S1. Datasets

S3D dataset The manually labeled S3D dataset is con-
ceived to train or evaluate spine detection and depth-
tracking models. In Table S1 we show an overview of its
content, reporting the overall number of detections in the
2D images (slices), the overall number of 2D images, 3D
volumes, and 3D spine instances (tracks), as well as per
volume. We show this for the entire data set (total) and for
one representative, randomly generated train/validation/test
partitioning. The dataset is divided into training, validation,
and test sets, based on the number of detections, allocating
at least 80% to training, at least 9% to validation, and the
remainder to testing. To prevent data leakage, we ensure
that observations from the same field of view (regardless of
timepoint) were never split across different partitions.

Training Validation Test Total
Detections 10585 1136 883 12604
Image slices 2676 551 331 3558
Volumes 121 22 16 159
Tracks 2060 198 195 2453
Slices per vol. 22£8 26 £7 21+2 2247
Detections per vol. 87 + 89 52+62 55+48 79483
Tracks per vol. 17+ 16 9410 124+11 15415

Table S1. Content information for dataset S3D. We report the
overall number of 2D detections, image slices, volumes, and tracks
(unique 3D spine objects), and the mean + standard deviations for
the number of slices per volume, the number of detections per vol-
ume, and the number of tracks per volume. We show these num-
bers for the complete dataset (total) and one randomly generated
partition into training, validation, and test sets.

Additional datasets for spine detection evaluation To
evaluate our detection method, we use our S3D dataset
alongside two open-source datasets (see Table S2). These
external datasets vary in animal, brain region, sample
condition (in vivo, in vitro, ex vivo) and image resolution,
allowing us to assess the robustness and generalizability of
our approach across diverse experimental conditions.

S2D+T dataset The annotations of the S2D+T dataset are
produced with the goal to develop and to validate spine
time-tracking methods. An overview of its content is shown
in Table S3, reporting the number of total 2D images
(slices), 3D volumes, 2D detections, and 3D spine objects
(tracks) in total, per volume, and per image.

S2. Implementation details

S2.1. Dendritic spine detection in 2D

Deformable DETR training Our Deformable DETR
detection model is trained for a total of 80 epochs, and the

Dataset lmagng Brain region Resolution Sam]?]Ae
technique (um per px) condition
DeepD3 Rat hippocampus y 5 v
Dataset [3] Two-photon CAl 0.094 x 0.094 x 0.5 Exvivo
Smirnov- Mouse hippocampus . § .
Garrett [1] Two-photon CAl 0.067 x 0.067 In vitro
S3D Two-photon Mouse auditory cortex 0.107 x 0.107 x 0.5 In vivo

Table S2. Overview of the three datasets used for the evalu-
ation of automated spine detection. Besides our data (S3D),
the DeepD3 dataset and the Smirnov-Garrrett dataset, two pub-
licly available datasets are used to assess the generalizability of
our spine detection method in comparison to previously published
methods.

Volumes Image slices Detections Tracks
Total 720 7648 3974 1450
Per volume - 11+5 6+3 6+3
Per slice - - 1+0.45 1+0.45

Table S3. Content information for dataset S2D+T. Number of
volumes, image slices, detections and tracks for the overall dataset
(total), per volume at a single timepoint, and per slice. Detections
refer to the 2D polygons, and tracks refer to the number of unique
3D objects (each represented with a single 2D instance) that were
manually tracked. Note that here the number of detections in a
volume (at a single timepoint) equals that of tracks, since for each
3D object only one 2D instance was labeled.

selected checkpoint is the one with the highest score for the
validation partition. The detailed data partitioning is shown
in Table S1. We use image flipping as data augmentation
techniques, and stochastic gradient descent as optimizer,
le—3 as the learning rate, and 3e—6 as the weight decay.
Our Deformable DETR model is implemented in PyTorch
and extends the work of Vogel et al. [5]. Our model is
trained on one NVIDIA GPU A100.

Prediction of spine bounding boxes on 2D When predict-
ing with our detection model, the parameters used are kept
fixed, and our minimum confidence threshold set to 0.5. We
use DeepD3’s 32F model to predict binary masks of spines
and built ROIs using their GUI with the default parameter
values, except for the image resolution, which we adjust
as specified by the dataset. In the case of the Vogel et al.
model, we adjust only the minimum confidence threshold,
setting it to 0.5 (as per default) for the S3D-test dataset, and
to 0.1 for the DeepD3 and Smirnov datasets, as the images
are much dimmer compared to the data it was trained on.

Data pre-processing for evaluation To enable evaluation
when using the segmentation-based model DeepD3 [2], we
first convert the binary masks into individual 2D object in-
stances by extracting the minimum bound box that enclos-

Slice z

I" I A D

same \ &
weights | dist

x 3

Appearance cost

D

Slicez +1

[AnB| ID|
|AUB| |[AUBUD|

Spatial cost

Figure S1. Schematic of the cost terms to resolve matching
across depth. Left) Our Siamese network trained on spine data is
used to encode a 2D image patch of a spine into an feature embed-
ding. Pairs of 2D instances that potentially belong to the same 3D
object are encoded and the Euclidean distance between their em-
beddings is computed. Right) To measure spatial consistency, the
generalized intersection over union between the bounding boxes
(here represented as A and B) of the 2D spines is calculated.

ing each mask. In the case of SpineS, each predicted SURF
feature corresponds to a single 2D point. Thus, we assign
each prediction a box of fixed size, based on the average di-
mensions of ground-truth boxes from the evaluation dataset.

S2.2. Spine tracking across depth

Siamese network training As mentioned in Section 2.4,
a CNN is trained to encode visual features representative
of the same 3D spine instance. From the annotations pro-
duced for the train partition of the S3D dataset, 2D image
patches of spines are extracted using their bounding box co-
ordinates. Each image patch is labeled with its correspond-
ing 3D identity across depth.

The training is done for a maximum of 100 epochs, with

20 epochs of patience for early stopping. Gaussian blur and
color jittering are used as augmentation techniques, dropout
was used to avoid overfitting, and Adam as the optimizer.
The learning rate is set to le—4, and the weight decay to
le—5.
Trackformer training Trackformer is trained across 80
epochs, starting from the pre-trained version for the MOT17
dataset, with Deformable DETR with iterative refinement as
its detection module.

S2.3. Automated computation of spine features

Spine size Given a 2D spine detection, an extended
bounding box is created by taking 25 more pixels on
each side, and the mean of the 20% darkest pixels is
used to estimate a background threshold. Analogously,
the mean of the 98% brightest pixels is calculated to
estimate the dendrite intensity. All of the pixels below the
background threshold in the original bounding box are set
to 0. Then, a Gaussian weighting mask is applied to reduce
the influence of possible bounding box overestimation.
Next, the background threshold value is subtracted from
the foreground pixels, and the pixels intensities inside the

original bounding box are summed. Finally the integrated
fluorescence is normalized by the dendrite intensity. After
depth-tracking, we set the size of a 3D spine object as the
median across the sizes of its 2D instances.

Spine-to-dendrite distance The spine-to-dendrite distance
is estimated through a two stage process. First, the spine
subregion (delimited by the bounding box) is binarized us-
ing Otsu thresholding and overlaid with a dilated binary
mask of the non-spine surrounding region. The coordinate
at the center of the overlapping area is then taken as the
spine-dendrite junction [4]. Second, the largest contour of
the binarized spine region is extracted, and an ellipse is fit-
ted to it. The center of this ellipse is used as the spine head
center. The distance between these to points defined our
estimate of the spine-to-dendrite distance.

References

(1]
(2]

(3]

(4]

(3]

Labeled Dendritic Spines - Training Data, 2018. 1

Martin HP Fernholz, Drago A Guggiana Nilo, Tobias Bonho-
effer, and Andreas M Kist. Deepd3, an open framework for
automated quantification of dendritic spines. PLOS Computa-
tional Biology, 20(2):e1011774, 2024. 1

Martin H P Fernholz, Drago A Guggiana Nilo, Tobias Bonho-
effer, and Andreas M Kist. DeepD3 Datasets, 2023. 1

Yutaro Kashiwagi, Takahito Higashi, Kazuki Obashi, Yuka
Sato, Noboru H Komiyama, Seth GN Grant, and Shigeo Ok-
abe. Computational geometry analysis of dendritic spines by
structured illumination microscopy. Nature communications,
10(1):1285, 2019. 2

Fabian W Vogel, Sercan Alipek, Jens-Bastian Eppler, Pamela
Osuna-Vargas, Jochen Triesch, Diane Bissen, Amparo Acker-
Palmer, Simon Rumpel, and Matthias Kaschube. Utilizing
2d-region-based cnns for automatic dendritic spine detection
in 3d live cell imaging. Scientific reports, 13(1):20497, 2023.
1

	Datasets
	Implementation details
	Dendritic spine detection in 2D
	Spine tracking across depth
	Automated computation of spine features

