MultiNeRF: Multiple Watermark Embedding for Neural Radiance Fields
Supplementary Material

A. Training HiDDeN Decoder

Training. To enable robust message extraction from the
rendered images, we adopt a standard deep watermarking
approach HiDDeN [6], we use the training code from [1]
to train the HiDDeN decoder. Fig. | shows the training
of HiDDeN, where the encoder takes a cover image and a
binary message to watermark, then outputs a watermarked
image. A noise layer simulates common distortions (e.g.,
cropping, JPEG compression, rotation). The decoder then
attempts to recover the embedded bits from the distorted
watermarked image.

Because our main pipeline only requires the decoder,
once training converges, we discard the encoder entirely and
keep only the decoder.

Optimization. We train the decoder on MS-COCO 2014
dataset [2] keeping the image resolution at 256 x 256. The
optimization is carried out on 4 GPUs, with Lamb optimizer
[5]. The batch size is kept at 16, while the learning rate is
5e — 3

Whitening. We observe that the outputs could be biased
or correlated when the trained decoder is exposed to non-
watermarked images later. To address this, we apply PCA-
whitening to the linear layer of the decoder, similar to [1].
This step de-correlates the output bits and helps eliminate
systematic biases (as shown in Fig. 2 & Fig. 3), ensuring
the decoder provides more reliable and unbiased watermark
predictions in our method.

B. Differentiable Augmentation Layer.

We introduce a differentiable augmentation layer to
strengthen our watermark decoder’s robustness against im-
age degradations. During training, the rendered image is
randomly subjected to one or more lightweight augmenta-
tions (e.g., blur, JPEG compression, color jitter). The aug-
mented image is then fed into the watermark decoder. Be-
cause these augmentations are implemented with differen-
tiable operations (via Kornia [3] and the differentiable JPEG
compression implementation comes from [4]), the decoder
can learn to handle distortions in an end-to-end fashion.
This is how the augmentation is organized:

1.Augmentation Pool. We maintain a set
{Ay,As,..., A} of possible transformations, such
as random blur, random noise, or random brightness. Each
augmentation is parameterized by a probability p = 0.75
that determines whether it is applied.

2. Random Selection. At every training step, we randomly
select 2 augmentations from the pool and apply them se-
quentially. As a result, each image may be subjected to dif-
ferent combinations of distortions, making the model more

robust.

Tab. | lists the parameter ranges for each augmentation
used in training the model. Fig. 4 shows the visual examples
of each augmentation.

Transformation Parameter(s)
JPEG Quality 30

Brightness 0.9,1.1)

Contrast 0.9,1.1)

Color Jitter (0.05, 0.05, 0.05, 0.01)
Gaussian Blur Kernel: (3, 3); Sigma: (0.1, 1.0)
Gaussian Noise Std: 0.02

Hue +0.01

Posterize 5 bits

RGB Shift Shift limit: 0.02

Saturation 0.9, 1.1)

Median Blur Kernel: (3, 3)

Box Blur Kernel: (3, 3)

Motion Blur Kernel: (3, 5); Angle: £25°; Direction: £0.25
Sharpness 0.5

Table 1. Augmentation Parameters while training MultiNeRF

C. Additional Details on the User Study

We conducted our user study on Amazon Mechanical Turk
(MTurk), recruiting six unique participants. Each partici-
pant was presented with 180 image pairs in randomized or-
der. In each pair, one image was the ground-truth image,
and the other was the watermarked image output produced
by one of the watermarking methods (e.g., MultiNeRF, Wa-
teRF, WateRF-modified, or NeRFProtector).

The participants were asked to “Compare the Ground-
Truth (GT) image and the Al-processed image. and Does
the processed image have blotches or color/rainbow arti-
facts compared to the GT image?” They then rated the over-
all severity of any artifacts on a five-point scale (Tab. 2).

Rating | Description
5 Severe artifacts that significantly impact image quality
4 Clearly visible artifacts
3 Some visible artifacts upon closer inspection
2 Barely noticeable artifacts
1 No visible artifacts

Table 2. Severity scale for Al-processed image artifacts

D. Augmentation-Intensity Ablation

To quantify the impact of augmentation strength and ap-
plication probability on watermark persistence, we evalu-



Figure 1. HiDDeN decoder

Figure 2. Covariance Matrix of the bit outputs before and after whitening

ated our best model under combinations of two simultane-
ous attacks drawn from the set defined in Table 3. Each
augmentation was applied independently with probability
p, and we swept three intensity levels—Low (L), Medium
(M), and High (H)—as specified in Table 3. Results are
summarized in Table 4, which reports mean bit-accuracy
for p € {0.5,0.75,1.0} across all paired augmentations.
We found that the Low intensity setting with p = 0.75 (i.e.,
each attack applied 75% of the time at the lowest param-
eter values) yielded the highest robustness, outperforming
both more aggressive intensities and higher/lower applica-
tion probabilities. Consequently, we adopt L(p = 0.75)
as our default augmentation configuration, balancing wa-
termark fidelity with resistance to common image degrada-
tions.



Figure 3. Probability of bit outputs from decoder before and after whitening

Attack Low Med High

JPEG Compression quality = 30 quality = 15 quality =5

Brightness (0.9,1.1) (0.75,1.25) (0.5,1.5)

Contrast (0.9,1.1) (0.75,1.25) (0.5,1.5)

Color Jiggle (0.05,0.05,0.05,0.01) (0.10,0.10,0.10,0.02) (0.10,0.10,0.10,0.05)

Gaussian Blur kernel = (3, 3), kernel = (5, 5), kernel = (7,7),
sigma = (0.1, 1.0) sigma = (0.1, 1.5) sigma = (0.1,2.0)

Gaussian Noise o =10.02 o =0.04 o =0.08

Hue hue = 0.01 hue = 0.02 hue = 0.05

Posterize bits = 5.0 bits =4.0 bits = 3.0

RGB Shift shift = 0.02 shift = 0.05 shift = 0.10

Saturation (0.9,1.1) (0.75,1.25) (0.5,1.5)

Median Blur kernel = (3, 3) kernel = (5, 5) kernel = (7,7)

Box Blur kernel = (3, 3) kernel = (5,5) kernel = (7,7)

Motion Blur kernel = (3, 5), kernel = (3,7), kernel = (3,9),
angle = 25°, angle = 45°, angle = 90°,
direction = 0.25 direction = 0.50 direction = 1.00

Sharpness factor = 0.5 factor = 1.0 factor =2.5

Table 3. Attack Intensities and Parameter Values



Figure 4. Examples of different augmentations applied during training



Attack Normal L (p=0.5) M (p=0.5) H (p=0.5) L (p=0.75) M (p=0.75) H (p=0.75) L (p=1.0) M (p=1.0) H (p=1.0)
NONE 94.20 94.39 94.33 92.74 95.09 94.26 92.74 94.98 94.39 92.43
9390 (L) 9430(L) 9431(L) 92.68(L) 94.97 94.16 93.86 95.01 94.38 92.52
Blur 9358 (M) 9424 (M) 9435(M) 92.92 (M) 94.77 94.11 94.19 94.89 94.41 92.79
9290 (H) 94.06 (H) 94.39(H) 92.81 (H) 94.60 94.14 94.23 94.58 94.46 92.84
7818 (L) 87.79(L) 87.42(L) 85.04 (L) 88.24 87.14 85.68 87.75 86.82 84.65
Rotate 5458 (M) 77.14(M) 7727 (M) 75.06 (M) 77.53 76.92 75.22 78.03 76.42 75.10
4513 (H) 7234 (H) 7127 H) 69.13 (H) 72.51 71.78 69.60 72.66 70.64 68.35
89.89 (L) 88.08(L) 87.41(L) 86.25(L) 88.19 87.70 87.78 87.63 87.51 86.20
Crop 8228 (M) 82.85(M) 81.33(M) 80.48 (M) 82.72 82.11 81.49 82.77 82.27 80.60
7530 (H) 76.51 (H) 75.45(H) 74.63 (H) 77.15 76.74 74.94 76.57 76.81 74.97
9158 (L) 9226(L) 9224(L) 90.90 (L) 92.86 91.96 91.92 92.42 92.30 90.83
Resize 81.61 (M) 87.78(M) 87.98 (M) 86.41 (M) 88.23 87.75 87.72 87.74 88.01 86.55
62.28 (H) 81.86(H) 81.45(H) 79.53 (H) 81.63 81.01 80.41 81.61 81.23 79.48
9411 (L) 9431(L) 9420(L) 92.53(L) 94.82 94.10 93.75 94.89 94.09 92.20
Noise 9444 (M) 7990 (M) 7875 (M) 76.94 (M) 79.41 81.08 81.01 80.57 79.73 80.26
92.00(H) 61.09(H) 61.30H) 61.31(H) 62.40 62.52 62.03 60.48 61.46 61.27
IPEG 90.39 (L) 9234 (L) 9231(L) 90.64 (L) 92.59 91.83 91.79 92.81 92.15 90.64
Compression 8511 (M) 91.54(M) 91.13(M) 89.48 (M) 92.02 90.95 90.55 91.75 91.07 88.70
73.58 (H) 86.80 (H) 85.23(H) 83.79 (H) 87.35 85.65 84.16 86.72 86.13 83.38
91.67 (L) 9242(L) 92.13(L) 90.36 (L) 93.26 92.58 92.31 93.16 92.34 91.11
Contrast 89.91 (M) 91.10(M) 90.64 (M) 89.22 (M) 91.99 91.23 91.29 91.83 90.98 89.54
88.32 (H) 89.63(H) 89.20(H) 88.05 (H) 90.86 90.22 89.97 90.85 89.86 88.29
66.33 (L) 79.68 (L) 78.46(L) 7649 (L) 79.32 79.02 76.92 78.34 76.91 74.35
Brightness 71.63 (M) 83.71 (M) 82.66 (M) 80.93 (M) 83.74 82.56 80.71 82.59 80.94 78.46
8494 (H) 89.03(H) 88.68(H) 86.97 (H) 89.10 88.69 87.54 88.13 87.73 85.63
88.19 (L) 89.17(L) 88.58(L) 86.68 (L) 89.13 88.97 88.36 89.39 88.42 87.16
ColorJitter 79.68 (M) 83.52(M) 83.61 (M) 81.82(M) 84.01 83.31 83.13 84.06 83.29 82.29
72.04 (H) 7941 (H) 7885(H) 77.40(H) 79.83 79.30 78.71 79.34 78.81 77.56
83.83(L) 89.72(L) 89.32(L) 87.49(L) 89.93 89.34 88.24 89.19 89.08 87.33
Grayscale 83.83 (M) 89.72(M) 89.32(M) 87.49 (M) 89.93 89.34 88.24 89.19 89.08 87.33
83.83(H) 89.72(H) 89.32(H) 87.49 (H) 89.93 89.34 88.24 89.19 89.08 87.33
90.75 (L) 90.82(L) 9046 (L) 88.90 (L) 91.33 91.03 90.31 91.34 90.54 88.69
Hue 85.69 (M) 84.80(M) 83.94 (M) 83.00 (M) 84.68 84.04 84.02 84.38 83.32 82.35
81.70(H) 81.10(H) 79.82(H) 78.58 (H) 81.09 80.79 80.53 80.58 79.99 79.03
93.21 (L) 93.11(L) 92.72(L) 90.75 (L) 93.55 92.53 91.92 93.75 93.03 91.07
RGB Shift 90.02 (M) 90.44 (M) 90.22 (M) 88.83 (M) 91.11 90.29 90.02 90.96 90.78 89.27
70.80 (H) 82.89 (H) 82.79(H) 82.20 (H) 83.90 83.49 83.29 83.46 83.20 82.01
86.16 (L) 91.27(L) 9093(L) 89.66 (L) 92.17 91.41 90.74 91.91 91.51 90.03
Motion Blur ~ 78.35 (M) 86.94 (M) 86.56 (M) 85.28 (M) 87.35 86.74 86.32 86.81 86.53 85.35
7222 (H) 8222(H) 82.04(H) 80.91 (H) 82.86 82.92 81.82 82.68 82.44 80.99

Table 4. Comparison of Model Robustness against Different Attacks with varying Intensity Levels (p=0.5, 0.75, and 1.0)

Figure 5. Regeneration attacks



Figure 6. MultiNeRF (without watermark grid) vs MultiNeRF (Full method) image quality. Without the grid, we see that we mostly lose
reflection information.

Figure 7. Examples of the images used for user study



Figure 8. MultiNeRF results on the other synthetic and LLFF dataset
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