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Abstract

Implicit Neural Representations (INRs) and Neural Fields
are a novel paradigm for signal representation, from im-
ages and audio to 3D scenes and videos. The fundamental
idea is to represent a signal as a continuous and differen-
tiable neural network. This new approach poses new theo-
retical questions and challenges. Considering a neural im-
age as a 2D image represented as a neural network, we aim
to explore novel neural image compression. In this work,
we present a novel analysis on compressing neural fields,
with focus on images and introduce Adaptive Neural Im-
ages (ANI), an efficient neural representation that enables
adaptation to different inference or transmission require-
ments. Our proposed method allows us to reduce the bits-
per-pixel (bpp) of the neural image by 8 times, without los-
ing sensitive details or harming fidelity. Our work offers a
new framework for developing compressed neural fields. We
achieve a new state-of-the-art in terms of PSNR/bpp trade-
off thanks to our successful implementation of 4-bit neural
representations.

1. Introduction

Neural Fields, also known as Implicit Neural Representa-
tions (INRs), allow the representation of signals (or data) of
all kinds and have emerged as a new paradigm in the field
of signal processing, neural compression, and neural ren-
dering [18, 34, 46, 49, 52]. Unlike traditional discrete rep-
resentations (e.g., image as a discrete grid of pixels, audio
signals are discrete samples of amplitudes), neural fields are
continuous functions that describe the signal. Such a func-
tion maps the source domain X of the signal to its char-
acteristic values ). It maps 2D pixel coordinates to their
corresponding RGB values in the image Z[z, y]. This func-
tion ¢ is approximated using neural networks (NNs), thus it
is continuous and differentiable. We can formulate Neural
Fields as:

6 RP= R x— d(x) =1y, (1)
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where ¢ is the learned INR function, the domains X € R?
and Y € R3, the input coordinates x = (x, %), and the out-
put RGB value y = [r, g, b]. In summary, neural represen-
tations are essentially simple neural networks (NNs), once
these networks ¢ (over)fit the signal, the model become im-
plicitly the signal itself.

This approach has become foundational research in
many areas including image compression [18, 19, 49], au-
dio compression [50, 51], video compression [12, 13] and
3D representations (e.g., NeRF, DeepSDF) [34, 36, 38, 39].

In the context of image compression, this method offers
unique mathematical properties due to its continuous and
differentiable nature [18, 19, 49]. One of the major advan-
tages of using INRs is that there are no ties with spatial
resolution; unlike conventional methods where the image
resolution is tied to the discrete number of pixels, the mem-
ory needed for these representations only scales with the
complexity of the underlying signal [46, 52]. In essence,
INRs offer “infinite resolution”, it can be sampled at any
spatial resolution [46] by upsampling the input domain X
(e.g. [H,W] grid of coordinates), being particularly useful
for high-dimensional signal parametrization whereas tradi-
tional methods struggle due to memory limitations.

Considering this, we define a neural image as a neural
network (INR) that represents a particular image of an arbi-
trary resolution — see Figure 2.

Recent works [18, 19, 36] demonstrate that we can fit
large images (even giga-pixel images) using “small” neu-
ral networks as INRs, which implies promising compres-
sion capabilities [18, 19]. However, neural fields represent
a lossy compression technique, especially limited by Shan-
non’s Theorem [44]; i.e. even utilizing complex deep neural
networks, to parameterize the high-frequencies of certain
images remains a challenging or impossible task.

In this work, we focus on the particular case of 2D im-
ages, since it is well-known that this serves as a good proxy
for 3D research [34, 45, 46, 52].

Contributions (i) We provide an extensive benchmark on
extreme image compression using neural fields. (ii) We pro-
pose Adaptive Neural Images (ANI), a novel neural repre-
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Figure 1. Comparison with traditional codecs. Our proposed neural image ANI (at 4-bits) state-of-the-art, high-fidelity results without
clearly unpleasant artifacts. Note that all the images are around 0.3 bpp. Images taken from the Kodak dataset id 13 and 24.

x — (100,25, 34)
X = (l',y) € [HaW]

(b) Coordinate-based MLP

Figure 2. We illustrate the general concepts around neural image
representations [46, 52]. INRs can be generalized to other sorts of
signals such as audio or 3D representations.

sentation that allows adaptation to different memory and in-
ference requirements. We achieve this by using state-of-
the-art neural architecture search (NAS) to find the optimal
neural network. Our approach allows us to reduce 8x the
required bits-per-pixel without losing much fidelity while
establishing a new state-of-the-art in PSNR/bpp ratio. (iii)
We provide useful insights related to the quantization of
neural fields, that can be applied to other related tasks (i.e.
3D NeRF).

2. Related Work

Learned Image Compression. The concept of learned im-
age compression was pioneered by [4], through the intro-
duction of an end-to-end framework combining an auto-
encoder with an entropy model to jointly optimize both rate
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and distortion metrics. Many approaches [5, 30, 32, 35] en-
hanced this model by incorporating a scaling hyper-prior to
the architecture, and the use of autoregressive entropy mod-
els. The current trend on generative image compression
represents the state-of-the-art in terms of perceptual qual-
ity [2, 3, 26, 33].

Model Compression. Due to the industry requirements in
terms of inference speed, memory, and energy consump-
tion, in recent years there has been plenty of research on
model compression [15, 31, 56]. For instance,[25] proposes
a simple framework: applying pruning, quantization, and
entropy coding —in sequence— combined with retraining in
between the steps. To optimize performance under quanti-
zation, several works use mixed-precision quantization and
post-quantization optimization techniques [7, 1 1, 14, 16, 20,
37, 54, 55].

In particular, we adopted LSQ [20] as the base of our
quantization method. It is a strong method that improves
quantization using learnable scaling factors enabling ex-
treme low-precision settings. In the context of neural fields,
the neural network represents the data itself, thus, a model
compression implies (additional) data compression. De-
spite this being a promising approach, very few works
tackle this problem [18, 19, 24, 46].

Neural Architecture Search (NAS) In recent years, NAS
has emerged as a powerful approach for automating the de-
sign of optimal neural network architectures for a given
task, significantly reducing the need for manual experimen-
tation [59, 60]. The field has since seen rapid progress, with
methods like Efficient Neural Architecture Search (ENAS)
by Pham et al. [41], which significantly reduces search time
by sharing weights among different architectures. Once-
for-All [10] allows us to train a single neural network and
specialize it for efficient deployment.



2.1. Neural Representations

In recent years, implicit neural representations (INRs) [17,
22,36, 46] have become increasingly popular in image pro-
cessing as a novel way to parameterize an image. Also
known as coordinate-based networks, these approaches use
multilayer perceptrons (MLPs) to overfit one image and rep-
resent it. Multiple works have demonstrated the potential of
MLPs as continuous, memory-efficient implicit representa-
tions for images [46, 49].

We denote the INRs as a function ¢ with parameters 6,
defined as:

d(x) = W, (6rn_106,20...06)(x) + by, 2
Si(xi) = a(Wix; +b;),

where g; are the layers of the network (considering their
corresponding weight matrices W and bias b), and « is a
nonlinear activation e.g. ReLU, Tanh, Sine [46], complex
Gabor wavelet [43]. Considering this formulation, the pa-
rameters of the neural network 6 is a set of weights and
biases of each layer (i.e. W and b). Since the input of the
MLP are the coordinates x in the domain [H, W] € R2?,
these are also known as coordinate-based MLPs — see Fig-
ure 2b.

Sitzmann et al. [46] presented SIREN, a periodic activa-
tion function for neural networks based on the Sine func-
tion, specifically designed to better model complex natu-
ral signals and high-frequencies in the images. Tancik et
al. [52] introduced Fourier features as input positional en-
codings for the network, enhancing their capability to model
high-frequencies. COIN [18, 19] explored the early use of
INRs for image compression. Strumpler et al. [49] pro-
posed a framework for image compression and transmis-
sion using INRs. We also find other works that tackle
new activation functions such as multiplicative filter net-
works (MFN) [21] and Wire [43], and multi-scale repre-
sentations [30, 42]. Other such as Instant-NGP [36] and
SHACIRA [23] approaches focus on multi-resolution rep-
resentations using hierarchical representations and hash-
tables to improve performance and speed.

Following previous work [18, 49], we will use
SIREN [46] as the baseline model. We will explore ex-
treme compression of the neural network, and new training
techniques to derive our proposed adaptive neural images
(ANI). We will also analyze the most popular and recent
approaches: FourierNets [52] (MLP with Positional Encod-
ing), SIREN [46], MEN [21], Wire [43] and DINER [57].

3. Transmission of Neural Images

Transmitting signals as INRs is a novel research prob-
lem [19, 49]. In this context, it is fundamental to under-
stand that the image is no longer characterized as a discrete
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set of RGB pixels, but as a set of weights and biases (0
i.e. the neural network itself). We illustrate in Figure 3a the
most popular approach for compressing images using INRs.
First, we train the neural network ¢ to fit the image, next
we can apply post-training quantization (PTQ) and encode
the parameters 6 using lossless entropy coding. We could
also apply post-quantization retraining to improve the per-
formance of the neural network. Finally, we can transmit
the parameters 6, the client can recover the network, and
thus reconstruct the natural RGB image.

Our approach considers quantization-aware training
(QAT) directly, which offers better performance and a
higher compression ratio. We show our method in Fig-
ure 3b.

Besides QAT, the key concept of our approach is the ac-
tive neural architecture search (NAS) to produce a “once-
for-all” neural network [10] i.e. a single network is trained
to support versatile architectural configurations including
depth (number of layers) and width (number of neurons).
Therefore considering our neural image with parameters 6
we can derive —during inference— different sub-networks
with varying number of layers and neurons. We illustrate
the sub-networks 6, and 5 in Figure 3b.

We define Adaptive Neural Images (ANIs) as once-for-
all neural representations of images. Note that ANIs are
also trained to support quantization. Note that the neural
representation training is done offline only once for a partic-
ular image, thus, the training time is not constraint. More-
over, training to convergence is possible in a few minutes.

General Limitations Before presenting our approach, we
must discuss the fundamental limitations of neural images
to better understand the experimental results. First, INRs
are lossy compression methods. Second, most INR ap-
proaches are signal-specific i.e. the neural network fits a
particular image. This implies training ad hoc the neural
network using a GPU — although this can take less than 1
minute, and meta-learning [53] helps to accelerate training.
Third, the performance of the INR methods highly varies
depending on hyper-parameters (e.g. learning rate, num-
ber of neurons and layers), and the target signal. However,
there is no theoretical or practical way of predicting a priori
which INR model fits best the signal.

4. Our Approach for Extreme Compression

Given a neural representation of an image —a neural image—,
our goal is to reduce as much as possible the number of bits
while preserving the original signal. Considering that the
neural network represents the signal itself, we must focus on
compressing the neural network (i.e. weights and biases).
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(a) Overview of INR-based compression pipeline proposed by Y. Striimpler et al. [49]. The basic compression pipeline comprises image
overfitting, quantization of the neural network, AdaRound, retraining, and lossless entropy coding (e.g. binarized arithmetic coding).
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(b) Our proposed approach uses adaptive neural images (ANI). We perform directly quantization aware training (QAT) [7] and once-for-all (OFA) opti-
mization [10]. Depending on the bandwidth and transmission requirements, our bitstream can be adapted (e.g. trimmed) allowing us to send more/less
information, this is only possible thanks to the proposed ANI architecture. Moreover, depending on the target device speed and memory requirements, we

can utilize smaller versions of our neural network ANI without any re-training or adaptation. We highlight the client side and target devices.

Figure 3. We illustrate the general concepts around image compression and transmission using INRs [49]. Our approach enables to adapt
to diverse scenarios depending on the bandwidth, memory, and target device requirements.

4.1. Post-Training Quantization

Post-Training Quantization (PTQ) calculates quantization
parameters without re-training. In our experiments, we
adopted the standard PTQ algorithm proposed by [27] and
wide used on several studies [49]. This algorithm allows
quantization to 7-bits and 8-bits with minimal losses.

4.2. Quantization-Aware Training (QAT)

Quantization-aware training (QAT) methods have a consid-
erable advantage over PTQ methods in terms of compres-
sion ratio [8, 20, 25, 28], allowing extremely small bit-width
(2, 4-bit) at the expense of additional training time.

In general neural networks, weights follow zero-mean
normal distributions, while the distribution for the activa-
tions varies greatly depending on the architecture and non-
linearities. For INRs, the behavior of the MLP and acti-
vations is well-known. In SIREN [46] the sine activation
conveniently restricts the distribution to a normalized range
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with zero-mean. For MFNs [21], the filter passes through
the sine activation and is multiplied by the output of the lin-
ear layers, conveniently restricting the range. These proper-
ties allow us to experiment with extreme compression low-
bits settings (2,4-bits).

Unlike previous methods [24, 49], we use the state-of-
the-art LSQ [20] quantization algorithm.

Following the notation from [20], we define & and &
as the coded bits and quantized values, respectively. The
weights and activations are quantized as follows:

_ . x _
T = quantzze(clamp(;,xmm,xmm)) , T=IXs
3)
The s parameters are clipping factors learned using back-
propagation [20]. For activations, Z,,;, is O if the x is
strictly positive, or -/ otherwise, and x,,,, is always 1. For

weights, X,in and T,,q, are always -/ an [ respectively.
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Figure 4. Comparison between PTQ and QAT. Visual results on Kodak [1] at different bit-widths. We can appreciate how at 4-bits PTQ
loses the signal, while QAT maintains high fidelity. Our method improves previous approaches [18, 19, 49].

On n-bits, quantization is given by:

round((Z + 1) x 2n~1)

- @)

, n=number of bits.

T =

The same equation is applied to both the weights and ac-
tivations. We use straight-through estimator (STE) [6] and
update the quantization parameters using back-propagation.
In Figure 4 we show the benefits of using LSQ [20]
quantization-aware training (QAT) over post-training quan-
tization (PTQ).
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4.3. Neural Architecture Search (NAS)

We experimented with NAS to find optimal architectures
automatically. Since we expect multiple target devices and
different specifications, we use Once-for-All (OFA) [9], a
supernet approach that allows training once and extracting
multiple sub-architectures of different sizes with minimal
retraining, and adapted to INRs. Since INRs are essentially
MLPs, the only moving parts that can be made “elastic” are
the depth (number of layers) and the width (number of chan-
nels or neurons). Additionally, to simplify the search space,
we adopted a uniform number of channels for all interme-



Method Quantization Size(KB) PSNR 1 SSIM 1 BPP|
Coin [18] (None) ~ 270.28  27.98+2.73  0.782 1.812
PTQ 8-bit [49] 71.46 27.78+2.71  0.760  0.479
SIREN [46]  PTQ 4-bit (ours) 38.33 18.24+1.72  0.216  0.236
QAT 8-bit (ours) 71.46 27.80+2.34  0.742 0479
QAT 4-bit (ours) 38.33 27594330 0.638  0.236
Coin [18] (None) ~ 284.29  29.164+2.80  0.822 1.906
PTQ 8-bit [49] 85.43 28.60+2.82 0.785  0.572
MEFN [21] PTQ 4-bit (ours) 52.29 14224220  0.136  0.254
QAT 8-bit (ours) 85.43 29.86+2.99  0.780  0.572
QAT 4-bit (ours) 52.30 28.50+2.72  0.683  0.254

Table 1. Quantization INR Analysis on Kodak [1]. We report the
average PSNR —over 5 runs— for the whole Kodak image dataset
using different quantization settings. All the neural networks have
4 layers and 128 neurons. We are the first approach to achieve
successful 4-bit quantization of neural images.

diate layers. While this restricts the search space, it allows
us to train and evaluate several possible layouts.

During training, the subnets are initialized using progres-
sive shrinking from [9]. we alternate between large and
small networks to remove architecture-related bias, inspired
by the sandwich rule proposed by [58]. Next, we fine-tune
the sub-networks for a small amount of epochs to improve
the fidelity w.r7 of the target image.

Algorithm 1 Once-for-all training strategy

Require: Search space of channels W={Wy,W1,...,W,},
layers D={Dq,Ds,....,Dy,}
S=WxD
for each s € S do
params = get_model_size(s)
end for
/lArgsort S using params
idx = argsort(params)
//Reorder S by alternating large and small architectures
Ssorted = sort_and_shuf fle(S, idx)
supernet = build_model(W,,, Dy,)
train(supernet)
for each s € Sy,,teq do
subnet = supernet.get_subnet(s)
train(subnet)
end for
return subnet

This OFA approach allows us to realize the adaptive bit-
stream with minimum effort.
5. INR Compression Benchmark

5.1. Quantization experiments

We run an exhaustive benchmark using the Kodak
dataset [1], we provide the results in Table 1. Each exper-
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BPPrange Bitwidth Ixch PSNR 1
0.1 8-bit 3x64  25.36+2.64
’ 4-bit 2x128  26.39+2.62
05 8-bit 4x128 29.86+2.98
’ 4-bit 2x256 30.10+£3.06
10 8-bit 4x128 30.244+2.98
' 4-bit 4x256 33.10+£3.06

Table 2. Cost-efficiency of 4-bits method on Kodak [1] us-
ing MFN backbone. For the same bpp budget, the 4-bit model
achieves superior PSNR for all bpp ratios.

iment was repeated five times with different random seeds.
We report the average performance of the five experiments.
In all the experiments we used models with 4 layers and 128
channels.

For the PTQ experiments, we follow [49]. Since the re-
sults for this technique are deterministic, we select the best-
performing model per image (considering the five different
runs). Following other quantization experiments, we kept
the first and last layers at full precision. The impact of quan-
tizing these layers is described as an ablation study.

5.2. Quantized NAS experiments

To develop our adaptive neural images (ANIs) we use
OFA [9]. Using this NAS technique, we defined our search
space of [64,128,192,256] channels and [2, 3,4, 5] inter-
mediate layers. We train all possible 16 architecture combi-
nations for 50000 epochs each.

Benchmark Conclusions Considering the results from Ta-
ble 1, we are the first approach to achieve successful 4-bit
quantization of neural representations. At 8-bits, both PTQ
and QAT deliver similar quality without notable degrada-
tions. However, at 4-bits, the model quantized with PTQ
loses the signal information, yet the model quantized with
QAT maintains the signal and provides good fidelity. Our
approaches improve Coin [18] and previous INR compres-
sion [49] by +14dB when using 4-bits. Figure 4 shows the
visual results. Both SIREN [46] and MFN [21] presented
similar behavior during quantization, with SIREN [46] be-
ing slightly more cost-efficient due to having fewer full pre-
cision parameters but suffers more degradation than MFN
counterpart. In Figure 7, we show the results of our ANI
i.e. a single super-network that allows inferring using sub-
networks depending on the memory requirements. We pro-
vide more qualitative samples in the appendix.

We compare our approach with other compression meth-
ods in Figure 5. Our approach using 4-bits presents the best
PSNR/ bpp trade-off along the whole spectrum, establishing
a new state-of-the-art for INR compression.
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Figure 5. Comparison of our approach on the Kodak dataset with
other methods. We achieved state-of-the-art performance, surpass-
ing even newer methods such as SHACIRA [23]. Note that ANI-
MEN is a single neural network that can be adapted to different
bpp requirements, unlike Coin [18, 19] or SIREN [46, 49].

5.3. NeRF Extension

Our approach would allow to effectively compress any
MLP-based INR. We tried our compression approach on
SHACIRA [23], which improves InstantNGP [36]. We aim
to prove that our quantization approach can be extended
to other modalities. We applied 4-bits QAT to the MLP
model in SHACIRA, keeping the latent space optimization
as the original. We obtained 8 x model size reduction with
zero degradation (32.61dB). However, the actual model size
reduction is small (from 1.96 MB to 1.82 MB) as the la-
tent space size accounts for 90% of the total size (around
1.81MB). Figure 6 compares the qualitative results of the
full precision and the quantized SHACIRA model.

We also provide samples in the supplementary material
where we show 4-bit NeRFs [34] without apparent loss.

6. Technical and Implementation Details

We implement all the methods in PyTorch, using the au-
thor’s implementations when available. We train all the
models using the same environment with the Adam [29] op-
timizer, and we adapt the learning rate for each method’s
requirements. For instance MFN [21] uses 0.01 while
SIREN [46] uses 0.001.

We use NVIDIA RTX 2080Ti and A100 (40GB and
80GB) cards. The models are optimized using the £, re-
construction loss [46, 52] to minimize the RGB image re-
construction error || Z[z,y] — d(x,y)|3, V(x,y) €
[H, W]. Note that due to the memory requirements of FHD
images, the optimization is only possible on GPU cards with
> 40Gbs of VRAM.

3989

FP32 (32.61dB)

4-bit (32.61dB)

Figure 6. Experiment using our 4-bit quantization model on
SHACIRA [23] 3D NERF. Our model is visually indistinguish-
able from the full precision model.

Ablation Studies In the supplementary, we provide abla-
tion studies on the impact of layer quantization i.e. which
layers suffer the most.

Applications Our method not only represent a theoreti-
cal contribution, ANIs allow to rethink content storage and
transmission. Since we do not need to stream whole neural
network to decode partial information, yet just a few lay-
ers, ANIs could have beneficial impact in remote sensing
i.e. satellite imagery transmission.

Limitations. A clear limitation of using INRs for neural
image compression is their stochastic nature and unstable
training. Moreover, there is no practical way of predict-
ing a priori which INR model fits best the signal. On the
other hand, Having the once-for-all alleviates this process,
as a diverse array of PSNR/bpp ratios is readily available
for serving.

7. Conclusion

In this work, we present a novel analysis on compressing
neural representations. We also introduce Adaptive Neu-
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Figure 7. We present results of ANI using MFN [21] as backbone. Our single neural image can be adapted to different memory-fidelity
requirements. The images correspond to a single neural network with three different subnetworks defined as layers xneurons. Our methods
achieve better performance than BPG, JPEG [40], JPEG2000 [47] at ~ 0.23 bpp.

ral Images (ANI), an efficient neural representation that en-
ables adaptation to different inference or transmission re-
quirements. We derive our ANI super-network using ad-
vanced once-for-all architecture search. To the best of our
knowledge, we are the first approach to achieve success-
ful 4-bit quantization of neural representations, establishing
a new state-of-the-art. Moreover, this work provides the
most complete benchmark for this task. Our work offers
a transversal framework for developing compressed neural
fields.
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