpp, which primarily targets desktop and
terminal environments, LiteRT supports TensorFlow Lite
export, making it compatible with Android and embed-
ded platforms through native mobile apps. This makes
LiteRT not only a high-performance runtime, but also a
more general-purpose solution for production deployment
across diverse hardware and software stacks.


	Efficiency Evaluation on Other Target Platforms
	Additional Runtime Evaluation on Mobile SoCs
	Comparison with Llama.cpp on Raspberry Pi

