
A. Definition of Terms
We address the problem of unsupervised domain adap-
tation (UDA). This problem is closely related to super-
vised domain adaptation (SDA) and semi-supervised learn-
ing (SSL). In SSL problems both labeled and unlabeled
training data is given, with the goal to learn a ”better” model
using all available data compared to using fully supervised
learning on just the labeled data. Both labeled and unla-
beled data are from the same domain (same data distribu-
tion). In the case of UDA a source domain with labels and
a target domain without labels is given. Source and tar-
get domain have different data distributions, corresponding
e.g. to different imaging devices or different experimental
conditions in biomedical applications. The goal of UDA is
to train a model that solves the same task (e.g. cell seg-
mentation) on the target domain as on the source domain.
The case of SDA is very similar, but the target domain is
partially labeled (i.e. annotations are provided for a sub-
set of the target samples). This discussion shows that all
three settings are similar, with the distinction being the data
distributions for labeled and unlabeled data: In SSL both
labeled and unlabeled data come from the same data distri-
bution and in UDA they come from two different data dis-
tributions (source and target data distribution). In SDA the
labeled data comes from both source and target distribution
(usually with the fraction of target data being significantly
smaller) and the unlabeled data comes only from the tar-
get distribution. Consequently self-training methods can be
generalized to all three learning problems, as has recently
been demonstrated by AdaMatch [4].

We make use of self-training with pseudo-labels to ad-
dress UDA. These terms are sometimes used with slightly
different meanings in the literature. Here, we use self-
training to describe methods that use a version of the model
being trained to generate predictions on unlabeled data,
which are then used as targets in an unsupervised loss func-
tion to again train the model. This can be understood as
a student-teacher set-up, with the teacher being a version
of the student (e.g. through EMA of weights or weight
sharing). We use the term pseudo-labeling to describe the
process of transforming the teacher predictions into targets
for the unsupervised loss function, e.g. by post-processing
or filtering (masking or weighting) them. Note that the
literature sometimes distinguish between pseudo-labeling
when the likeliest prediction is used as hard target in the
unsupervised loss, and consistency regularization when the
softmax output (more generally output after the last acti-
vation) is used as target. See for example https://
lilianweng.github.io/posts/2021-12-05-
semi-supervised/ for an in-depth discussion. How-
ever, this distinction is minor in practice and can be incor-
porated in the pseudo-labeling post-processing in our for-
mulation (the function p in Eq. 1). Hence, we do not make

this distinction throughout the paper.

B. Probabilistic Domain Adaptation: Training
Strategies

We implement two different approaches to domain adap-
tation: joint training (model is trained jointly on labeled
source and unlabeled target data, using a supervised and
unsupervised loss function) and separate training (model is
first pre-trained on the labeled source data, using only the
supervised loss, and then fine-tuned on the unlabeled tar-
get data, using only the unsupervised loss). Here, we show
pseudo-code for the two training routines, for joint training
in Alg. 1 and for separate training in Alg. 2. For simplicity
we omit validation, which is performed using the target data
in both cases. Here, we use the same loss function l for both
the supervised and unsupervised loss.

Input: Labeled training data {(xs, ys)}, unlabeled
training data {xu}, teacher and student
models s, t, number of iterations N

Initialize parameters of s and t;
for i ← 1 to N do

Sample mini-batch (xi
s, yis) and xi

u;
Compute supervised loss Ls = l(s(xi

s), y
i
s);

Sample augmentations τs and τt;
Compute pseudo-labels ŷ = t(τt(xu));
Compute unsupervised loss
Lu = l(f(s(τs(xs)), ŷ));

Compute gradients, update parameters of s
based on Ls + Lu;

Update parameters of t from s;
end

Algorithm 1: Pseudo code for the joint training strat-
egy.

The two self-training approaches we implement, Mean-
Teacher and AdaMatch correspond to different choices for
the teacher and student augmentations τs and τt as well as
the teacher update scheme. For MeanTeacher both τs and
τt are sampled from a distribution of weak augmentations
and the weights of t are the EMA of s. For FixMatch τs is
sampled from a distribution of strong augmentations and τt
from a distribution of strong augmentations, s and t share
weights. The different pseudo-label filtering approaches are
realized by different choices for f , where consensus mask-
ing corresponds to only computing gradients for pixels that
have a value of 1 in the consensus response (see Eq. 3),
consensus weighting corresponds to weighting the loss by
the consensus response. In the case of no filtering f is the
identity.



Input: Unlabeled training data {xu}, pre-trained
model s, number of iterations N

Copy model t from s;
for i ← 1 to N do

Sample mini-batch xi
u;

Sample augmentations τs and τt;
Compute pseudo-labels ŷ = t(τt(xu));
Compute unsupervised loss
Lu = l(f(s(τs(xs)), ŷ));

Compute gradients, update parameters of s
based on Lu;

Update parameters of t from s;
end

Algorithm 2: Pseudo code for the separate training
strategy. (Only the adaptation stage on the target do-
main; source training follows regular supervised learn-
ing.)

C. Implementation
We use the same UNet and PUNet architecture for all ex-
periments, using an encoder-decoder architecture following
the respective implementations of [17] and [11]. We in-
crease the number of channels from 64 to 128, 256 and 512
in the encoder, and decrease it accordingly in the decoder.
We use a 2d segmentation network, hence both architec-
tures make use of 2d convolutions, 2d max-pooling and 2d
upsampling operations. The UNet is trained using the Dice
Error (1. - Dice Score) as loss function. For the PUNet we
use a similar formulation for the loss function as in [11],
but use the Dice Error for the reconstruction term instead of
the cross entropy. We use a dimension of 6 for the latent
space predicted by the prior and posterior net of the PUNet.
We use the Adam optimizer, relying on the default PyTorch
parameter settings, except for the learning rate, and we use
the ReduceLROnPlateau learning rate scheduler. For joint
and source model trainings we train for 100k iteration, for
the second stage of separate trainings we train for 10k iter-
ations. We use different patch shapes, batch sizes and learn-
ing rates depending on the dataset and method; these values
were determined by exploratory experiments.

For LIVECell:
• UNet: patch shape: (256, 256); batch size: 4; learning

rate: 1e-4
• PUNet: patch shape: (512, 512); batch size: 4; learning

rate: 1e-5
• PUNettrg , MTs: patch shape: (512, 512); batch size: 2;

learning rate: 1e-5
• FMs: patch shape: (256, 256); batch size: 2; learning

rate: 1e-7
• FMj , MTj : patch shape: (256, 256); batch size: 2; learn-

ing rate: 1e-5
For mitochondria segmentation in EM:

• UNet, PUNet, MTs, MTj , FMj : patch shape: (512,
512); batch size: 4; learning rate: 1e-5

• FMs: patch shape: (512, 512); batch size: 4; learning
rate: 1e-7
For lung segmentation in X-Ray:

• UNet: patch shape: (256, 256); batch size: 2; learning
rate: 1e-4

• PUNet, MTs, MTj : patch shape: (256, 256); batch
size: 2; learning rate: 1e-5
We use gaussian blurring and additive gaussian noise

(applied randomly with a probability of 0.25, and with aug-
mentations parameters also sampled from a distribution) as
weak augmentations, and gaussian blurring, additive gaus-
sian noise and random contrast adjustments (applied ran-
domly with a probability of 0.5, and sampling from a wider
range compared to the weak augmentations) as strong aug-
mentations.

Our implementation is based on PyTorch. We
use the PUNet implementation from https :
//github.com/stefanknegt/Probabilistic-
Unet-Pytorch. All our code is available on GitHub
at https : / / github . com / computational -
cell - analytics / Probabilistic - Domain -
Adaptation. Please refer to the README for instruc-
tions on how to run and install it.

D. Datasets

LIVECell Dataset We use the LIVECell dataset from [6].
This dataset contains about 5000 phase contrast microscopy
images with instance segmentation ground-truth and prede-
fined train-, test-, and validation-splits. We binarize the in-
stance segmentation ground-truth to obtain a semantic seg-
mentation problem. The dataset contains images of 8 differ-
ent cell lines: A172, BT474, BV2, Huh7, MCF7, SHSY5Y,
SkBr3 and SKOV3. These cell lines show significant dif-
ference in appearance and morphology of cells as well as
spatial distribution such as cell density and cell cluster-
ing. Hence, we treat all 8 cell types as different domains,
and study the adaptation from one cell line as source do-
main to the seven other target domains for all 8 cell lines.
The columns in Tab. 2 show the average dice score for one
source applied to the seven target domains.

Mitochondria EM Segmentation For mitochondria seg-
mentation in EM we use the dataset of [7] as source dataset.
This dataset contains two EM volumes, one of human neu-
ral tissue, the other of rat neural tissue, imaged with scan-
ning EM. Each volume contains 400 images with instance
annotations for training, and 100 images with instance an-
notations for testing. We binarize the instance segmenta-
tion ground-truth to obtain a semantic segmentation prob-
lem. We study domain adaptation with [7] as source for



two different target datasets. The first is Lucchi [5], which
contains two volumes of tissue from the murine hippocam-
pus imaged with FIBSEM that both contain mitochondria
instance annotations. We use one of the volumes for train-
ing the domain adaptation methods (either via joint or sep-
arate training), and the other for evaluation. And VNC [8],
which contains two volumes from the ventral nerve cord
of a fruit fly, imaged with serial section transmission EM.
Only one of the two volumes contains instance annotation,
it is used for evaluation, the other does not, it is used for
training the domain adaptation methods (which does not
require labels). UroCell [33] contains annotated volumes
of tissue from mice urinary bladders imaged with FIBSEM
that contain multiple intracellular compartment annotations,
including mitochondria. We use four volumes for training
the domain adaptation methods (either via joint or separate
training), and reserve one volume for evaluation.

Lung X-Ray Segmentation For the lung segmentation
task we use four different datasets of chest radiographs,
following the experiment set-up of [23]. The datasets are:
NIH, which contains chest X-Ray (CXR) images with vari-
ous severity of lung diseases, Montgomery [9], which con-
tains images of patients with and without tuberculosis, and
JSRT [20], which contains images of patients with and with-
out lung nodules. The JSRT dataset is split into two subsets:
JSRT1 with normal CXR images (60 images, 50 train, 10
test), and JSRT2 with inverted CXR images (247 images,
199 train, 48 test). The NIH dataset contains 100 images
(we use 80 for training and 20 for testing) and the Mont-
gomery dataset contains 138 images (113 are used training,
25 for testing) respectively. All datasets contain binary lung
annotations; we discard additional annotations in the case
of JSRT2. We treat each dataset as a separate domain, and
perform domain adaptation for all pairs of domains.


