Appendix
A. Algebraic Analysis: Full Table

In this section, we analyse the algebraic complexity met-
rics reported in Table 4 by grouping the calibration patterns
into semantically meaningful categories. These categories
reflect different levels of prior knowledge or assumptions
about the camera’s internal parameters.

A.1. Autocalibration / Self-Calibration

Goal: Recover internal parameters (e.g., focal lengths f, g,

skew s, and principal point u, v) from image observations,

typically vanishing points from orthogonal directions.
Patterns: fguvs, fguv0, fgu0s, fgu00, ffuvs
Observations:

» These patterns often result in higher Jacobian ranks (up
to 5) and moderate solution degrees (commonly 2-4),
reflecting the overparameterised nature of the symbolic
system.

* For example, fguvs yields (dim, rank, deg) = (3,5, 2),
while fguv0 and £gu00 reduce some complexity by fix-
ing parts of the principal point.

e ffuvs, which assumes f = g, still exhibits high com-
plexity due to retained skew and principal point un-
knowns.

A.2. Focal Length Estimation

Goal: Estimate one or both focal lengths under the assump-
tion of known or fixed skew and principal point.

Patterns: £ fuv0, f1uv0, 1guv0

Observations:

* These cases tend to show lower dimensions (mostly 2 or
3) and moderate degrees, e.g., £fuv0 gives (4, 3,2).

e The simplification f = g and s = 0 reduces parame-
ter entanglement, making these formulations attractive for
efficient solvers.

e f1uv0 and 1guv0 benefit from known g or f respec-
tively and yield Jacobian ranks of 3.

A.3. Zero-Skew with Known Principal Point

Goal: Estimate focal length(s) when the principal point

(u,v) and skew are assumed known or fixed to 0.
Patterns: £gu00, £g000, £1000, ££000
Observations:

* These are among the simplest patterns algebraically: de-
grees are low (1-4), dimensions are typically 3 or 4.

e £1000 and ££000 only keep f as an unknown and yield
low Jacobian ranks (1), making them ideal for focal-only
estimation.

e £g000 is an exception, with a high degree (8), possibly
due to retained asymmetry in focal lengths.

A.4. Known Focal Ratio

Goal: Use a fixed focal ratio f/g (often f = g) to reduce
degrees of freedom while keeping some internal parameters
symbolic.
Patterns: ffuvs, £fuv0, £fuls, ££00s
Observations:

» These often produce moderate complexity results. For
instance, £ fuvs yields (3,4, 3).

* ££00s keeps only skew as unknown and shows a rela-
tively high degree (5) despite a small dimension.

» The f = ¢ constraint simplifies but does not eliminate
symbolic interaction, especially when skew or principal
point are retained.

A.5. Skew-Only Estimation

Goal: Solve only for the skew parameter s, assuming all
other intrinsics are known.

Patterns: 1100s, ££00s
Observations:

* These systems are low-dimensional and generally alge-
braically simple.

* 1100s yields (4,1,1) — ideal conditions for efficient
closed-form solutions.

* In contrast, ££00s is more complex due to different sym-
bolic structure, with degree 5.

B. Proposed Algorithm

This section presents the full procedure for solving the
fguvs calibration task using our proposed polynomial for-
mulation and a two-stage homotopy continuation method.

Algorithm 1 Direct Calibration for £guvs

Input: Pairs of orthogonal VPs P = {(u;,v;)}5_;
Output: Estimated intrinsic matrix K

Define IAC w w/h unknowns f, g, u,v,s € C
Get F = {v?w(f,g,u,v,s)vj =0 | (vi,v5) € 79}

=== Offline phase
Sample a random instance of VP pairs {(v;,v;)}2_;
Get start solutions {7} } = MonodromySolve(F)
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: === Online phase

: Construct Fpe, given a new scene {(v;,v;)}
: Track {x;‘} to Frew using PHC

Select the solution with the lowest error
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: return K
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Table 4. Algebraic complexity metrics aggregated over 100 ran-
dom seeds for each calibration task (’pattern’).

pattern  dimension degree jacobian-rank
1100s 0.0£0.0 20+£0.0 1.0£0.0
110v0 0.0=£00 20+£00 1.0£0.0
110vs 0.0+00 598+0.14 2.0+0.0
11u00 0.0£0.0 20+£00 1.0£0.0
11u0s 00£0.0 398+0.14 20+£00
11uv0 0.0£0.0 20+£0.0 20+£00
11uvs 0.0=£0.0 6.0£0.0 3.0+ 0.0
1g000 0.0=£00 20+0.0 1.0 £ 0.0
1g00s 0.0£0.0 40=£0.0 20+£00
1g0v0 00£0.0 3.96=£0.28 20+£0.0
1g0vs 1.0 £0.0 20+£0.0 3.0+ 0.0
1gu00 00£0.0 3.96=£0.28 20+£00
1gu0s 1.0£00 20+£00 3.0+ 0.0
1guv0 0.0£0.0 6.0£0.0 3.0+ 0.0
1guvs 20+£00 20+£00 40+0.0
1000 0.0£0.0 20+£0.0 1.0£0.0
f100s 00£0.0 3.96=£0.28 20+£00
f10v0 00£0.0 3.96=£0.28 20+£00
f10vs 0.0+ 0.0 10.0 £ 0.0 3.0+ 0.0
f1u00 0.0£0.0 20+£00 20+£00
fluOs 0.0£0.0 8.0+0.0 3.0+ 0.0
fluvO 0.0£0.0 6.0£0.0 3.0+ 0.0
fluvs 0.0=£0.0 8.0x+0.0 40=£0.0
£f000 0.0=£00 4.0+0.0 1.0 £ 0.0
ff00s 0.0+0.0 7.96+£0.28 2.0+0.0
ffOv0 1.0£0.0 20+£00 20+£00
ffOvs 1.0£0.0 3.0£00 3.0+ 0.0
ffu00 1.0£0.0 20+£0.0 20£00
ffuOs 1.0£00 3.0£00 3.0+ 0.0
ffuv0 20+£00 20+£00 3.0+ 0.0
ffuvs 20+£00 3.0£00 4.0=£0.0
fg000  0.02+0.14 7.92+056 198 +0.14
fg00s 1.0£0.0 20+£0.0 3.0+ 0.0
fgOv0 1.0£0.0 4.0=£0.0 3.0+£0.0
fgOvs 20+0.0 20+0.0 4.0+ 0.0
fgu00 1.0 £0.0 40=£0.0 3.0+ 0.0
fguOs 20+£00 20+£00 4.0=£0.0
fguv0 20£00 4.0=£0.0 4.0=£0.0
fguvs 3.0£00 20+£0.0 50£00

C. Real-World Images: PHC-HS v/s SVD

C.1. Quantitative Evaluation

This section presents per-scene calibration error statistics
and SVD success rates across six benchmark scenes. For
each method, we report the mean absolute error on intrinsic
parameters (A f, Ag, Au, Av, As) aggregated over all valid
frames. Errors are computed only over successful runs, and

SVD success rates are reported separately due to its sensi-
tivity to the positive-definiteness of the estimated IAC.

Table 5. Calibration summary for Herz-Jesus-P25. Mean
error shown per method; lower is better.

Method Af Ag As Au Av
GeoCalib 0.04743  0.04769 - 0.01007  0.01707
SVD (Stratified) 00 0.90912 00 0.81362  0.84688
PHC-HS (Direct) 1.00944 2.88491 0.8405 6.67768 10.84512
Table 6. Calibration summary for Herz-Jesus-P8.
Method Af Ag As Au Av
GeoCalib 0.02899  0.02936 - 0.01007  0.01707
SVD (Stratified) 00 1.00000 - 1.00000  1.00000
PHC-HS (Direct) 097811 1.18281 0.19566 6.01424  11.93725
Table 7. Calibration summary for castle-P19.
Method Af Ag As Au Av
GeoCalib 0.04645 0.04788 - 0.01007  0.01707
SVD (Stratified) 00 0.95380 0.14167 0.82360  0.80140
PHC-HS (Direct) 0.99504 2.02073 0.41161 5.94341 12.46008
Table 8. Calibration summary for cast1e-P30.
Method Af Ag As Au Av
GeoCalib 0.04642  0.04769 - 0.01007  0.01707
SVD (Stratified) 00 0.77300  0.12237  0.95925  1.14962
PHC-HS (Direct) 0.97953 2.89064 0.72931 6.72517  13.13400
Table 9. Calibration summary for entry-P10.
Method Af Ag As Au Av
GeoCalib 0.03223  0.03353 - 0.01007  0.01707
SVD (Stratified) 00 0.77760  0.05414 0.75122  1.04580
PHC-HS (Direct) 0.95845 5.17297 1.70423 6.87751 14.25480
Table 10. Calibration summary for fountain-P11.
Method Af Ag As Au Av
GeoCalib 0.14040 0.14185 - 0.01007 0.01707
SVD (Stratified) o) 1.00000 - 1.00000 1.00000
PHC-HS (Direct) ~ 0.93634  1.07 x 10'*  2.22 x 10'°  6.93 x 10’  2.53 x 10**




C.2. Numerical Performances of our PHC-HS (Di-
rect)

We evaluate the numerical accuracy and solution behaviour
of our proposed PHC-HS (Direct) solver across various
calibration patterns. For each setting, we compute the
mean of key performance metrics over 100 randomised
trials. Table 11 reports the average number of solutions
(rootCnts) and relative errors in the recovered intrinsic
parameters. High error values (e.g., 10'®) indicate cases
where the solver either diverges or converges to numerically
unstable roots, often due to underconstrained or degenerate
configurations.

C.3. Runtime Analysis

We compare the average runtime of the SVD solver and
our proposed method, PHC-HS (Direct), using a subset of
images from castle-P19. While the SVD-based method is
extremely fast, averaging 0.0088 seconds per run, it fre-
quently fails under minimal or noisy configurations due to
the breakdown of Cholesky decomposition. In contrast, our
monoHC-based approach consistently yields reliable and
accurate results, with an average runtime of 0.792 seconds.
Despite being slower, its robustness makes it well-suited for
real-time applications where calibration reliability is criti-
cal. Full hardware specifications used in these experiments
are provided in Sec. D.1.

C.4. Image Validity Analysis

We report the number of valid images per scene, where
an image is considered valid if it contains more than
enough orthogonal vanishing points to support our calibra-
tion solvers. The total number refers to all available im-
ages in each dataset. Table 12 summarises the ratio of
valid to total images for each benchmark scene. Datasets
such as entry-P10 and Herz-Jesus-P8 achieve full coverage
(100%), indicating consistently strong geometric structure
across all images. Others like fountain-P11 show lower va-
lidity (54.55%), likely due to a lack of sufficient orthogonal
features or line clutter that hinders vanishing point detec-
tion. Overall, the majority of datasets exhibit a high pro-
portion of valid images, confirming the applicability of our
method across diverse scenes.

D. Implementations

D.1. Implementation Details

Our experimental pipeline combines symbolic computa-
tion, numerical algebraic geometry, and real-image pre-
processing. We use Python for synthetic scene gener-
ation, orthogonal vanishing point preprocessing, and in-
tegration with external solvers. Real-world vanishing
points are extracted using OpenCV. All algebraic compu-
tations—including polynomial system construction, dimen-

sion analysis, and ideal manipulation—are performed in
Macaulay2, while numerical solution of polynomial sys-
tems is conducted via homotopy continuation using the
MonodromySolver library.

All experiments were conducted on a consumer laptop
equipped with an Intel(R) Core(TM) Ultra 7 165U proces-
sor (2.10 GHz), 16.0 GB RAM, and a 64-bit Windows 11
Pro operating system. No GPU acceleration was used; all
symbolic and numerical computations were performed on
CPU.

To ensure reproducibility, we fix random seeds for both
scene generation and solver routines. All pipeline compo-
nents—including solver wrappers, symbolic preprocessing,
and real-image analysis—will be released publicly upon
publication.

D.2. Hyperparameter Tuning Procedure for PHC

To ensure robust and accurate solving of our minimal cam-
era calibration system, we performed an extensive hyper-
parameter sweep over the configuration space of the poly-
hedral homotopy continuation (PHC) method implemented
via MonodromySolver in Macaulay?2. The purpose of
this tuning phase was to identify solver settings that produce
numerically stable and geometrically accurate intrinsic pa-
rameter estimates under noise.

Configuration Space. We considered a total of 8 inter-
nal solver parameters controlling step size adaptation, cor-
rector precision, and divergence detection. Each was as-
signed a discrete set of values, forming a Cartesian prod-
uct of 1,944 unique configurations. These include, for
example, the initial step size (tStep), minimum step
threshold (t St epMin), and the Newton corrector tolerance
(CorrectorTolerance).

Candidate Values
{1e-8, 1e-10, le-12}

Parameter

CorrectorTolerance

EndZoneFactor {0.10, 0.05, 0.02}
InfinityThreshold {1e9, 1e10}
maxCorrSteps {5, 10}

numberBeforeIncrease {3,5}

stepIncreaseFactor {1.25,1.5,2.0}
tStep {0.005, 0.01, 0.05}
tStepMin {le-14, le-13, le-12}

Table 13. Grid of hyperparameters used for PHC tuning.

Selection Criterion. For each configuration, we ran for
10 random seeds. Each output was compared to the ground
truth using the mean aggregate deviation over all intrinsic
parameters:

Ototal = E[|6f| 4+ |0g] + |du| + |dv| + |ds]]



Table 11. Mean calibration errors across patterns using PHC-HS (Direct) over 100 random seeds

Pattern  root-counts Af Ag Av Au As
1g00s 1.73 - 1.2e+19 - - 1.2e+19
1g0vs 1.86 - 8e+18 8e+18 - 8e+18
1gu0s 0.94 - 6e+18 - 6e+18 6e+18
lguvs 1 - 0.999 0.336 1.8 0.326
ff000 3.96 0.02 1.58e-16 - - -
ff00s 3.93 0.04 4.28e-16 - - 0.00814
ffov0 399  3.1e-16 4.14e-16 1 - -
ffOvs 3.99 3.82e-16 5.16e-16 1 - 0.163
ffu00 4 3.78e-16 2.3le-16 - 1.2e-15 -
ffuOs 3.94 le+18 le+18 - le+18 le+18
ffuv0 4 4.82e-16 5.79-16 2.3le-15 1.45e-15 -
ffuvs 39 le+18 le+18 le+18 le+18 le+18
fg000 396 1.76e-16 1.57e-16 - - -
fg00s 3.94 0.02 0.02 - - 0.00777
fgOv0 4  55e-16  7.8e-16 1 - -
fgOvs 3.92 0.02 4.56e-16 1 - 0.149
fgu00 4 495e-16 2.88e-16 - 1.23e-15 -
fguOs 3.97 le+18 le+18 - le+18 le+18
fguv0 4 5.1le-16 6.11e-16 2.02e-15 1.6e-15 -
fguvs 393 6.37e-16 0.02 2.23e-15 1.99e-15 4.28e-05

Table 12. Number of valid images per scene and their correspond-
ing proportions. An image is valid if it contains sufficient orthog-
onal vanishing points for calibration.

Scene Valid / Total | Fraction | Percentage
castle-P19 16/19 0.8421 84.21%
castle-P30 27130 0.9000 90.00%
entry-P10 10/ 10 1.0000 100.00%
fountain-P11 6/11 0.5455 54.55%
Herz-Jesus-P25 21/25 0.8400 84.00%
Herz-Jesus-P8 8/8 1.0000 100.00%

where each § represents the metrics used in the main exper-
iments 5.

The optimal hyperparameter set was selected as the con-
figuration that minimised this mean total deviation across
all trials. This metric reflects both geometric fidelity and
numerical consistency, offering a principled surrogate for
physical plausibility in the recovered camera parameters.

Outcome. The selected configuration was used uniformly
for all homotopy-based experiments presented in the main
paper. This tuning procedure ensures that our solver not
only adheres to completeness guarantees but also achieves
reliable accuracy under real-world noise conditions.



E. Expressions of Calibration Polynomial Sys-
tems

E.1. Direct Approach

fguvs We replaced the coefficients with a constant nota-
tion ¢ € Q to simplify the equation.
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E.2. Stratified Approach
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