Appendix A. Trackastra Backbone

We summarize key components of the Trackastra [5] model below. Trackastra is a transformer-based architecture trained in a
supervised manner to perform cell tracking across time-lapse microscopy data. During training, it assumes all cell detections
are correct and focuses exclusively on learning associations between them.

The model processes overlapping spatio-temporal windows of size T" framesx H x W pixels. Each detection within this
window is tokenized based on low-level morphological features—specifically, mean intensity, object area, and inertia tensor.
To construct input tokens, these features are concatenated with learned Fourier spatial positional encodings, which capture both
spatial and temporal context. The resulting vector is then projected onto a fixed token dimension, embedding each detection
with information about its appearance, position, and time.

The model outputs a square association matrix of shape N x IV, where N is the total number of detections in the window. A
quiet parental-softmax is applied to the matrix to enforce that each detection may be assigned to at most one parent in the
previous frame—or none, thereby naturally accommodating appearing and disappearing objects.

Supervision is provided in the form of a binary ground-truth association matrix, where the entry is 1 if two detections
belong to the same cell lineage (i.e., one is a direct ancestor or descendant of the other), and 0 otherwise.

The supervised loss used by Trackastra is a weighted combination of two binary cross-entropy losses:

Lo (A, A, W) = Lrce (A7 B(A), W) +0.01 Lyer (A, o(A), W) , @®)

where <I>(/i) is the quiet-softmax output, a(fl) is the element-wise sigmoid applied to the predicted association matrix A, and
W is a weighting factor for each element.

In this paper, we use A instead of ®(A) to denote the quiet-softmax output.
For full implementation details, we refer the reader to Trackastra [5] .

Appendix B. Evaluation Metrics

We evaluate the performance of our proposed method and baseline approaches using several standard tracking metrics, as
reported in Table 1, Table 2, Figure 2 and Figure 3. All metrics are computed using the Traccuracy library available at
https://github.com/live-image-tracking-tools/traccuracy.

Acyclic Oriented Graph Matching (AOGM [13]) quantifies the effort required to transform a predicted tracking graph into
the ground truth graph. An AOGM of zero indicates a perfect match. In the context of linking ground truth detections, it is
computed as a weighted sum of node and edge errors:

AOGM = 10 - [FN, | + [FP| + 1.5 - [FN,| + [WS,|,

where [FN,| denotes the number of false negative nodes, |FP.| the number of false positive edges, |FN,| the number of false
negative edges, and [WS,| the number of edges with wrong semantics (e.g., division vs. linking).

Tracking Accuracy (TRA) [13] normalizes AOGM to the [0, 1] range, enabling consistent comparisons across datasets:

min (AOGM, AOGMy)
AOGM, ’
where AOGM is the cost of transforming an empty graph (no nodes or edges) into the ground truth.

Since AOGM | and TRA 1 only implicitly account for cell divisions, we also report dedicated cell division metrics, some
of which are described below..

TRA =1 —

Mitotic Branching Correctness (MBC) [2] measures the fraction of correctly detected mitotic events out of all mitotic
events in the ground truth. A mitosis is considered correct if the predicted and true division times of occurrence are within a
specified tolerance, and the daughter assignments match.

Division F; Score (Div. F;) evaluates division detection using the counts of true positive TPy, false positive FPg4, and false
negative FNy4 division events:

2. TPy

Div. F; = .
V= 9 TTP, £ FPy + FNg

Appendix C. Experimental Setup

Data Handling During unsupervised pre-training, we use the entire dataset—without a train/val/test split—to maximize
exposure to unlabeled data. For the Bacteria [5, 19] dataset, this includes all 30 training, 2 validation, and 6 test sequences.
Evaluation is still performed only on the 6 test sequences. For the HeLa [12] dataset, both sequences (01 and 02) are used
during pre-training, but we evaluate exclusively on sequence 02.

During fine-tuning:
¢ In the extrapolation setup, we fine-tune using annotations derived from both train and validation sequences.
¢ In the interpolation setup, we fine-tune directly on the test sequences.
Evaluation is always conducted on the test sequences in both setups.

Evaluation Protocol For the Bacteria [5, 19] dataset, which contains 6 test video sequences, evaluation metrics are
computed independently for each sequence and then averaged, following the same protocol as Trackastra [5] .

Globally-Constrained Optimization In all experiments, we use the following cost configuration: w;=ws=1, b=0, and
fixed costs C,=C4=1 for appearance and disappearance events. All distance measures d; and d are normalized to have zero
mean and unit variance, separately for standard edges and hyper edges.

Supervised Baseline For the supervised baseline (see Position and Supervised Associations in Table 1), we use the first
78 frames of sequence 01 in the HeLa [12] dataset for training, and the last 14 frames are held out for validation. Similar to
above, evaluation is performed on the sequence 02 of the HeLa dataset.

In this baseline, we train a Trackastra [5] model in a supervised manner, using the provided ground truth association
matrices and the supervised loss function (see Equation 8). Next, in Equation 5, we set do = —Azjl"t where A7t is
the predicted association matrix output, by the model between cell detections corresponding to frames ¢—1 and ¢ while the
subscript (i,j) denotes the score for the edge between cell detections ¢ and j at frames ¢t—1 and ¢, respectively.

Re-ID and Autoencoder Baselines For the Re-ID and autoencoder-based baselines, we use patches of size 64 x64 pixels.
The autoencoder produces a 64-dimensional embedding for each patch, which is then used as input for the tracker trained with
unsupervised loss (see Equation 3).

Attrackt Pre-Training We set the weight of the transitive loss in Equation 3 to A = 0.1. Our tracking backbone is based on
Trackastra [5] using 6 encoder and 6 decoder layers. We train all models for 600 epochs with a batch size of 8, a dropout rate
of 0.1, and a spatio-temporal window of size 6 frames x 256 x 256 pixels.

We use lightweight MLPs, denoted mg and mp (see Figure 1 and Section 3.2), to process autoencoder embeddings in a
parallel branch to the Trackastra [5] network. These MLPs follow the structure below:

class FeedForward(torch.nn.Module) :
def __init__ (self, d_model, expand: float = 2, bias: bool = True):

super () .__init__ ()
self.fcl = torch.nn.Linear (d_model, int (d_model * expand))
self.fc2 = torch.nn.Linear (int (d_model * expand), d_model, bias=bias)

self.act = torch.nn.GELU ()
self.norm = torch.nn.LayerNorm(d_model)

def forward(self, x):
return x + self.fc2(self.act(self.fcl(self.norm(x))))

Attrackt Fine-Tuning During LoRA-based fine-tuning, we set the rank » = 32 and the scaling factor oo = 32.
To prevent overfitting during fine-tuning, we additionally apply an early stopping criterion: training is halted after 100 - k
iterations, and the model checkpoint from the final iteration is used for inference, where k is the number of node annotations.

Residual Error in Interpolation In principle, since we incorporate pinning (i.e., enforcing known annotations while solving
the globally-constrained optimization) in the interpolation setting, the AOGM | should drop to zero when all annotations are
used. However, we observe a small residual error (see Figures 2 and 3). This occurs because the candidate graph connects each
detection to its 10 nearest neighbors in the previous frame. Occasionally, the true predecessor lies outside this neighborhood.

Appendix D. Comparison of pre-training followed by fine-tuning vs. Training from scratch

AOGM |

3 T Bacteria [5, 19] extrapolation ——————T1 5 T Bacteria [5, 19] interpolation ——————T1
108} g 1 103 5 .
02— g~~~ 1w t— e .

—@— Confidence-based sampling + PT. |- _ _ _ _ = ——fR | | mem eI\ mrmm———
Random sampling + P.T.
L--- Supervised baseline B | B
101 --- Unsipervised baseline 101
—l— Confidence-based sampling + T.S.
Random sampling + T.S.
100 T T T \ \ 100 \ \ \ \
10 100 1000 10000 65693 10 100 1000 10000 16051
T HelLa [12] extrapolation —————————T1 HelLa [12] interpolation —————————T1
10% |- 2
102.4 - |
102.3 [| 7 |
| | I I 10! | | \ | |
10 100 1000 8378 10 100 1000 10000 25057
Number of Annotations Number of Annotations

Figure 3. The figure shows a quantitative comparison of unsupervised pre-training (P.T.) (using Attrackt and transitive loss, see Equation 3)
followed by fine-tuning, versus supervised training from scratch (T.S.), with a limited number of annotations on two microscopy datasets:
Bacteria and HeLa. Each row corresponds to a dataset, and plots the AOGM | metric after providing k ground truth (G.T.) annotations.
Each column corresponds to an experimental setup: Extrapolation refers to training with G.T. annotations from the train+val split and
evaluating on the test split, while Interpolation refers to providing G.T. annotations directly on the test split, which is also used for evaluation.
Results using two sampling strategies (confidence-based and random) are shown for both P.T. and T.S. Supervised and Unsupervised
baselines correspond to results with Pos. & Sup. Associations and Pos. & Unsup. Associations in Table 1.

