Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays
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Figure 1. Likewise, as in the first heatmap figure, we pass the same images through their corresponding best-performing model and generate
heatmaps based on all layers to visualise the model’s prediction process.

1. Average Heatmaps

In the previous heatmap figure, the Grad-CAM was gener-
ated using only the final activation layer. As a comparison,
we now generate heatmaps by averaging the Grad-CAMs
computed across all model layers of the best-performing
model. Looking at Figure 1, while the heatmaps for the
cropped and LH images remain relatively similar, the se-
mantic and contour images provide new insights. These re-
veal a broader range of regions the model attends to, and the
attention patterns appear less random than those based on
the final layer alone. The model seems to be analysing vari-
ous anatomical structures to determine the dataset of origin.
This suggests a form of semantic-level analysis, similar to
what we computed, where the model approximates organ
structures and assesses which dataset they most likely cor-
respond to.

2. Transformations

We utilise the MONALI library to implement 13 care-
fully selected augmentation transformations designed to en-
hance model robustness through controlled variations in
pixel intensity and texture. Our experiments evaluate these
transformations using two distinct application probabilities:
P = 0.2 (conservative) and P = 0.5 (aggressive).

Augmentation Transformations

The complete set of transformations includes:

Intensity Modifications

* Gaussian Noise
RandGaussianNoise (prob = P)
 Intensity Shifting
RandShiftIntensity (offset = 0.1, prob = 0.5)
RandStdShiftIntensity (factor = 0.1, prob = 0.5)
* Intensity Scaling
RandScalelIntensity (factor = 0.1, prob = 0.5)
RandScalelIntensityFixedMean (factor = 0.1,



prob = 0.5)
¢ Contrast Adjustment
RandAdjustContrast (prob=0.5)

Spatial & Texture Modifications

¢ Smoothing Filters
SavitzkyGolaySmooth (window_length =5, order =
2, prob = 0.5)
RandGaussianSmooth (o = 1.0, prob =0.5)
MedianSmooth (radius = 1, prob = 0.5)

¢ Sharpening
RandGaussianSharpen (prob =0.5)

¢ Non-linear Transforms
RandHistogramShift (control_points = 10, prob =
0.5)

Structural Perturbations

* Dropout & Shuffling
RandCoarseDropout (holes =5, size = (32,32), prob
=0.5)
RandCoarseShuffle (holes = 5, size = (32,32),
max_holes = 10, prob = 0.5)

We aim to preserve the existing transform pipeline used
during training and simply insert a MONAI transform
within it. Since MONALI expects input as NumPy arrays
with a single channel, we add a custom transform after re-
sizing the PIL image to convert it to a NumPy array and
append a channel dimension. After applying the MONAI
transforms, we convert the output (a MONAI MetaTensor)
back to a NumPy array and apply another custom transform
to remove the channel dimension. This ensures compati-
bility while keeping the rest of the transformation pipeline
unchanged.
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