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Supplementary Material

A. Appendix
A.l. Authentic Robustness

The robustness of DNNSs is often assessed using artificially
corrupted datasets such as ImageNet-C [19] and ImageNet-
C [34]. These datasets consist of images that are incremen-
tally perturbed to assess model stability across varying lev-
els of corruption. These perturbed images retain the same
underlying semantics as the original images, since they are
created from the same clean image. In real-world scenar-
ios, however, models are evaluated on images that may ex-
hibit diverse semantics in addition to distortions. Therefore,
model evaluation should extend beyond strictly measuring
stability under distortions, and should also encompass the
assessment of generalizability in the presence of such dis-
tortions. During the development of DNNs, model check-
points are typically selected based on the performance on
a validation dataset and evaluated on a test set, which has
not been encountered during training. Nevertheless, images
in robustness test sets like ImageNet-C are corrupted ver-
sions of the images used for validation, which raises con-
cerns about potential data leakage. In order to mitigate this,
the robustness datasets utilized in this study contain images
that are not used for validation. Additionally, while the im-
ages in the quality triplets in this work are from the same
patients, they possess semantics that are sufficiently differ-
ent to assess both model robustness and generalizability.

A.2. Pre-Trained Weights

The results in Table 5 demonstrate the increased perfor-
mance when utilizing in-domain pre-trained GastroNet-5SM
weights over ImageNet-1K weights. Since the ImageNet-
1K weights are not in-domain, the initial learning rate is in-
creased to 10™% to allow for more flexibility. The largest
differences are observed on the blind IQ triplet, where
the model initialized with GastroNet weights improves the
AUC by up to 0.139. The in-domain pre-training shows su-
periority due to the initialized domain relevant features ob-
tained during self-supervised learning, as discussed in [4].

A.3. Training Details of the Frequency Damper

The damper is trained using a loss, £, which is a combi-
nation of the TV loss of the output image and the L1 re-
construction loss with respect to the original input image.
Because of this combination, the frequency damper tries to
achieve the optimal balance between preserving significant
semantics and reducing HF texture. Mathematically, the to-

tal loss is formulated as:
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where the TV loss and L1 loss are defined as
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respectively. Here, I, j, is the pixel intensity for the image
I of width W and height H at position w, h. The division
by 2 x W x H in the total loss is necessary to normalize
the TV loss to approximately the same order of magnitude
as the L1 loss. The total loss is aggregated across the 3
channel dimensions of the images, but this is omitted from
the equations for the sake of simplicity.

The damper is trained for 9 epochs using the Adam opti-
mizer. The initial learning rate is set to 1072 and decreased
by a factor of 10 after every 3 epochs. A batch size of 128 is
used during training. The damper is trained on clean images
with standard data augmentation, including random resized
cropping and horizontal flipping of the images. After the
damper training is completed, the weights are frozen, and
the damper is used as an augmentation transformation dur-
ing model training.

A 4. Deterministic and Stochastic WaveDamp

Table 6 shows the performance enhancements obtained us-
ing the stochastic properties introduced in WaveDamp com-
pared against its deterministic variant. The results clearly
show that the increased randomness boosts generalization
and robustness on all test sets.

A.5. Bias Set Details

The generalizability of the models is examined using 3 dif-
ferent bias sets. These biases explored include the shape
bias, LF bias and HF bias, and are created using 5 different
severity levels. The shape and LF bias focus on the texture-
shape trade-off in CNNs, which often utilize HF texture in-
formation to achieve high classification accuracy [17]. Ad-
ditionally, the HF-bias is investigated to evaluate model per-
formance under LF distortions, such as underexposure and
overexposure. The texture information is suppressed using



Table 5. Baseline evaluation using ImageNet-1K and GastroNet-5M initialization.

Dataset Peak Performance Curated IQ Triplet Blind IQ Triplet

BM HQ MQ LQ HQ MQ LQ
ImageNet-1K 0.840 £0.019 0.902 £0.021  0.915 x0.010 0.785 £0.021 | 0.708 +0.007 0.673 £0.015 0.695 +0.023
GastroNet-5SM 0.888 +0.014 0.941 +0.012 0.889 +0.014 0.785 £0.013 | 0.847 +0.014 0.776 £0.015 0.762 + 0.022

Table 6. Evaluation of deterministic and stochastic WaveDamp, demonstrating the obtained performance enhancements due to the intro-

duced stochastic properties.

Method Peak Performance Curated IQ Triplet Blind IQ Triplet

BM HQ MQ LQ HQ MQ LQ
Deterministic 0.902 +0.011 0.940 +0.012  0.902 +0.012 0.803 £0.014 | 0.835+0.013 0.772+0.018 0.771 £0.029
Stochastic 0.922 +0.017 0.956 +0.015 0.933 +0.016 0.842 +0.011 | 0.853 +£0.013 0.807 £0.007 0.846 + 0.009

Table 7. Overview of the parameters used to create the various
bias test sets for each severity level.

Severity | 1 | 2 | 3 | 4 | 5

Shape bias | w=10.05 | w=0.10 | w =020 | w=0.50 | w=1.00
LF bias | 0=25 | 0=20 | 0=15 | 0=10 | o=5
HF bias ‘ o=1 ‘ o=2 ‘ o=3 ‘ o=4 ‘ oc=5

total variation minimization [5] utilizing various weight co-
efficients (w) depending on the severity. The HF and LF
information is reduced using Gaussian low-pass and high-
pass filters featuring various standard deviation values (o).
An overview of the parameters used for the different trans-
formations is shown in Table 7. Visual examples are pre-
sented in Fig. 7, illustrating how the images are processed
across the different severity levels. Fig. 8 demonstrates an
overview of the model performance across all severity lev-
els of the bias sets, highlighting that the models trained us-
ing WaveDamp experience the least amount of performance
reduction.

A.6. Additional Experiments

The following section provides further information about
the additional experiments.

A.6.1. Segmentation

In order to evaluate the performance of WaveDamp on a
public dataset, we conduct additional experiments using
the Kvasir-SEG segmentation dataset [27]. Kvasir-SEG
contains images of colorectal polyps, contributing to the
development of automated segmentation models. Since
this dataset is centered around localization, our proposed
WaveDamp method is only compared against the baseline
and APR-P method, since the other methods utilize mixing
operations which are not designed for segmentation. For the
experiments, the suggested validation split is adopted as the
test set, while we randomly sample 120 validation images
from the remaining training data. To evaluate the robustness

of trained models, artificially corrupted test sets are cre-
ated using perturbations from ImageNet-C that reflect the
corruptions encountered in practice, including motion blur,
brightness, and contrast. The Dice coefficient is employed
to evaluate model performance. The results presented in
Table 8 show that WaveDamp achieves comparable perfor-
mance as the APR-P method, indicating the damping does
not further enhance the robustness. This limitation could be
attributed to the restricted dataset size in combination with
the segmentation task, where edge information significantly
influences the performance.

A.6.2. Blur Augmentation

A legitimate question might be: why not simply apply
Gaussian blurring to images to create a more robust model?
To address this, we replaced the damper architecture of the
augmentation pipeline with a Gaussian filter, utilizing a ker-
nel size of 9 and a standard deviation of 3. This setup gen-
erates images visually comparable to those produced by the
frequency damper. The results of this experiment, shown
in Table 9, highlight the limitations of this method. While
employing a blurring kernel does increase the robustness on
curated LQ images, it reduces performance on clean images
when compared to WaveDamp. Moreover, WaveDamp con-
sistently outperforms the blurring method on all other test
sets, indicating the significance of selective HFC suppres-
sion.

A.6.3. Transformers

In addition to the ResNet architecture, we train a ViT-Small
vision transformer [13] following the same experimental
setup as provided in Section 3.4. The results presented in
Table 10 indicate that WaveDamp does not consistently in-
crease the performance, which could be attributed to the in-
herent robustness of transformers discussed in [2]. Further
exploration of transformer and hybrid CNN-transformer ar-
chitectures is left for future work.



(a) Shape bias (texture removal)

(b) Low-frequency bias (HF removal)

(c) High-frequency bias (LF removal)

(d) High-frequency bias (normalized)

Figure 7. Visual examples of the different images created in the bias experiments with increasing severity (1-5) from left to right. The
high-pass filtered images are normalized for visualization purposes only.

Table 8. Segmentation performance on the Kvasir-SEG dataset.

Corruption
Method | Clean | Motion Blur ~ Brightness Contrast
Baseline 0.879 £0.008 | 0.714 +0.182  0.831 £0.027 0.548 +0.288
APR-P[7] | 0.878 +0.007 | 0.787 £0.092 0.848 +0.018 0.655 +0.238

WaveDamp | 0.878 +0.002 | 0.78220.104 0.852+0.014 0.663 +0.249

Table 9. Comparison of a Gaussian filter and the proposed frequency damping.

Method Peak Performance Curated IQ Triplet Blind IQ Triplet

BM HQ MQ LQ HQ MQ LQ
Blur 0.909 +0.020 0.947 0012  0.921 z0.011  0.851=0.018 | 0.844 £0.011 0.7790.006 0.813 +0.014
WaveDamp 0.922 +0.017 0.956 +0.015 0.933 +0.016 0.842+0.011 | 0.853+£0.013 0.807 +0.007 0.846 +0.009
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Figure 8. Performance degradation for different severities of the bias test sets, showing both the mean and standard deviation of models
trained using 5-fold cross validation for each severity grade.

Table 10. Experimental results of the proposed WaveDamp method on a ViT-Small model.

Method Peak Performance Curated IQ Triplet Blind IQ Triplet

BM HQ MQ LQ HQ MQ LQ
Baseline 0.889 =+ 0.008 0.949 +0.001  0.887 £0.010 0.781 £0.022 | 0.736 +0.024 0.695 +0.021 0.651 +0.062
WaveDamp 0.879 +0.008 0.948 +0.012  0.894 £0.008 0.770£0.020 | 0.703 £0.038 0.684 +0.034  0.692 = 0.062




