
cubic: CUDA-accelerated 3D Bioimage Computing

Alexandr A. Kalinin Anne E. Carpenter Shantanu Singh
Broad Institute of MIT and Harvard

Cambridge, MA 02142, USA
akalinin@broadinstitute.org

Matthew J. O’Meara
University of Michigan Medical School

Ann Arbor, MI 48109, USA
maom@umich.edu

Abstract

Quantitative analysis of multidimensional biological im-
ages is useful for understanding complex cellular pheno-
types and accelerating advances in biomedical research.
As modern microscopy generates ever-larger 2D and 3D
datasets, existing computational approaches are increas-
ingly limited by their scalability, efficiency, and integra-
tion with modern scientific computing workflows. Exist-
ing bioimage analysis tools often lack application pro-
grammable interfaces (APIs), do not support graphics pro-
cessing unit (GPU) acceleration, lack broad 3D image
processing capabilities, and/or have poor interoperability
for compute-heavy workflows. Here, we introduce cubic,
an open-source Python library that addresses these chal-
lenges by augmenting widely-used SciPy and scikit-image
APIs with GPU-accelerated alternatives from CuPy and
RAPIDS cuCIM. cubic’s API is device-agnostic and dis-
patches operations to GPU when data reside on the device
and otherwise executes on CPU—seamlessly accelerating a
broad range of image processing routines. This approach
enables GPU acceleration of existing bioimage analysis
workflows, from preprocessing to segmentation and fea-
ture extraction for 2D and 3D data. We evaluate cubic
both by benchmarking individual operations and by repro-
ducing existing deconvolution and segmentation pipelines,
achieving substantial speedups while maintaining algorith-
mic fidelity. These advances establish a robust foundation
for scalable, reproducible bioimage analysis that integrates
with the broader Python scientific computing ecosystem in-
cluding other GPU-accelerated methods, enabling both in-
teractive exploration and automated high-throughput anal-
ysis workflows. cubic is openly available at https://
github.com/alxndrkalinin/cubic.

1. Introduction

The growing scale and complexity of biological exper-
iments—particularly in drug discovery, functional ge-
nomics, and systems biology—have elevated the impor-
tance of quantitative bioimage analysis [1, 4, 12]. Advances
in microscopy now enable high-throughput imaging of sin-
gle cells, organoids, and tissues in various imaging modal-
ities and conditions, generating terabytes of multidimen-
sional data [4, 5, 32]. Extracting information from these
rich datasets is essential for identifying phenotypic signa-
tures, quantifying cellular states, and linking molecular per-
turbations to observable outcomes [11, 53]. As a result,
computational workflows for image-based profiling are be-
coming increasingly essential to modern biological discov-
ery and translational research.

Despite this central role, existing bioimage analysis
pipelines face significant bottlenecks. While there are ro-
bust and open-source image analysis platforms such as Im-
ageJ/Fiji [45, 46] and CellProfiler [47] that have made im-
age processing and morphological profiling broadly acces-
sible to the community, these frameworks are challenging to
scale to modern workloads. First, they tightly couple their
graphical interfaces and APIs, making it challenging to inte-
grate them into automated high-throughput workflows that
employ modern scientific computing and machine learning
technology stack, and second, their architecture makes it
difficult to leverage GPU acceleration.

By contrast, general purpose image processing libraries
like OpenCV [10] and scikit-image [49] offer programmatic
flexibility via Python interfaces. Still, these have limited
ability to handle the large-scale, high-dimensional datasets
generated by modern imaging techniques. The shift toward
3D imaging, time-lapse data, and high-content screens ex-
acerbates limitations in computational efficiency and scal-

1

This ICCV Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5772

https://github.com/alxndrkalinin/cubic
https://github.com/alxndrkalinin/cubic

ability, making processing pipelines slow, fragmented, or
difficult to integrate with machine learning and data science
workflows.

Over the last decade, the increasing availability of graph-
ics processing units (GPUs) has enabled end-to-end train-
ing of complex neural network architectures on terabyte-
scale image datasets [2, 40]. However, it has not translated
into similar gains for classical image processing in bioim-
age analysis. While deep learning frameworks use GPU ac-
celeration to speed up model training, they typically focus
on implementing deep learning-specific differentiable mod-
ules and operations.

This leaves many commonly used traditional bioimage
analysis routines locked to CPU workflows, with limited de-
vice flexibility and cumbersome APIs for large-scale data
movement and hybrid pipelines. GPU-accelerated solu-
tions are available for specific tasks or as separate plu-
gins, but they often rely on different back-ends, involve
complex installation procedures, and expose narrow, cus-
tom interfaces that do not always offer interoperability with
the wider modern scientific computing and data analysis
stack. Thus, researchers navigate a fragmented software
landscape, assembling ad-hoc scripts and file conversions
instead of concentrating on the biological questions at hand.
While libraries mirroring scientific-Python APIs now pro-
vide GPU backends [17, 37], integrating them typically de-
mands explicit device management—tracking data place-
ment and routing each call to the matching CPU or GPU
implementation.

To address these challenges, we introduce cubic, an
open-source Python library for morphological analysis of
multidimensional bioimages that provides a minimal-code-
change interface for the device-agnostic execution with
optional GPU acceleration. Specifically, cubic uses the
CUDA-accelerated libraries CuPy and cuCIM to provide
fast, efficient implementations of common image process-
ing operations, including deconvolution, segmentation, and
feature extraction from large 3D microscopy datasets. cubic
is designed to be fully compatible with the Python scientific
computing ecosystem, as it mirrors SciPy and scikit-image
APIs, allowing users to leverage familiar functions and re-
ducing the changes required to adapt existing codebases. It
also supports zero-copy data exchange with PyTorch [40],
enabling GPU-resident image processing operations to feed
directly into deep learning models without extra memory
copies or performance overhead. By transparently lever-
aging GPU acceleration when available, while remaining
fully functional on CPU-only systems, cubic bridges the
gap between ease of use, scalability, and computational
performance, enabling robust and reproducible morphome-
tric workflows for the next generation of bioimage analy-
sis applications. cubic is open-source and is available at
https://github.com/alxndrkalinin/cubic.

2. Related work

2.1. Traditional bioimage analysis tools

The bioimage analysis ecosystem is rich with widely used,
mature platforms that have shaped the field [23]. ImageJ/-
Fiji [45, 46] offer a vast plugin ecosystem and user-friendly
graphical user interface (GUI) for both 2D and some 3D
processing tasks. While widely adopted, it requires script-
ing macros for large-scale processing, making interoper-
ability with the Python scientific computing stack challeng-
ing. CellProfiler [47] is implemented in Python and enables
repeatable, modular pipelines for segmentation and feature
extraction, and supports headless batch operation. However,
it remains entirely CPU-bound and can be prohibitively
slow for large volumetric images. Tools like ilastik and
QuPath cater to interactive segmentation and classification
tasks. Ilastik [8] provides user-friendly pixel/object clas-
sification using machine learning, with optional GPU ac-
celeration only within deep learning modules. QuPath [6],
designed for whole-slide pathology, now includes GPU sup-
port via PyTorch [40], but remains limited in core morpho-
metric pipelines. While these packages excel in usability
and community support, they usually lack large 3D image
analysis capabilities and GPU acceleration. Moreover, im-
plementation of image analysis operations in interactivity-
first tools is usually tightly coupled to the GUI, making it
difficult to assemble robust pipelines that involve other tools
from the modern scientific Python stack [34].

More recently, napari [13, 16] has emerged as a Python-
native, multi-dimensional image viewer that also provides a
headless API and a rich plugin ecosystem exposing SciPy
and scikit-image [55] APIs. While napari’s programmatic
interface enables both interactive and scriptable workflows
within a single framework, it still relies on plugin registra-
tion and viewer-centric constructs even when run headlessly
and does not aim to natively provide GPU support for avail-
able image analysis operations.

OpenCV [10] and scikit-image [49] are popular libraries
for image processing and computer vision that offer pro-
grammatic flexibility and implement a wide range of algo-
rithms. OpenCV, while providing a Python interface, pri-
marily focuses on 2D image analysis. scikit-image is built
on NumPy [25] and SciPy [50], making it easy to integrate
into the scientific Python stack. For example, CellProfiler
v4 [47] itself packaged most of its core image-processing
routines into scikit-image. Similarly, many end-to-end
bioimage analysis pipeline frameworks [3, 15, 38, 39, 41]
leverage scikit-image routines under the hood to perform
image preprocessing, segmentation, feature extraction, and
analysis. However, scikit-image itself is CPU-bound and
does not natively support GPU acceleration.

25773

https://github.com/alxndrkalinin/cubic

2.2. GPU-accelerated frameworks and tools
Specialized GPU-accelerated plugins for Imagej/Fiji and
CellProfiler exist—such as AutoDeconJ [48] for 3D
light-field deconvolution in ImageJ—but these remain task-
specific and not integrated into the broader scientific com-
puting environment. OpenCL-based CLIJ/CLIJ2 [22, 51]
brings hundreds of classical 2D and 3D GPU-accelerated
image operations into ImageJ/Fiji. However, CLIJ is also
not natively Python-based and primarily operates within the
ImageJ/Fiji ecosystem. clEsperanto and its Python binding
pyclesperanto [24] address this issue by exposing CLIJ2 op-
erations to Python users, enabling GPU-accelerated image
processing in a device-agnostic manner. However, pycles-
peranto implements a limited range of bioimage analysis
operations with an interface specific to CLIJ2.

Deep learning frameworks such as PyTorch [40] and
TensorFlow [2] natively support GPUs, but are tailored to
neural network training and inference and do not implement
most of the conventional image processing routines. Cy-
tokit [18] implements TensorFlow-based GPU acceleration
for image registration, deconvolution and quality scoring,
but still relies on CPU-bound scikit-image, CellProfiler and
OpenCV routines for preprocessing, segmentation and fea-
ture extraction. PyTorch-based libraries such as Kornia [42]
and torchvision v2 [33] offer GPU-accelerated augmenta-
tions, resampling and basic preprocessing, but are primar-
ily designed for deep-learning workflows and lack the full
spectrum of segmentation and morphometric operations.

CuPy [37] and RAPIDS cuCIM [17] represent a different
approach, providing GPU-accelerated implementations that
closely mirror the APIs of NumPy, SciPy, and scikit-image.
CuPy offers a drop-in replacement for NumPy arrays and
lower-level signal and image processing operations, while
cuCIM extends this paradigm to image processing routines
from scikit-image. Unlike device-agnostic solutions, these
libraries require explicit data management—users must be
aware of which device their data resides on to call the ap-
propriate CPU or GPU implementation accordingly.

Finally, several napari plugins provide GPU-accelerated
routines for specific tasks. For example, the napari-
accelerated pixel-and-object-classification plugin [20] im-
plements OpenCL-based Random Forest pixel and ob-
ject classifiers. The pycudadecon plugin [29] implements
a CUDA-based accelerated Richardson–Lucy deconvolu-
tion [9]. However, these remain narrowly focused on their
particular algorithmic domains. The napari-pyclesperanto-
assistant [14] plugin integrates clEsperanto kernels, while
inheriting pyclesperanto’s API and the operation set. The
napari-cupy-image-processing plugin [21] exposes GPU-
accelerated signal and image processing rountines from
CuPy and a handful of skimage-like operations within the
napari ecosystem, but its coverage remains far narrower
than cuCIM’s comprehensive mapping.

3. Methods

3.1. Design principles

cubic implements a balanced design that seeks to address
drawbacks of existing bioimage computing tools. We for-
mulated the following design principles to guide the devel-
opment of cubic:

P1 Comprehensive image processing operations.
Bioimage analysis workflows require diverse pro-
cessing steps from preprocessing to quantitative
measurement, but combining multiple specialized tool
can be challenging. cubic aims to provide a wide
range of operations including deconvolution, filtering,
segmentation, feature extraction, morphological opera-
tions, and image metrics commonly used in microscopy
workflows. This unified approach reduces dependency
management and integration complexity.

P2 API decoupled from GUI. Tight coupling of the user
interface and the logic is an anti-pattern. cubic exposes
all core functionality through programmatic interfaces,
enabling seamless integration into custom pipelines and
automated workflows without depending on graphical
interfaces. This design maximizes flexibility and script-
ability while requiring users to have programming ex-
pertise rather than relying on point-and-click interfaces.

P3 Multidimensional image support. Modern mi-
croscopy generates complex multi-dimensional datasets
including 3D image volumes that many tools handle in-
consistently. cubic provides native support for 2D, 3D,
and higher-dimensional image stacks with consistent
APIs across all dimensionalities. This unified approach
simplifies analysis of complex datasets but increases
implementation complexity and memory requirements
for higher-dimensional operations.

P4 GPU acceleration. Computationally intensive bioim-
age processing can be prohibitively slow on CPU-only
systems, especially for large 3D images. cubic lever-
ages GPU hardware through CUDA libraries while
maintaining automatic fallback to CPU implementa-
tions when GPU resources are unavailable. This ap-
proach delivers significant performance improvements
for supported operations while maintaining broad com-
patibility.

P5 Scientific Python integration. Python has emerged as
the dominant language for data and image analysis due
to its extensive ecosystem of scientific libraries, clear
syntax, and strong community support. cubic ensures
seamless interoperability with established libraries like
NumPy, SciPy, and scikit-image through consistent ar-
ray interfaces and data types.

P6 Device agnosticism. Hardware-specific code creates
maintenance burden and substantial refactoring of ex-
isting codebases. cubic enables identical code to ex-

35774

ecute on both CPU and GPU hardware through unified
array interfaces, allowing transparent acceleration with-
out code modification. This approach maximizes code
reusability and simplifies deployment.

3.2. Key features

Based on the survey of existing bioimage analysis tools in
Section 2 and our design principles, we chose to imple-
ment cubic using SciPy [50] and scikit-image [49], com-
bined with CuPy [37] and RAPIDS cuCIM [17]. To-
gether, SciPy’s lower-level signal and n-dimensional im-
age processing capabilities (deconvolution, filtering) and
scikit-image’s extensive higher-level image analysis oper-
ations (segmentation, morphological operations, feature ex-
traction) provide one of the most comprehensive collec-
tions of bioimage processing and analysis tools under a
unified programmatic interface (P1, P2). Both libraries
also natively support multidimensional arrays with consis-
tent operations across 2D and 3D data (P3). Using CuPy
and cuCIM as drop-in replacements for NumPy/SciPy and
scikit-image enables GPU-accelerated array operations and
image processing functions with mostly identical function
signatures (P4). Supporting highly popular SciPy/scikit-
image APIs enables seamless integration with the broader
NumPy ecosystem and existing scientific Python workflows
through consistent array interfaces and data types (P5).

Although CuPy and cuCIM mostly mirror SciPy/scikit-
image’s API, they still require placing the input array to the
correct device and importing matching device-specific func-
tions. We simplify this requirement by providing a device-
agnostic interface that automatically dispatches calls to the
array’s current device, such that unmodified code executes
on both CPU and GPU (P6). If a CUDA implementation
is unavailable or no GPU is detected, cubic transparently
falls back to the CPU version of each routine, preserving
compatibility while delivering hardware-accelerated perfor-
mance where possible. Through this wrapping approach,
cubic provides access to the near-complete functionality of
scikit-image’s comprehensive API, encompassing the broad
spectrum of image processing operations including color
space conversions, feature detection, filtering, morpholog-
ical operations, segmentation algorithms, geometric trans-
formations, image registration, deconvolution, and feature
extraction. By using the device-agnostic API and sim-
ply updating import statements, cubic easily allows adding
GPU acceleration to existing scikit-image code.

cubic also implements custom algorithms not covered by
existing libraries, including advanced image quality met-
rics such as Fourier Ring Correlation (FRC) and Fourier
Shell Correlation (FSC) [7, 35] for resolution assessment,
scale-invariant Peak Signal-to-Noise Ratio (PSNR) [54] and
Structural Similarity Index Measure (SSIM) [52], segmen-
tation quality metrics such as Average Precision (AP) [19],

alternative implementations [36] of Lucy-Richardson de-
convolution [31, 44], and various specialized image util-
ity operations for bioimage analysis, all available in both
2D and 2D. This comprehensive coverage ensures that re-
searchers have access to an even wider array of image pro-
cessing operations needed for bioimage analysis workflows
while maintaining the device-agnostic execution model.

3.3. Device-agnostic processing
To illustrate the disadvantages of device-specific APIs, the
snippet below shows attempts to apply a Gaussian filter to a
3D image of cell nuclei using both CPU-based scikit-image
and GPU-based cuCIM implementations:

import cupy as cp
import numpy as np
from skimage import data
import skimage.filters as filters_cpu
import cucim.skimage.filters as filters_gpu

load example 3D image of cells
img = data.cells3d()
select nuclei channel
img = img[:, 1] # ZYX (60, 256, 256)

try running Gaussian filter on GPU
smooth = filters_gpu.gaussian(img)
> TypeError:
> Unsupported type <class ’numpy.ndarray’>

move img to GPU
img = cp.asarray(img)
now this works
smooth = filters_gpu.gaussian(img)

try running Gaussian filter on CPU
smooth = filters_cpu.gaussian(img)
> TypeError: Implicit conversion
> to a NumPy array is not allowed.

move img back to CPU
img = img.asnumpy()
only now this works
smooth = filters_cpu.gaussian(img)

In this pattern, importing device-specific implementa-
tions of each module forces the developer to not only keep
track of the current data location, but also to choose the cor-
rect device-specific implementation to match it, leading to
redundant namespace clutter and cognitive overhead. Oth-
erwise, mismatch between the data location and function
implementation triggers unexpected runtime errors. As a re-
sult, extending existing scikit-image-based bioimage analy-
sis pipelines to run on GPU demands extensive refactoring
to alternate between backends, undermining readability and
maintainability.

By contrast, cubic consolidates CPU and GPU function-
ality behind a single API, requiring only one import for
each submodule and localizing device transfers to explicit
boundary calls. For example:

45775

from cubic.cuda import ascupy
from cubic.skimage import filters

load example 3D image of cells
img = data.cells3d()
select nuclei channel
img = img[:, 1] # ZYX (60, 256, 256)

run Gaussian filter on CPU using skimage
smooth = filters.gaussian(img)

transfer image to GPU
img = ascupy(img)
run Gaussian filter on GPU using cuCIM
smooth = filters.gaussian(img)

In this example, the GPU code matches exactly
the widely-used scikit-image API, except for calling
cubic.skimage instead of skimage. The function
calls are identical, however, the operation runs on either
CPU and GPU hardware depending on the input array lo-
cation. The ascupy function transfers the input array to
the GPU, allowing the use of GPU-accelerated implemen-
tations of the same algorithm. The output array is also a
GPU array, which can be transferred back to the CPU us-
ing asnumpy if needed. Persistent output location allows
running existing scikit-image code without further modi-
fications. This design allows developers to write device-
agnostic code that runs seamlessly on both CPU and GPU
hardware, maximizing code reusability and simplifying de-
ployment across different computing environments.

4. Benchmarks and examples
We demonstrate the capabilities of cubic using following
examples:
• GPU-accelerated image rescaling benchmark.
• Re-implementation of a CellProfiler pipeline for 3D cell

monolayer segmentation.
• Richardson-Lucy deconvolution with the optimal itera-

tion selection procedure guided by image quality metrics.

4.1. 3D image rescaling benchmark
We demonstrate cubic’s performance advantages through
benchmarking image rescaling operations, comparing CPU
and GPU execution across different interpolation orders and
input image sizes.

Dataset and experimental setup. The benchmark
uses the cells3d dataset from scikit-image [49], a
3D fluorescence microscopy image stack with dimensions
60×256×256 pixels representing a typical confocal acquisi-
tion downscaled in XY to almost isotropic voxel size. To
evaluate performance scaling with image size, we addition-
ally test on a 2× XY-upsampled version (60×512×512 pix-
els), created using bilinear interpolation.

We benchmark upscaling the input image by 2×
and then downscaling the result back by 0.5× us-

0×

200×

400×

600×

800×

1000×

1200×

1400×

1600×

GP
U

/ C
PU

 p
er

fo
rm

an
ce

 g
ai

n

upscale
Input image shape (Z,Y,X)

(60, 256, 256)
(60, 512, 512)

0 1 2 3 4 5
interpolation order

0×

50×

100×

150×

200×

250×

GP
U

/ C
PU

 p
er

fo
rm

an
ce

 g
ai

n

downscale

Figure 1. GPU performance gains for 3D image rescaling opera-
tions. Results show speedup factors comparing GPU versus CPU
execution across interpolation orders (0-5) for two sizes of 3D in-
put images.

ing cubic.skimage.trasnform.rescale, which
internally uses scipy.ndimage.zoom with optional
Gaussian filtering for anti-aliasing. We test all interpola-
tion orders (0-5) supported by SciPy: nearest-neighbor (or-
der 0), linear (order 1), quadratic (order 2), cubic (order 3),
quartic (order 4), and quintic (order 5). Anti-aliasing was
enabled for downscaling operations to prevent aliasing arti-
facts.

Results. We found substantial GPU acceleration across
all tested configurations (Figure 1). For upscaling opera-
tions, GPU speedup ranges from approximately 10× (or-
der 0) for the original image size to over 1600× (order 5)
for the larger upsampled input, with higher-order interpo-
lation methods showing dramatically greater acceleration
due to their increased computational complexity. Down-
scaling operations show more variable but still substantial
performance improvements, ranging from 50-300× speedup
across different interpolation orders. The performance scal-
ing with input image size confirmes the known advantage
of GPU acceleration for larger images, which consistently
achieves a speedup of a least 100× across both operations
and both input sizes. Even the simplest nearest-neighbor

55776

DNA (XY mid-slice) CellProfiler Nuclei (XY) LIB_NAME Nuclei (XY)

DNA (XZ mid-slice) CellProfiler Nuclei (XZ) LIB_NAME Nuclei (XZ)

(a) Visual comparison of DNA channel and nuclei segmenta-
tion results. Top row shows XY mid-slice views, bottom row
shows XZ mid-slice views. From left to right: original DNA
channel, CellProfiler nucleus segmentation, and cubic nu-
cleus segmentation. cubic implementation produces segmen-
tation results similar to those by the original CellProfiler
pipeline (differences are due to CellProfiler internally set-
ting some default parameter values differently from those in
scikit-image without exposing them in the GUI).

nu
cle

i n
or

m
al

ize

nu
cle

i d
ow

ns
ca

le
 fi

lte
r

nu
cle

i t
hr

es
ho

ld

nu
cle

i r
em

ov
e

ho
le

s

nu
cle

i w
at

er
sh

ed

nu
cle

i r
es

ize

nu
cle

i c
le

an
up

nu
cle

i s
eg

m
en

ta
tio

n

ce
lls

 m
em

b
th

re
sh

ol
d

ce
lls

 m
on

o
pr

ep
ar

e

ce
lls

 m
on

o
re

siz
e

ce
lls

 m
on

o
th

re
sh

ol
d

ce
lls

 m
as

k

ce
lls

 se
ed

s

ce
lls

 w
at

er
sh

ed

ce
lls

 c
le

an
up

ce
ll

se
gm

en
ta

tio
n

nu
cle

i r
eg

io
np

ro
ps

nu
cle

i f
ea

tu
re

 e
xt

ra
ct

io
n

im
ag

e
qu

al
ity

 m
et

ric
s

ev
al

ua
te

 n
uc

le
i

ev
al

ua
te

 c
el

ls

Pipeline Step

0

25

50

75

100

125

Cu
m

ul
at

iv
e

Ti
m

e
(s

ec
on

ds
)

Cumulative Execution Time: GPU vs CPU (All Steps)
GPU
CPU

(b) Cumulative execution time comparison between GPU and CPU implementations.

Figure 2. CellProfiler 3D monolayer segmentation benchmark results. (a) Visual validation showing similar segmentation quality between
CellProfiler and cubic implementations. (b) Performance comparison demonstrating significant computational speedup using GPU.

interpolation (order 0) shows significant speedups of 10-
170×, demonstrating that using cubic can provides substan-
tial computational benefits across the entire spectrum of im-
age rescaling operations.

4.2. CellProfiler 3D monolayer segmentation
We demonstrate cubic’s capabilities by reproducing a Cell-
Profiler pipeline for 3D monolayer segmentation, while also
comparing performance between CPU and GPU execution.
Notably, CellProfiler v4 [47] relies on scikit-image for most
of its core image processing operations, making our GPU-
accelerated cubic wrapper a natural performance enhance-
ment for such workflows. Note, that the goal of this exam-
ple was not to perfectly reproduce CellProfiler pipeline, but
to use similar operations to evaluate acceleration allowed by
the use of GPU computation.

Dataset description. The experiment uses a 3D fluores-
cence microscopy image of a cell monolayer from the image
set BBBC034v1 Thirstrup et al. 2018, available from the
Broad Bioimage Benchmark Collection [30]. The 3D image
stack has three channels: membrane (channel 0), mitochon-
dria (channel 1), and DNA (channel 2). The images have
pixel dimensions of 0.065 µm in X and Y, with 0.29 µm
Z-spacing, representing typical confocal microscopy acqui-
sition parameters for monolayer studies.

CellProfiler pipeline. The pipeline performs hierarchi-
cal segmentation to identify: (1) individual cell nuclei from
the DNA channel, and (2) whole cells using membrane sig-
nal constrained by nuclear seeds. This two-step approach
mirrors common workflows in cell biology where nuclear
segmentation provides reliable seeds for subsequent cell
boundary detection.

The reference CellProfiler implementation follows a
multi-stage approach:

• Nuclei segmentation: DNA channel normalization, down-
scaling (0.5×), median filtering (ball radius 5), Otsu
thresholding, hole filling (area threshold 20), watershed
segmentation (ball radius 10), upscaling, and size filter-
ing (minimum 50 pixels).

• Cell segmentation: Multi-Otsu thresholding of membrane
channel (3 classes), hole removal, monolayer mask cre-
ation from combined channels with morphological clos-
ing (disk radius 17) at 0.25× resolution, seed generation
from eroded nuclei (ball radius 5), and watershed seg-
mentation (ball radius 8) with size filtering (minimum 100
pixels).
cubic implementation. Our implementation reproduces

this pipeline using GPU-accelerated cubic functions, main-
taining identical parameter values and processing steps
where possible. Additionally, we evaluated segmentation
quality against CellProfiler results by calculating average
precision (AP) on labeled masks. To both demonstrate per-
formance on standard image-quality measures and tie them
to segmentation agreement, we additionally computed peak
signal-to-noise ratio (PSNR) and structural similarity in-
dex (SSIM) on intensity images masked with predicted seg-
mentation labels. When evaluated within the masks, higher
PSNR/SSIM values imply closer spatial agreement of seg-
mentation results. The modular design allows easy switch-
ing between CPU and GPU execution while preserving nu-
merical accuracy.

Results. Figure 2a shows visual comparison between
CellProfiler and cubic segmentations in both XY and XZ
views, demonstrating high fidelity reproduction of the orig-
inal pipeline. Performance analysis (Figure 2b) reveals sub-
stantial speedup on GPU, with total pipeline acceleration of
25× compared to CPU execution (5.62 vs 133.43 sec). In-
dividual steps show varying degrees of improvement, with

65777

metric GPU time CPU time

PSNR 25 sec 1766 sec

SSIM 27 sec 2547 sec

FRC 125 sec N/A

original (XY slice)

deconvolved (XY slice)

Figure 3. Richardson-Lucy deconvolution of a large 3D image volume (30×2160×2560) with per-iteration image quality metrics tracking
and CPU vs GPU performance comparison.

morphological operations and image filtering achieving the
largest gains due to their parallel nature.

This example demonstrates the potential ability to re-
place existing CellProfiler workflows that internally use
scikit-image operations to provide significant computa-
tional advantages for high-throughput applications.

4.3. Richardson-Lucy deconvolution

We demonstrate cubic’s advanced deconvolution capabili-
ties through Richardson-Lucy deconvolution with optimal
iteration selection guided by image quality metrics, where
both deconvolution and metric calculation happen on the
same device.

Dataset description. The experiment uses a single 3D
image stack of Hoechst-stained astrocyte nuclei acquired
with a Yokogawa CQ1 confocal microscope [26]. Theo-
retical 3D point spread functions for each individual im-
age volume were modeled using the Richards and Wolf al-
gorithm [43] from the PSFGenerator plugin [27] for Fiji.
Both the image and the PSF have the same ZYX size of
30× 2160× 2560.

Richardson-Lucy algorithm. The Richardson-Lucy al-
gorithm is an iterative deconvolution method that maxi-
mizes likelihood under Poisson noise assumptions. Each
iteration involves forward convolution with the PSF, ra-
tio computation with the observed image, back-convolution

with the flipped PSF, and multiplicative update of the esti-
mate. The algorithm’s effectiveness depends critically on
selecting the optimal number of iterations to balance noise
suppression and detail preservation.

Traditional Richardson-Lucy implementations require
manual iteration count selection, often leading to under- or
over-deconvolution. We implemented automatic stopping
criteria that monitor image quality improvement between
consecutive iterations. The threshold indicates when further
iterations provide diminishing returns, enabling automated
optimal stopping without user intervention.

cubic implementation. Our GPU-accelerated imple-
mentation leverages cubic’s FFT operations and element-
wise arithmetic to achieve substantial speedup over CPU-
based approaches. Key optimizations include:
• GPU-resident FFT operations for convolution steps
• Memory-efficient in-place operations to minimize data

transfer
• Vectorized FRC computation using GPU-accelerated

cross-correlation
• Automated convergence monitoring with configurable

thresholds
Evaluation metrics. We assess deconvolution qual-

ity using multiple metrics: (1) peak signal-to-noise ra-
tio (PSNR) and structural similarity index (SSIM) against
ground truth, (2) single-image Fourier Ring Correlation-

75778

derived resolution [28].
Results. Figure 3 demonstrates results of metric-guided

iteration selection, with different metrics capturing various
image quality changes during the deconvolution process.

Performance benchmarks (Figure 3) reveal GPU acceler-
ation of 50× depending on the metric, with the FRC taking
too long to measure on CPU.

This example showcases cubic’s capability to implement
sophisticated, research-grade algorithms with both compu-
tational efficiency and methodological rigor, making ad-
vanced deconvolution accessible for high-throughput mi-
croscopy applications.

5. Discussion
In this study we introduced cubic, a lightweight Python
library that unites standard SciPy and scikit-image rou-
tines and their GPU-accelerated alternatives in CuPy and
cuCIM. Specficially, cubic retains the exact function sig-
natures and patterns familiar to users of scikit-image and
scipy.ndimage; switching a pipeline to GPU execution sim-
ply requires replacing imports and a single array transfer
call. This lowers the barrier to entry for high-throughput,
reproducible bioimage analysis and ensures that researchers
can scale their 2D and 3D workflows across heterogeneous
computing environments without sacrificing readability or
maintainability. Through example benchmarks on represen-
tative 3D microscopy pipelines—covering 3D smoothing,
multi-step segmentation and feature extraction, and decon-
volution—we demonstrated speed-ups of 10–1500× over
CPU-only workflows in each major processing stage.

Acknowledgements
This work was pertially supported by Chinese Key-
Area Research and Development Program of Guang-
dong Province (2020B0101350001). This work was par-
tially supported by the Human Frontier Science Program
(RGY0081/2019 to S.S.) and a grant from the National
Institutes of Health NIGMS (R35 GM122547 to A.E.C.).
Xin Rong of the University of Michigan donated NVIDIA
TITAN X GPU used for this research, and the NVIDIA
Corporation donated the TITAN Xp GPU used for this re-
search.

References
[1] What’s next for bioimage analysis? Nature Methods, 20:

945–946, 2023. 1
[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorFlow: A system for large-scale machine learning. In Pro-
ceedings of the 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 265–283.
USENIX Association, 2016. 2, 3

[3] Analytic and Translational Genetics Unit. Microscopy
computational tools. https://github.com/atgu/
microscopy_computational_tools, 2024. 2

[4] Neda Bagheri, Anne E Carpenter, Emma Lundberg, Anne L
Plant, and Rick Horwitz. The new era of quantitative cell
imaging—challenges and opportunities. Molecular Cell, 82
(2):241–247, 2022. 1

[5] Harikrushnan Balasubramanian, Chad M Hobson, Teng-
Leong Chew, and Jesse S Aaron. Imagining the future of op-
tical microscopy: everything, everywhere, all at once. Com-
munications Biology, 6(1):1096, 2023. 1

[6] Phil Bankhead, Michael B. Loughrey, Daniel Fernández,
Yena Dombrowski, Daniel G. McArt, Peter D. Dunne, Sonia
McQuaid, Ron Gray, Liam J. Murray, Helen G. Coleman,
John A. James, Manuel Salto-Tellez, and Paul W. Hamilton.
Qupath: Open source software for digital pathology image
analysis. Scientific Reports, 7:16878, 2017. 2

[7] Niccolò Banterle, Khanh Huy Bui, Edward A Lemke, and
Martin Beck. Fourier ring correlation as a resolution crite-
rion for super-resolution microscopy. Journal of structural
biology, 183(3):363–367, 2013. 4

[8] Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N.
Straehle, Bernhard X. Kausler, Chris Haubold, Marco
Schiegg, Markus Ales, Thomas Beier, Babak Rudy, Martin
Weigert, Vishwanathan Rajan, Urs Schmidt, Martin Weigert,
Eugene W. Myers, Martin Kopf, Fred A. Hamprecht, and
Anna Kreshuk. ilastik: interactive machine learning for
(bio)image analysis. Nature Methods, 16(12):1226–1232,
2019. 2

[9] David SC Biggs and Mark Andrews. Acceleration of iter-
ative image restoration algorithms. Applied Optics, 36(8):
1766–1775, 1997. 3

[10] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 1, 2

[11] Juan C Caicedo, Shantanu Singh, and Anne E Carpenter. Ap-
plications in image-based profiling of perturbations. Current
Opinion in Biotechnology, 39:134–142, 2016. 1

[12] Srinivas Niranj Chandrasekaran, Hugo Ceulemans, Justin D
Boyd, and Anne E Carpenter. Image-based profiling for drug
discovery: due for a machine-learning upgrade? Nature Re-
views Drug Discovery, 20(2):145–159, 2021. 1

[13] Chi-Li Chiu, Nathan Clack, and the napari community. Na-
pari: a Python multi-dimensional image viewer platform for
the research community. Microscopy and Microanalysis, 28
(S1):1576–1577, 2022. 2

[14] clEsperanto contributors. napari-pyclesperanto-assistant.
https://github.com/clEsperanto/napari_
pyclesperanto_assistant, 2020. 3

[15] Gabriel Comolet, Neeloy Bose, Jeff Winchell, Alyssa Duren-
Lubanski, Tom Rusielewicz, Jordan Goldberg, Grayson

85779

https://github.com/atgu/microscopy_computational_tools
https://github.com/atgu/microscopy_computational_tools
https://github.com/clEsperanto/napari_pyclesperanto_assistant
https://github.com/clEsperanto/napari_pyclesperanto_assistant

Horn, Daniel Paull, and Bianca Migliori. A highly efficient,
scalable pipeline for fixed feature extraction from large-scale
high-content imaging screens. iScience, 27(12), 2024. 2

[16] napari contributors. napari: a multi-dimensional image
viewer for Python. https://doi.org/10.5281/
zenodo.3555620, 2019. 2

[17] RAPIDSAI contributors. cuCIM: RAPIDS GPU-accelerated
image processing library. https://github.com/
rapidsai/cucim, 2025. Version 25.06.0. 2, 3, 4

[18] Eric Czech, Bulent Arman Aksoy, Pinar Aksoy, and Jeff
Hammerbacher. Cytokit: a single-cell analysis toolkit for
high dimensional fluorescent microscopy imaging. BMC
bioinformatics, 20(1):448, 2019. 3

[19] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. Int. J. Comput. Vis., 88(2):303–338,
2010. 4

[20] Robert Haase. napari-accelerated-pixel-and-
object-classification. https : / / github . com /
haesleinhuepf/napari-accelerated-pixel-
and-object-classification, 2021. 3

[21] Robert Haase. napari-cupy-image-processing. https:
//github.com/haesleinhuepf/napari-cupy-
image-processing, 2021. 3

[22] Robert Haase, Loic A. Royer, Peter Steinbach, Deborah
Schmidt, Alexandr Dibrov, Uwe Schmidt, Martin Weigert,
Nicola Maghelli, Pavel Tomancak, Florian Jug, and Eu-
gene W. Myers. CLIJ: GPU-accelerated image processing
for everyone. Nature Methods, 17(1):5–6, 2020. 3

[23] Robert Haase, Elnaz Fazeli, David Legland, Michael Doube,
Siân Culley, Ilya Belevich, Eija Jokitalo, Martin Schorb,
Anna Klemm, and Christian Tischer. A hitchhiker’s guide
through the bio-image analysis software universe. FEBS Let-
ters, 596(19):2472–2485, 2022. 2

[24] Robert Haase, Sébastien Strı̈gaud, et al. pyclesperanto:
GPU-accelerated image processing library. https://
pypi.org/project/pyclesperanto/, 2025. Ver-
sion 0.17.1. 3

[25] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,
et al. Array programming with NumPy. Nature, 585(7825):
357–362, 2020. 2

[26] Alexandr A Kalinin, Paula Llanos, Theresa Maria Sommer,
Giovanni Sestini, Xinhai Hou, Jonathan Z Sexton, Xiang
Wan, Ivo D Dinov, Brian D Athey, Anne E Rivron, Nico-
las Carpenter, Beth Cimini, Shantanu Singh, and Matthew J
O’Meara. Foreground-aware virtual staining for accurate 3d
cell morphological profiling. In ICML 2025 Generative AI
and Biology (GenBio) Workshop, Vancouver, Canada, 2025.
7

[27] Hagai Kirshner, Franois Aguet, Daniel Sage, and Michael
Unser. 3-D PSF fitting for fluorescence microscopy: im-
plementation and localization application. Journal of Mi-
croscopy, 249(1):13–25, 2013. 7

[28] Sami Koho, Giorgio Tortarolo, Marco Castello, Takahiro
Deguchi, Alberto Diaspro, and Giuseppe Vicidomini.

Fourier ring correlation simplifies image restoration in fluo-
rescence microscopy. Nature Communications, 10(1):3103,
2019. 8

[29] Talley Lambert. pycudadecon. https://github.com/
tlambert03/pycudadecon, 2019. 3

[30] Vebjorn Ljosa, Katherine L Sokolnicki, and Anne E Carpen-
ter. Annotated high-throughput microscopy image sets for
validation. Nature Methods, 9(7):637, 2012. 6

[31] Leon B Lucy. An iterative technique for the rectification of
observed distributions. The Astronomical Journal, 79:745,
1974. 4

[32] Ilya Lukonin, Marietta Zinner, and Prisca Liberali.
Organoids in image-based phenotypic chemical screens.
Experimental & Molecular Medicine, 53(10):1495–1502,
2021. 1

[33] TorchVision maintainers and contributors. Torchvision: Py-
torch’s computer vision library. https://github.com/
pytorch/vision, 2016. 3

[34] Alán F. Muñoz, Tim Treis, Alexandr A. Kalinin, Shatavisha
Dasgupta, Fabian Theis, Anne E. Carpenter, and Shantanu
Singh. cp measure: API-first feature extraction for image-
based profiling workflows. In Workshop on Championing
Open-Source Development in Machine Learning, 42nd In-
ternational Conference on Machine Learning, Vancouver,
Canada, 2025. 2

[35] Robert PJ Nieuwenhuizen, Keith A Lidke, Mark Bates,
Daniela Leyton Puig, David Grünwald, Sjoerd Stallinga,
and Bernd Rieger. Measuring image resolution in optical
nanoscopy. Nature Methods, 10(6):557–562, 2013. 4

[36] Brian Northan. A collection of useful python util-
ities from true north intelligent algorithms, 2025.
https://github.com/True-North-Intelligent-Algorithms/tnia-
python. 4

[37] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido,
and Crissman Loomis. CuPy: A NumPy-compatible library
for NVIDIA GPU calculations. In Proceedings of Workshop
on Machine Learning Systems (LearningSys) in The Thirty-
first Annual Conference on Neural Information Processing
Systems (NIPS), 2017. 2, 3, 4

[38] Einar Olafsson. SpaCr: Spatial phenotype analysis of
CRISPR-Cas9 screens. https://github.com/
EinarOlafsson/spacr, 2025. 2

[39] Giovanni Palla, Hannah Spitzer, Michal Klein, David Fis-
cher, Anna Christina Schaar, Louis Benedikt Kuemmerle,
Sergei Rybakov, Ignacio L Ibarra, Olle Holmberg, Isaac Vir-
shup, et al. Squidpy: A scalable framework for spatial omics
analysis. Nature Methods, 19(2):171–178, 2022. 2

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Proceedings of the 33rd International Conference on Neu-
ral Information Processing Systems (NeurIPS 2019), pages
8024–8035. Curran Associates Inc., 2019. 2, 3

95780

https://doi.org/10.5281/zenodo.3555620
https://doi.org/10.5281/zenodo.3555620
https://github.com/rapidsai/cucim
https://github.com/rapidsai/cucim
https://github.com/haesleinhuepf/napari-accelerated-pixel-and-object-classification
https://github.com/haesleinhuepf/napari-accelerated-pixel-and-object-classification
https://github.com/haesleinhuepf/napari-accelerated-pixel-and-object-classification
https://github.com/haesleinhuepf/napari-cupy-image-processing
https://github.com/haesleinhuepf/napari-cupy-image-processing
https://github.com/haesleinhuepf/napari-cupy-image-processing
https://pypi.org/project/pyclesperanto/
https://pypi.org/project/pyclesperanto/
https://github.com/tlambert03/pycudadecon
https://github.com/tlambert03/pycudadecon
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://github.com/EinarOlafsson/spacr
https://github.com/EinarOlafsson/spacr

[41] Tobias M. Rasse, Réka Hollandi, and Peter Horváth. Opsef:
Open source python framework for collaborative instance
segmentation of bioimages. Frontiers in Bioengineering and
Biotechnology, 8:558880, 2020. 2

[42] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee,
and Gary Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 3674–3683, 2020. 3

[43] Bernard Richards and Emil Wolf. Electromagnetic diffrac-
tion in optical systems, ii. structure of the image field in
an aplanatic system. Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences, 253
(1274):358–379, 1959. 7

[44] William Hadley Richardson. Bayesian-based iterative
method of image restoration. JoSA, 62(1):55–59, 1972. 4

[45] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin
Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch,
Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Ben-
jamin Schmid, Jean-Yves Tinevez, Daniel J. White, Volker
Hartenstein, Kevin Eliceiri, Pavel Tomancak, and Albert
Cardona. Fiji: an open-source platform for biological-image
analysis. Nature Methods, 9(7):676–682, 2012. 1, 2

[46] Caroline A Schneider, Wayne S Rasband, and Kevin W Eli-
ceiri. NIH Image to ImageJ: 25 years of image analysis.
Nature Methods, 9(7):671–675, 2012. 1, 2

[47] David R. Stirling, Anne E. Carpenter, and Beth A. Cimini.
CellProfiler 4: improvements in speed, utility and usability.
BMC Bioinformatics, 22:433, 2021. 1, 2, 6

[48] Changqing Su, Yuhan Gao, You Zhou, Yaoqi Sun, Cheng-
gang Yan, Haibing Yin, and Bo Xiong. AutoDeconJ: a GPU-
accelerated ImageJ plugin for 3D light-field deconvolution
with optimal iteration numbers predicting. Bioinformatics,
2022. 3

[49] Stéfan van der Walt, Johannes L. Schönberger, and Juan et al.
Nunez-Iglesias. scikit-image: Image processing in Python.
PeerJ, 2:e453, 2014. 1, 2, 4, 5

[50] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, et al. SciPy 1.0: fundamental algorithms for scien-
tific computing in Python. Nature Methods, 17(3):261–272,
2020. 2, 4

[51] Daniela Vorkel and Robert Haase. GPU-accelerating im-
agej macro image processing workflows using CLIJ. arXiv
preprint, 2008.11799, 2020. 3

[52] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Trans. Image Process., 13(4):
600–612, 2004. 4

[53] Gregory P Way, Ted Natoli, Adeniyi Adeboye, Lev
Litichevskiy, Andrew Yang, Xiaodong Lu, Juan C Caicedo,
Beth A Cimini, Kyle Karhohs, David J Logan, et al. Mor-
phology and gene expression profiling provide complemen-
tary information for mapping cell state. Cell Systems, 13(11):
911–923, 2022. 1

[54] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas
Müller, Alexandr Dibrov, Akanksha Jain, Benjamin Wil-
helm, Deborah Schmidt, Coleman Broaddus, Siân Culley,
et al. Content-aware image restoration: pushing the limits
of fluorescence microscopy. Nature Methods, 15(12):1090–
1097, 2018. 4

[55] Guillaume Witz. napari-skimage. https://github.
com/guiwitz/napari-skimage, 2024. 2

105781

https://github.com/guiwitz/napari-skimage
https://github.com/guiwitz/napari-skimage

	Introduction
	Related work
	Traditional bioimage analysis tools
	GPU-accelerated frameworks and tools

	Methods
	Design principles
	Key features
	Device-agnostic processing

	Benchmarks and examples
	3D image rescaling benchmark
	CellProfiler 3D monolayer segmentation
	Richardson-Lucy deconvolution

	Discussion

