Model Ensemble to Fuse Geometric and Learning Solutions for Camera
Rotation Estimation

Supplementary Material

1. Additional implementation details

We train ResNet-50 model on GSV dataset. We take batch
size of 32 images, learning rate of le-4 and train the model
for 100 epochs using Adam optimizer. We use average of
MSE and MAE as loss between network predictions and
ground truth values in radians. We use same GSV trained
DNN model for all our experimentation on other datasets.

For Geometric approach, we use LSD in OpenCV and
Clustering algorith in [1] with default settings, and no spe-
cial tuning or engineering was needed. Since all datasets
have manmade structures with several vanishing lines, LSD
and clustering works quite well. We consider only top 3
clusters returned by [1]. Fig.3d in the main document shows
failure cases where spurious clusters are detected and esti-
mated angles have high errors. Such failure cases are ad-
dressed by comparing the deviation with DNN estimates.
For filtering incorrect geometric estimates, we calculate the
deviation of geometric pitch estimates using |0gnn — O, /0 |-
We ignore geometric estimates when the deviation of 6}, ,,
from 6,,,, is large. For GSV dataset, we take the threshold
as 1° and for other datasets it is 5°. We use large thresh-
old for other datasets since our DNN is not trained on these
datasets and hence, its own results can deviate from ground
truth values.

2. Selecting pairs of lines for parallelity con-
straints

We show ablation on different ways to form the constraints
using vanishing lines and show results in Table.1. First we
use brute force approach to form (JZ ) constraints. We next
form the constraints by analyzing the slopes of lines. First,
we select N — 1 pairs by considering adjacent lines sorted
as per slopes. Since adjacent lines have similar slopes, it
results in an ill-conditioned problem and performs poorly.
Next, we select % pairs by considering lines with maxi-
mum slope difference, i.e. we form the pair between it" and
N — i line. We also select i*" and £ + i*" lines to form
N

pairs. Both the approaches have 4 constraints and have

good performance with L;, L% _; giving best results.

3. Derivation of m(6)

We present the detailed derivation for change in the slope
as a function of camera pitch angle. As discussed, the ho-
mogrpahy transformation for a point p = [z,y, 1] is given

Method ‘ Mean Med.
All (%) constraints 0.85 0.74
(N — 1) constraints: L;, L;+1 | 094 0.83
% constraints: L;, Lny_1 0.87 0.76
% constraints: L;, Ly ; 0.84 0.70

Table 1. Pitch estimation errors for different methods for generat-
ing constraints.
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To understand the transformation better, it is better to exam-
ine the matrix operations individually. Let us consider the
slope intercept equation of a line in the perspective view

y=mzx+c 2)
where, m and c are original parameters defining the line.

When the K ~! operator is applied on the image, the trans-
formed image line can be represented as
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Next, the Rotation matrix R is applied on Eq. (3) to get
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Finally, when matrix K is applied we get,

J=mI+¢ 9)



where,
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Substituting values from Eqgs. (4) to (5) and Egs. (7) to (8)
we get

m
m = CTMNMCy —C (12)
cosf + (%)sin@

13)

4. Robustness of Eigen vector sol and Numeri-
cal stability

We note that Eigen vector solution is not robust to the out-
liers. However, it is more robust to the noise in the data
than simple pseudo inverse based approach. To validate this
claim, we conduct an experiment where we simulate several
synthetic equations and solve them using Pseudo-inverse
(Eq.21/22) and eigen vector (Eq.16/17) approach. We add
different amount of noise in the data. One can clearly see
that eigen vector sol. performs consistently better in pres-
ence of noise. We report average of rel. error in solution (in
%).
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5. Approximation involved in residual roll cor-
rection using geometric method

As mentioned in Sec.4.3 in paper, we first apply roll by
®dnn, then apply pitch correction 6, and then estimate
residual roll ¢,..;. The overall sequence of operations is
given by R.(¢res)Ry(0y) Rz (¢dnn) Which need to be ap-
proximated by R, (0,) R (¢ fina) in order to make final es-
timate of ¢;,,. We make an approximation here giving
¢final = ¢dnn + d)rescos(ev) ~ ¢dnn + ¢res as our esti-
mate. We note that above approximation is simple and quite
accurate when ¢,..s & 0, are close to 0. Notwithstanding the
above, our empirical experiments show that overall estimate
@ final 1s better than @gp,.

6. Visual Results

In Fig. | and Fig. 2, we demonstrate our visual results. We
transform images using estimated pitch angles using both

horizontal and vertical vanishing lines, i.e. the estimated
0y, and 6,. In Fig. 1 first two columns, we show vertical
line clusters and images transformed using 5 — 6, to get
the upright view which transforms the lines to be parallel.
In next two columns we show transformed view using es-
timated 6, which generates BEV and we can see parallel
vanishing lines in this view.

Next, in Fig. 2, we show failure case in the first row
where both transformations are incorrect. The second row
shows cases where only vertical vanishing lines are de-
tected and corresponding transformed views using 5 — 6,
are shown.



(d) Transformed Images

Figure 1. Homography transformation results using estimates of geometric approach.



Figure 2. Homography transformation results using estimates of geometric approach.
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