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On the Distributed Evaluation of Generative Models

Supplementary Material

7. General 1-Wasserstein-Distance evaluation
Metrics

Let P, and IP; represent the distribution of generated set and
training set. The Wasserstain-1 distance between P, and P,
is,

W(]P)g’Pt) = inf E(z,y)m[HI*yH]v 4

AEI(P, ,P;)

where II(P,,P;) denotes the set of all joint distribution
A(z, y) whose marginal distribution are respectively P, and
IP;. However, the direct estimation of W (IPy,P;) is highly
intractable. On the other hand, the Kantorovich-Rubinstein
duality [36] gives,

W(Pg7]P)t) = Ssup E:L’NIF’Q [f(.’l,')] - EINPt [f(.%')L (5)
lfllz<1

where the supremum is over all the 1-Lipschitz functions f :
R™ — R. Therefore, if we have a parameterized family of
functions { fs }gco that a 1-Lipschitz, we could considering
solve this problem,

réleaex Eqz~p, [fo(2)] — Exnp, [fo(2)]. (6)

To estimate the supremum of Equation (5), we employ a
family of non-linear neural network fy which are repeat-
edly stacked by the fully connected layer, the spectral nor-
malization and RELU activation layer. There are three re-
peated blocks in the network fy and the last block does have
RELU. The feature is extracted by pre-trained Inception-V3
network. By optimizing the parameters in fy to maximize
Ey~p, [fo(2)] — Eznp,[fo(x)] over Py and P;, we can fi-
nally get an estimation of W (IPy, P;). And similarly, we can
also define average score W-avg and collective-data-based
score W-all under the distributed learning setting. Similar
to the CIFAR100 experiment in the main body of paper,
we extracted samples from each single class of CIFAR100
and evaluate these samples on federated CIFAR10 dataset.
We illustrate a subset of W-avg / W-all pairs in Figure 7.
According to experiment results, we find that general 1-
Wasserstein-Distance evaluation metric also shows incon-
sistent behaviours in the distributed evaluation settings.

Evaluation on Federated CIFAR10 (Zoom in)
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Figure 7. Evaluation with 1-Wasserstein-Distance on Federated
CIFARI10.

8. Extra Experiment Results on FFHQ and
AFHQ

8.1. Complex FFHQ Setting

Experiment Setting. Following a similar methodology as
described in the previous subsection, we synthesized a se-
ries of diversity-controlled generators by applying the stan-
dard truncation technique [ 18] to the random noise vector z.
We varied the truncation factor 7 over [0.01, 1.0]. The effect
of changing the truncation factor on the generated samples’
diversity is illustrated in Figure 9. For every attempted 7,
we generated S0K samples. Additionally, to simulate a dis-
tributed setting with heterogeneous data distributions, we
simulated 100 clients, each with images synthesized with
truncation factor 7 = 0.25. The centers of image distri-
butions for each client varied, resulting in intra-client simi-
larity and inter-client diversity as depicted in Figure 10. We
evaluated the generators in the distributed setting of the sim-
ulated clients using both the discussed FD and KD-based
evaluation scores.

Numerical Results. As shown in Figure 8(a) and Fig-
ure 8(b), FD-avg and KD-avg led to different rankings of
the models. The plot of FD-avg versus FD-all led to a U-
shaped curve, revealing inconsistent rankings of the mod-
els. On the other hand, the difference between KD-avg and
KD-all remained constant for the generators, as shown in
Theorem 1. These findings are also visible in the compara-
tive rankings based on FD scores in Figure 8(c). The results
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Figure 8. The results of evaluating generators in Figure 9 over clients in Figure 10.

h

(d) Generator 4 (e) Generator 5 (f) Generator 6
Figure 9. Illustration of generators with different truncation fac-
tors. From (a) to (e), 7 = 0.01,0.2,0.4,0.6, 0.8, 1.0, where 7 is

the truncation parameter.

!

(d) Client 4 (¢) Client 5 (f) Client 6

Figure 10. Illustration of simulated clients with heterogeneous dis-
tributions via truncation technique.

suggest that although KD scores and FD-all prefer gener-
ators with higher truncation factors and diversity, FD-avg
preferred generated data with limited diversity matching the
bounded diversity level at each client.

8.2. Results on AFHQ dataset

Utilizing a another model weight that is pre-trained on
AFHQ-wild dataset [4], we extend the above experiment.
We gradually increase the truncation parameter of genera-
tors We show some examples from generators, clients on

Figure 12 and Figure 11 and plot the relationship between
FD-scores and KD-scores on Figure 13. The results that
are illustrated in the figures still indicates that FD-avg can
lead to different ranking with FD-all, while KD-avg can be
treated as a more stable evaluation metric in the distributed
learning setting.

8.3. Utilized Clients in Distributed Optimization via
MMD?

In Section 5.5, we fine-tune pre-trained StyleGAN mod-
els across multiple clients using the MMD? distance in a
distributed manner. The clients we employ are generated
from StyleGAN2, pre-trained on the FFHQ dataset, using
the truncation method as introduced in the main text. This
subsection provides further details and sample images from
the utilized clients.

Training Details. We follow the standard training proto-
cols of StyleGAN2-ADA, incorporating two primary loss
functions. The first is the standard GAN training loss, ap-
plied to both the generated samples and the original FFHQ
dataset. The second is the MMD? distance, computed using
a polynomial kernel of order 3, applied between the gener-
ated samples and client samples. To balance these losses,
we set the MMD? distance weight factor to 5. Training is
conducted for 1,000k images. Additional hyperparameters,
including learning rate and data augmentation settings, fol-
low the “paper256” configuration from the official imple-
mentation.

Client Samples. We randomly selected several samples
from each client, as shown in Figure 14. In total, we use 12
clients for each experiment (glasses and head accessories).

9. Evaluation on Synthetic Gaussian Mixture

As discussed in main text, the optimal selection of the co-
variance matrix differs for the FD-all and FD-avg aggregate
scores. To illustrate this distinction, we performed a toy ex-
periment, revealing that FD-avg attains its minimum value
when the generator’s variance closely approximates that of
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Larger Truncation

Figure 11. Illustration of randomly-generated samples from the variance-controlled generators on AFHQ dataset. Images in each row are

synthesized with the same truncation parameter.

an individual client, whereas FD-all is minimized when the
variance equals that of the aggregate distribution.

Setup. Our experimental setup involves two clients, de-
noted by Cy and Cs. (] possesses a dataset consisting
of 50,000 samples drawn from the Gaussian distribution
N([1,0]T, ), while Cy holds a dataset with 50,000 sam-
ples drawn from N/([—1,0] T, ), where & = diag([1, 1]7).
We introduce a generator, denoted as Gya,,, Which is pa-
rameterized by var,. var, regulates the variance of the
generator along the X-axis. Specifically, Gyar, gener-
ates 50,000 data points following a Gaussian distribution
N([0,0]T,E¢g), where g = diag([var,, 1]7). The rela-
tionship between the two clients and the generator is visu-
ally depicted in Figure 15. Additionally, we introduce an
“ideal estimator’” denoted as F = (1 U Csy. This ideal esti-
mator possesses the unique ability to replicate the distribu-
tion of the training dataset perfectly. We employ the ideal
estimator as a reference for our analysis.

Evaluation Metrics. We measure the similarity between

samples generated by clients and generators using the
Fréchet distance (FD), which follows from the Wasserstein-
based definition of FD-all and FD-avg without the appli-
cation of the pre-trained Inception network. We consider
the aggregate scores FD-avg and FD-all as defined in Equa-
tion (2) and Equation (1). Note that the FD-all for the ideal
estimator is zero and we use FD-ref = £ Z?zl FD(E, C;)
as a reference for FD-avg. We also measure the Kernel dis-
tance (KD), which follows the definition of KD-all and KD-
avg without Inception network. KD-ref is defined for the
kernel distance in a similar fashion to FD-ref.

Results. By increasing var, from 0 to 4, we get a sequence
of FD-avg / FD-all pairs and we plot them with the var,
in Figure 15. Our experimental results highlight the fol-
lowing conclusions. First, we observed that the minimum
of FD-all occurs at var, = 2, while that of FD-avg oc-
curs at var, = 1, which indicates that the optimal solutions
of var, to minimize FD-all and FD-avg are inconsistent.
In this case, FD-all and FD-avg lead to different rankings
of the models with var, = 1 and var, = 2. Addition-
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(d) Client 4

(e) Client 5

e

(c) Client 3

(f) Client 6

Figure 12. Illustration of random samples from randomly selected variance-limited clients on AFHQ dataset.

Evaluation with StyleGAN on AFHQ
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Figure 13. Evaluation on AFHQ dataset with StyleGAN?2.

ally, we observed that, counterintuitively, the ‘ideal estima-
tor’ did not reach the minimum average of the Fréchet dis-
tances. The distance between KD-avg and KD-all remains
the same with the change of var, and both of which reach
minimum at var, = 2. The toy experiment highlights how
a co-variance mismatch between clients and the collective
dataset leads to inconsistent rankings according to aggre-
gate Fréchet distances.

The Log-Likelihood Score. We also evaluated the syn-
thetic Gaussian mixture dataset with the standard log-
likelihood (LL) score. In this experiment, we note that we
have access to the probability density functions (PDF) of
the simulated generator. We utilized the generator G,
described in the main text and performed the evaluation
over the parameter var, in the range [0,40]. As can be
shown in the general case, LL-avg and LL-all led to the

same value for every evaluated model. As shown in Fig-
ure 16(a), they reached their maximum value at var, = 2.
On the other hand, we set a new generator Geqn, gen-
erating samples according to A([mean,,0]",X), where
3 = diag([2,1]7). We gradually increased mean,, from -2
to 2 and plotted LL-avg, LL-all, and LL-ref in Figure 16(b).

10. Evaluation on Federated Image Datasets

10.1. Experiment Settings

We evaluated our theoretical results on standard image
datasets. In our experiments, we simulated heterogeneous
federated learning experiments consisting of non-i.i.d. data
at different clients: for CIFAR-10 [17], we considered 10
clients, each owning samples exclusively from a single class
of the image dataset. Therefore, every client’s dataset con-
tains images having the same label. Similar to the federated
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(d) Client 4 w/ head accessories

(e) Client 5 w/ head accessories

(f) Client 6 w/ head accessories

Figure 14. Illustration of random samples from clients utilized in distributed optimization.
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Figure 15. Experimental results of Gaussian mixture dataset. (a): The optimal var, parameters are different under FD-avg and FD-all
evaluations. (b): Distance between KD-avg and KD-all remains the same.(c): the clients’ and generator’s samples.

CIFARI10, federated CIFAR100 and federated ImageNet-32
are conducted by grouping samples from a each class.

Neural Net-based Generators. We have trained
WGAN-GP [29] and DDPM [12] in a federated learning
setting by utilizing FedAvg approach [20]. The experi-
ment protocols for WGAN-GP and DDPM are copied from
original works. The communication interval of FedAvg is
set as 160 iterations for both WGAN-GP and DDPM. We
have tried different communication intervals for both mod-
els. The communication frequency will affect model perfor-
mance but have no influence on the conclusions in the main
part of our paper.

Perfect Data-simulating Generators. In our CIFAR-
10 experiments, we also simulated and evaluated an ideal
generator” capable of perfectly replicating all samples be-
longing to the "airplane’ class in CIFAR10. In this scenario,
the samples ’generated” by the ideal generator exhibit im-
peccable fidelity but lack diversity since no samples from

other categories can be produced.

10.2. FD-based and KD-based Evaluation of Gen-
erative Models.

We evaluated the generative models according to FD-all,
FD-avg, KD-all, and KD-avg as defined in Section 4. In
several cases, we observed that FD-all / FD-avg could as-
sign inconsistent rankings to the generators. Specifically,
we computed FD-all and FD-avg for the ideal ’airplane’-
class-based generator and neural net-based DDPM gener-
ators under the distributed CIFAR10 setting. We present
some examples generated from the two generators in Fig-
ure 17 and report their scores according to the four met-
rics. The results suggest that FD-avg assigns a consid-
erably lower score to the ideal ’airplane’-based generator,
whose images preserve perfect details but lack diversity in
image categories. Conversely, FD-all assigns a relatively
lower value to the DDPM model because its images pos-
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Figure 16. Evaluation of synthetic Gaussian data with the aggregate log-likelihood scores.
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Figure 17. Left: Images generated by a generative model obtain a lower FD-all. Right: Images from real datasets with class ’airplane’
obtain a lower FD-avg. FD-avg and FD-all lead to inconsistent rankings, while KD-avg and KD-all result in the same ranking.

sess greater diversity. On the other hand, we also observed
that KD-avg and KD-all give consistent rankings. Both of
them led to the evaluation that the ideal plane generator is
slightly better than the DDPM generator. In our implemen-
tation of KD-scores, we utilized the standard implemen-
tation of KD measurement from data with a polynomial
kernel, k(x,y) = (%xTy + 1)3, where d is the dimen-
sion of feature vector. We note that our theoretical find-
ing on the evaluation consistency under KD-all and KD-
avg applies to every kernel similarity function. We also
test KD-scores with a Gaussian RBF kernel k™ (x,y) =
exp (— 52z [|[x — y||?) as formulated in [2], where we chose
o = /d in the experiments. For images generated by diffu-
sion model KD™'-all gives 4.277¢~3 while KD™-avg gives
4.295¢ 3. And for the airplane images in CIFAR10, KD™f-
all gives 4.283¢% while KD™-avg gives 4.301e=3. The
results indicate that for Gaussian RBF kernel kf,bf, KD™all
and KD™-avg still gives consistent results. In this case, the
KD™based evaluation suggests the images sampled from
the diffusion model have higher quality than the set of air-
plane images in the CIFAR10 dataset.

10.3. Evaluate Sequence of Net-based Generator on
Federated CIFAR10

We trained the WGAN-GP[9] generative models multiple
times using different random states, and we set different
training lengths for every training procedure. We saved the
models at different checkpoints every 10 epochs, which is
common in training generative models to select the best-
performing saved model according to an evaluation metric.

Our numerical results suggest that the gap between KD-
all and KD-avg remains constant and hence they lead to
the same rankings of the generative models. Here, we
conducted our evaluations on all the generative models in-
stances as previously described, and the results are visu-
alized in the left sub-figure of Figure 18. These findings
reveal that all distinct generators consistently exhibit a uni-
form gap between KD-avg and KD-all. Consequently, our
results indicate that the rankings established by KD-avg
consistently align with those of KD-all in distributed learn-
ing settings.
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Evaluation on Federated CIFAR10

161

144

121 o

KID-avg

10

04 .05 .06
KID-all

07 .08 .09 .10

Evaluation on Federated CIFAR10 (Zoom in)

226
&
224
222
220
?85 189 193 197 201
FID-all

Figure 18. Left: KD evaluations of WGAN-GP checkpoints on federated CIFAR10. Right: FD-based evaluations on federated CIFAR-10.

10.4. Evaluate CIFAR100 Generator on Federated
CIFAR10

To further experiment the ranking of generative models
according to the discussed aggregate scores, we extracted
samples from each class of CIFAR-100 and treated them as
the output of one hundred distinct generators, each corre-
sponding to a single class. By assessing these generators on
the federated CIFAR-10 dataset, we obtained one hundred
pairs of FD-avg / FD-all values, and a subset of these pairs
with inconsistent rankings according to FD-all/FD-avg is
visualized in the right of Figure 18. The complete set of
evaluation results is available on Table 3. These results fur-
ther highlight that the rankings provided by FD-all and FD-
avg can exhibit inconsistencies in the context of distributed
learning. Such inconsistencies could pose a challenge when
selecting from a series of checkpoints or model architec-
tures during the training of generative models in distributed
learning scenarios, where a distributed computation of FD-
all is more challenging than obtaining FD-avg due to pri-
vacy considerations.

10.5. Evaluate CIFAR100 on Federated ImageNet-
32

We expand the evaluation of CIFAR100 to Federated
ImageNet-32 dataset. Similarly, we extracted samples from
each class of CIFAR-100 and treated them as the output
of one hundred distinct generators, each corresponding to
a single class. We also keep the first one hundred classes of
ImageNet-32 and simulate one hundred clients. Each client
hold all images (~1300) from a single class. We evaluate
all the generators on Federated ImageNet-32 and the result
is shown in Figure 19. The ranks provided by FD-avg and
FD-all is inconsistent in a much more complex distributed
learning setting.

Evaluation on Federated IN-32 (Zoom in)
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Figure 19. Evaluate CIFAR100 on Federated ImageNet-32.

11. Evaluation on Variance-Limited Federated
Datasets

11.1. Experiment Setting

In the federated learning literature, it is relatively common
that each client possesses only a small portion of the collec-
tive dataset, and the data diversity within each client’s hold-
ings is significantly constrained. To illustrate, consider the
case of smartphone users who exclusively own pictures of
themselves, all of which share remarkable similarity. Nev-
ertheless, in a network comprising millions of users, the
overall dataset’s distribution still exhibits significant vari-
ance. In such scenarios, our theoretical framework suggests
that the disparity between FD-all and FD-avg can become
more pronounced. To experiment the effect of such distri-
bution heterogeneity, we simulated and evaluated genera-
tive models under variance-limited federated datasets. To
obtain a variance-limited federated dataset, for each class
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Figure 20. Evaluation on Variance-Limited Federated CIFAR10.
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Figure 21. Evaluation on Variance-Limited Federated CIFAR100.

in the image dataset, we kept only a single image and its
K-nearest neighbors. To find the K nearest neighbors, we
used the Ls-distance in the Inception-V3 2048-dimensional
semantic space. It is worth noting that our experimentation
has shown that varying K within the range of 5 to 100 does
not alter the core conclusions. This approach effectively
mimics scenarios where each client’s data has limited vari-
ance. We simulated the variance-limited federated learning
setting for CIFAR-10, CIFAR-100 and a 32x32 version of
ImageNet (IN-32). For CIFAR-10 and CIFAR-100, we uti-
lized all the classes in the dataset and for IN-32 we utilized
the first 100 classes. We chose K = 20 in the experiments.
Intuitively, a larger K leads to a more significant intra-client
variance.

Variance-controlled Generators. To simulate a gener-
ator, we initiate the process by randomly selecting a sample
from the dataset. We then gather its M-nearest neighbors
from the original dataset (w/o federated learning setting).
We consider this subset of samples as a set of generated
samples generated by a generator denoted by Gj;. By in-

creasing the value of M, we generated a sequence of gen-
erators with progressively higher variance values. We tried
the M range from 100 to 50000. We evaluated all the gen-
erative models, denoted as GG, with the chosen M values,
using the Variance-Limited Federated datasets.

11.2. Results on Variance-Limited Federated CI-
FAR10

The evaluation results on CIFAR10 are shown in Figure 20.
Our findings reveal a distinct pattern in the behavior of FD-
avg and FD-all as generator variance varies while the dis-
tance between KD-avg and KD-all remains the same. Our
numerical results highlight the impact of the choice of FD-
all and FD-avg on model rankings in federated learning
settings with limited intra-client variance. , which can be
broadly categorized into three phases.

11.3. Results on Variance-Limited Federated CI-
FAR100

Similar to the experiments on CIFAR10, we have also ap-
plied the variance-limited federated dataset setting to CI-
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1078 FAR100. We keeps K=20 images in each class. For
1079 variance-controlled generators, we select a sample from
1080 original CIFAR100 and gather the M-nearset neighbors.
1081 The range of M keeps the same with that in the previous

1082 subsection. We show the results in Figure 21. The results
1083 still support our main claims: FD-avg and FD-all gives in-
1084 consistent results while KD-avg and KD-all give the same.

1085 11.4. Results on Variance-Limited Federated IN32

1086 Results on ImageNet-32 are illustrated in Figure 22. We
1087 further plot the relationship between ranking given by FD-
1088 scores and KD-scores in Figure 23.

1089 11.5. The Effect of Intra-Client Variance

1090 In the main body of this paper, we choose K = 20 when we
1091 conduct the variance-limited federated CIFAR10 dataset.

1092 Hyper-parameter K controls the intra-client variance, the
1093 larger the K the larger the variance. The number of K will
1094 not affect the key conclusion. We prove this claim by con-

1095 ducting an ablation study on hyper-parameter K. The K is
1096 selected from {5,10,20,50} in our experiment. The results
1097 are illustrated in Figure 24. Each of these figure gives a
1098 U-shape curve, which indicates that the rankings given by
1099 FD-all and FD-avg are highly inconsistent, especially when
1100 the intra-client variance and inter-client variance are mis-
1101 matched.
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Figure 22. FD and KD-based Evaluations of variance-controlled generators on variance-limited federated ImageNet-32.
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Figure 23. Comparing FD-based and KD-based rankings of variance-limited federated Mini-ImageNet-based simulated generative models

The lower the rank is, the better.
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Class | FD-all FD-avg | KD-all KD-avg ‘ ‘ Class ‘ FD-all FD-avg | KD-all KD-avg
0 267.4 2859 0.201 0.253 25 142.4 173.2 0.067 0.116
1 1732 2055 0.109 0.165 26 139.4 175.5 0.063 0.114
2 151.8 185.4 0.072 0.123 27 114.5 153.7 0.054 0.102
3 124.3 162.2 0.047 0.100 28 182.0  205.0 0.112 0.160
4 117.0 156.1 0.049 0.100 29 143.3 185.2 0.083 0.133
5 157.6 185.2 0.088 0.138 30 147.4 179.8 0.084 0.134
6 142.1 179.7 0.062 0.115 31 160.4 193.6 0.108 0.158
7 144.9 179.2 0.066 0.113 32 1154 156.4 0.032 0.085
8 155.0 187.7 0.085 0.135 33 146.9 181.2 0.077 0.126
9 180.7  203.6 0.106 0.156 34 127.5 163.4 0.068 0.117
10 1832  208.8 0.099 0.151 35 150.4 184.7 0.080 0.131
11 151.9 184.9 0.073 0.127 36 142.5 176.5 0.070 0.126
12 126.1 163.1 0.056 0.108 37 126.7 162.9 0.066 0.118
13 127.0 159.4 0.058 0.112 38 110.5 151.3 0.050 0.100
14 145.8 182.9 0.071 0.126 39 2335 2572 0.145 0.196
15 124.2 165.2 0.054 0.107 40 158.9 187.6 0.078 0.128
16 190.3  213.6 0.112 0.161 41 151.1 181.0 0.072 0.126
17 161.5 192.8 0.117 0.165 42 137.2 174.7 0.071 0.122
18 142.7 179.8 0.069 0.118 43 152.0 186.0 0.090 0.139
19 112.4 154.1 0.047 0.101 44 126.7 165.8 0.050 0.103

20 1942 2159 0.123 0.175 45 1354 173.0 0.059 0.111
21 164.8 194.9 0.099 0.148 46 155.1 187.1 0.080 0.133
22 205.1 227.0 0.126 0.180 47 1742 2034 0.118 0.169
23 191.1 219.7 0.130 0.186 48 145.0 175.3 0.077 0.129
24 1749  202.8 0.105 0.155 49 164.8 194.6 0.110 0.164
50 113.8 154.0 0.045 0.095 75 151.7 184.3 0.096 0.145
51 150.4 184.6 0.073 0.125 76 151.5 183.5 0.068 0.118
52 1953  222.1 0.167 0.218 77 139.0 174.9 0.066 0.117
53 279.7  299.1 0.217 0.270 78 197.3 2283 0.130 0.182
54 170.2  201.3 0.098 0.149 79 138.9 174.8 0.062 0.114
55 104.7 146.3 0.034 0.086 80 111.1 149.9 0.043 0.095
56 144.2 178.5 0.075 0.126 81 131.7 165.3 0.068 0.119
57 1925 2199 0.115 0.163 82 197.6 2272 0.123 0.178
58 131.5 161.0 0.067 0.121 83 202.6  230.6 0.122 0.173
59 149.7 183.7 0.093 0.144 84 144.5 177.3 0.065 0.111
60 188.0  216.0 0.144 0.197 85 123.0 160.7 0.079 0.125
61 2492  270.6 0.179 0.229 86 168.0 193.0 0.083 0.135
62 202.1 230.6 0.133 0.184 87 170.5 196.0 0.098 0.152
63 140.6 175.3 0.071 0.120 88 133.4 170.6 0.068 0.120
64 118.7 156.1 0.049 0.100 89 122.3 158.1 0.059 0.112
65 102.2 142.2 0.024 0.077 90 110.7 148.3 0.041 0.093
66 121.7 159.1 0.054 0.105 91 124.0 160.7 0.048 0.098
67 132.5 167.8 0.063 0.115 92 1754  206.2 0.096 0.149
68 139.7 173.1 0.073 0.123 93 129.7 166.3 0.054 0.109
69 143.2 176.0 0.068 0.121 94 2134 2352 0.162 0.212
70 1784  209.5 0.095 0.148 95 154.7 185.2 0.084 0.133
71 169.4 199.0 0.120 0.167 96 147.8 181.7 0.090 0.138
72 114.1 155.6 0.043 0.094 97 137.1 171.4 0.068 0.119
73 137.9 170.8 0.071 0.124 98 157.1 188.6 0.082 0.134
74 124.7 162.1 0.061 0.108 99 2049 2339 0.143 0.192

Table 3. Full evaluation of CIIj?ﬁRIOO on Federated CIFAR10.
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Figure 24. Ablation study on hyper-paramter K.
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12. Proofs 1102

12.1. Proof of Theorem 1 1103

To show this theorem, we note that if ¢(X) is the kernel feature map for kernel k used to define the KD distance, i.e. 1104
k(x,y) = (¢(x), ¢(y)) is the inner product of the feature maps applied to x, y, then it can be seen that the kernel-k-based 1105

MMD distance can be written as 1106
MMD(Px, Pg) ::]EX,X’NPX [k(X, X/)] + EY,Y’~PG [k‘(Y, Y/)] — QEXNPX, Y~Pg [kj(X, Y)} 1107
2
—[|E[e(x)] — B[00 1108
Therefore, following the definition of KD-avg, we can write 1109
k
KDoyg (PXI,...,PXk : PG) .= Y A\KD(Px,, Ps) 1110
i=1
k
= Z AiMMDy (Px,, Pg) 1111
i=1
2

—E[q&(G(Z))]H 1112

b) ) = 2 & Sa2
? (D] - EG@)] [+ L[ MIEPX] - ERENI] 1113

k
©MMD, (P, Pe) + 37 [AMMD, (Py, Py,)] 1114
i=1
4 k
@ KD(Py, Pp) +Z[/\ KD(Py, Py, )} 1115
i=1
k ~
(—E)KD»LH(PXI,...,PXR;Pg)+Z>\¢KD(Px,PXi). 1116
i=1

In the above, (a) and (c) follow from the feature-map-based formulation of the MMD distance. (b) is the consequence of the 1117

fact that || - || is the norm in a reproducing kernel Hilbert space and for X distributed as Py = Zle APx, we know that 1118

E[¢(X)] is the weighted barycenter of the individual mean vectors E[¢(X1)], ..., E[¢(X)]. (d) is based on the definition 1119

of KD. Finally, (e) follows from the definition of KD-all, which completes the proof. 1120

12.2. Proof of Theorem 2 1121

1. Note that according to the definition, 1122
k

FD.1 (PXl v Py, PG) = FD(Y_ APy, Po). 1123

i=1
Since the FD score depends only on the the mean and covariance parameters in the Embedding-based semantic space, we 1124

can replace Zle Ai Px, with any other distribution that shares the same mean and covariance parameters, and the FD 1125
value will not change. Observe that given mean parameters p1, . . ., i, the Embedding-based mean of Zle AiPx, will 1126
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be i = 37, Aipsi. Therefore, the Embedding-based covariance matrix of Y-, ; Py, follows from

k k
S ONER[(Xi =) (X =) ] = YN[ Cit (i — ) (i — )]
i=1 i=1
k
= Son[C+ i | - AAT
=1
= C.

Therefore, since we assume X has the Embedding-based mean and covariance fi and C , the proof of this part is complete.
2. According to the definition, FD-avg can be written as

k
FDavg (PXl v Py, PG) .= 3" AFD(Px,. Ps).
=1

Therefore, we have

FDavg (PXl, ... Px,: PG>

—
S]
=

k
23N (M (1, Co) N (b6, )
i=1

k
® Z A [”l‘/i — pell3 + Tr(CZ- +Cq — (CZCG)V?)}

=1

= Z[)\ lpi — palls } Z[)\ Tr(C; + Co — (C; Cc)1/2)]

k

©
1= 3+ D0 (Al — g3
i=1

k
+Tr(Ca + € = (CaC)'/2) + 3 [ NTe(Ci + € — (GiC)/2)
i=1
=i — e} + Te(Co + C — (CoC)'?)

+ 32 [MIA -l AT+ G- (€O
i=1

=i — el + Te(Co + C — (CoC)'?)

k
+ N[l = il + (o + € = (€.0)12)]
i=1
k
FD(Pg, Pa) + Y  AFD(Pg, Px,).

i=1

@

In the above, (a) follows from the Wasserstein-based definition of FD distance. (b) comes from the well-known
closed-form expression of the 2-Wasserstein distance between Gaussian distributions [36]. (c) is the result of apply-

ing the weighted barycenter of vector g1, ..., p that can be seen to be fi and the weighted barycenter of positive
semi-definite covariance matrices C', ..., C} that has been shown to be the unique matrix C that solves the equation

C= Zle i ((NJ' 1/ 2@-51/ 2) 1/2 [24, 27]. (d) is the direct consequence of the Wasserstein-based definition of the FD dis-
tance and the closed-form expression of the 2-Wasserstein distance between Gaussians. Therefore, the proof is complete.
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12.3. Proof of Proposition 1

Consider the FD-all-minimizing parameters in Theorem 2 resulting in

FDan(le,n-,PXk ; P@) = FD(N(ﬁ,CA'),N(u@,C@))

|2 = ng; + (€ + 5 —2(Ccg) ).

Note that since we assume the number of clients & is less than the dimension of the embedding, there exists a unit-norm
vector 3 (]|B]l2 = 1) in the embedding space that is orthogonal to all mean vectors pi1, ..., g and hence to their mean

k
i

n=1 Zle pi. Givenu = Tr(}"; | A (uipe] — 2a")), we then consider the generator G’ with the following mean and

covariance parameters:
k
por = [+ Vup, Cor =Cg— ZM (min] —pp") = Z AiCi.
i=1 i=1
We claim that the generators G and G’ lead to the same client-based FD scores as for every %
Fq)(}?xi,f%y) = Pq)(fvxlti,C%),fVK/tG/,CL}O)
s+ Te(Ci+ Car —2(CiCa) )

= Huz — Ka
= |15 = nglly + u+ Tr(C + Car = 2(CiCq) ) —u
= [lms = mglly + Te(Ci + Cer — 2(CiC) )

= FD(Px,, Pz).

On the other hand, for the FD-all of G’ we have

FDall(PXlw--aPXk ; PG’) = FD(N(ﬁ,é)vN(MG',CG'))

| = e[|y + Tr(C + Car —2(CCa) %)

I = wgll; + ur(C + Cq —2(CCg) ) +u

I~ nglly + Tr(C + Cg - 2(Ccg) ")
k

+ 2T (> Ni(pap) — BAT))
=1

— FDuy <PX1, o Py, P@)
k
+ 2T () Ni(pip! —Ba"))
=1

Therefore, Proposition 1’s proof is complete.
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