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On the Distributed Evaluation of Generative Models

Supplementary Material

7. General 1-Wasserstein-Distance evaluation737

Metrics738

Let Pg and Pt represent the distribution of generated set and739
training set. The Wasserstain-1 distance between Pg and Pt740
is,741

W (Pg,Pt) = inf
λ∈Π(Pg,Pt)

E(x,y)∼λ[∥x− y∥], (4)742

where Π(Pg,Pt) denotes the set of all joint distribution743
λ(x, y) whose marginal distribution are respectively Pg and744
Pt. However, the direct estimation of W (Pg,Pt) is highly745
intractable. On the other hand, the Kantorovich-Rubinstein746
duality [36] gives,747

W (Pg,Pt) = sup
∥f∥L≤1

Ex∼Pg
[f(x)]− Ex∼Pt

[f(x)], (5)748

where the supremum is over all the 1-Lipschitz functions f :749
Rn → R. Therefore, if we have a parameterized family of750
functions {fθ}θ∈Θ that a 1-Lipschitz, we could considering751
solve this problem,752

max
θ∈Θ

Ex∼Pg
[fθ(x)]− Ex∼Pt

[fθ(x)]. (6)753

To estimate the supremum of Equation (5), we employ a754
family of non-linear neural network fθ which are repeat-755
edly stacked by the fully connected layer, the spectral nor-756
malization and RELU activation layer. There are three re-757
peated blocks in the network fθ and the last block does have758
RELU. The feature is extracted by pre-trained Inception-V3759
network. By optimizing the parameters in fθ to maximize760
Ex∼Pg

[fθ(x)] − Ex∼Pt
[fθ(x)] over Pg and Pt, we can fi-761

nally get an estimation of W (Pg,Pt). And similarly, we can762
also define average score W-avg and collective-data-based763
score W-all under the distributed learning setting. Similar764
to the CIFAR100 experiment in the main body of paper,765
we extracted samples from each single class of CIFAR100766
and evaluate these samples on federated CIFAR10 dataset.767
We illustrate a subset of W-avg / W-all pairs in Figure 7.768
According to experiment results, we find that general 1-769
Wasserstein-Distance evaluation metric also shows incon-770
sistent behaviours in the distributed evaluation settings.771
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Figure 7. Evaluation with 1-Wasserstein-Distance on Federated
CIFAR10.

8. Extra Experiment Results on FFHQ and 772

AFHQ 773

8.1. Complex FFHQ Setting 774

Experiment Setting. Following a similar methodology as 775
described in the previous subsection, we synthesized a se- 776
ries of diversity-controlled generators by applying the stan- 777
dard truncation technique [18] to the random noise vector z. 778
We varied the truncation factor τ over [0.01, 1.0]. The effect 779
of changing the truncation factor on the generated samples’ 780
diversity is illustrated in Figure 9. For every attempted τ , 781
we generated 50K samples. Additionally, to simulate a dis- 782
tributed setting with heterogeneous data distributions, we 783
simulated 100 clients, each with images synthesized with 784
truncation factor τ = 0.25. The centers of image distri- 785
butions for each client varied, resulting in intra-client simi- 786
larity and inter-client diversity as depicted in Figure 10. We 787
evaluated the generators in the distributed setting of the sim- 788
ulated clients using both the discussed FD and KD-based 789
evaluation scores. 790

Numerical Results. As shown in Figure 8(a) and Fig- 791
ure 8(b), FD-avg and KD-avg led to different rankings of 792
the models. The plot of FD-avg versus FD-all led to a U- 793
shaped curve, revealing inconsistent rankings of the mod- 794
els. On the other hand, the difference between KD-avg and 795
KD-all remained constant for the generators, as shown in 796
Theorem 1. These findings are also visible in the compara- 797
tive rankings based on FD scores in Figure 8(c). The results 798
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Figure 8. The results of evaluating generators in Figure 9 over clients in Figure 10.

(a) Generator 1 (b) Generator 2 (c) Generator 3

(d) Generator 4 (e) Generator 5 (f) Generator 6

Figure 9. Illustration of generators with different truncation fac-
tors. From (a) to (e), τ = 0.01, 0.2, 0.4, 0.6, 0.8, 1.0, where τ is
the truncation parameter.

(a) Client 1 (b) Client 2 (c) Client 3

(d) Client 4 (e) Client 5 (f) Client 6

Figure 10. Illustration of simulated clients with heterogeneous dis-
tributions via truncation technique.

suggest that although KD scores and FD-all prefer gener-799
ators with higher truncation factors and diversity, FD-avg800
preferred generated data with limited diversity matching the801
bounded diversity level at each client.802

8.2. Results on AFHQ dataset803

Utilizing a another model weight that is pre-trained on804
AFHQ-wild dataset [4], we extend the above experiment.805
We gradually increase the truncation parameter of genera-806
tors We show some examples from generators, clients on807

Figure 12 and Figure 11 and plot the relationship between 808
FD-scores and KD-scores on Figure 13. The results that 809
are illustrated in the figures still indicates that FD-avg can 810
lead to different ranking with FD-all, while KD-avg can be 811
treated as a more stable evaluation metric in the distributed 812
learning setting. 813

8.3. Utilized Clients in Distributed Optimization via 814
MMD2 815

In Section 5.5, we fine-tune pre-trained StyleGAN mod- 816
els across multiple clients using the MMD2 distance in a 817
distributed manner. The clients we employ are generated 818
from StyleGAN2, pre-trained on the FFHQ dataset, using 819
the truncation method as introduced in the main text. This 820
subsection provides further details and sample images from 821
the utilized clients. 822

Training Details. We follow the standard training proto- 823
cols of StyleGAN2-ADA, incorporating two primary loss 824
functions. The first is the standard GAN training loss, ap- 825
plied to both the generated samples and the original FFHQ 826
dataset. The second is the MMD2 distance, computed using 827
a polynomial kernel of order 3, applied between the gener- 828
ated samples and client samples. To balance these losses, 829
we set the MMD2 distance weight factor to 5. Training is 830
conducted for 1,000k images. Additional hyperparameters, 831
including learning rate and data augmentation settings, fol- 832
low the ”paper256” configuration from the official imple- 833
mentation. 834

Client Samples. We randomly selected several samples 835
from each client, as shown in Figure 14. In total, we use 12 836
clients for each experiment (glasses and head accessories). 837

9. Evaluation on Synthetic Gaussian Mixture 838

As discussed in main text, the optimal selection of the co- 839
variance matrix differs for the FD-all and FD-avg aggregate 840
scores. To illustrate this distinction, we performed a toy ex- 841
periment, revealing that FD-avg attains its minimum value 842
when the generator’s variance closely approximates that of 843
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Figure 11. Illustration of randomly-generated samples from the variance-controlled generators on AFHQ dataset. Images in each row are
synthesized with the same truncation parameter.

an individual client, whereas FD-all is minimized when the844
variance equals that of the aggregate distribution.845

Setup. Our experimental setup involves two clients, de-846
noted by C1 and C2. C1 possesses a dataset consisting847
of 50,000 samples drawn from the Gaussian distribution848
N ([1, 0]⊤,Σ), while C2 holds a dataset with 50,000 sam-849
ples drawn from N ([−1, 0]⊤,Σ), where Σ = diag([1, 1]T ).850
We introduce a generator, denoted as Gvarx , which is pa-851
rameterized by varx. varx regulates the variance of the852
generator along the X-axis. Specifically, Gvarx gener-853
ates 50,000 data points following a Gaussian distribution854
N ([0, 0]T ,ΣG), where ΣG = diag([varx, 1]T ). The rela-855
tionship between the two clients and the generator is visu-856
ally depicted in Figure 15. Additionally, we introduce an857
”ideal estimator” denoted as Ê = C1 ∪ C2. This ideal esti-858
mator possesses the unique ability to replicate the distribu-859
tion of the training dataset perfectly. We employ the ideal860
estimator as a reference for our analysis.861

Evaluation Metrics. We measure the similarity between862

samples generated by clients and generators using the 863
Fréchet distance (FD), which follows from the Wasserstein- 864
based definition of FD-all and FD-avg without the appli- 865
cation of the pre-trained Inception network. We consider 866
the aggregate scores FD-avg and FD-all as defined in Equa- 867
tion (2) and Equation (1). Note that the FD-all for the ideal 868
estimator is zero and we use FD-ref = 1

2

∑2
i=1 FD(Ê, Ci) 869

as a reference for FD-avg. We also measure the Kernel dis- 870
tance (KD), which follows the definition of KD-all and KD- 871
avg without Inception network. KD-ref is defined for the 872
kernel distance in a similar fashion to FD-ref. 873

Results. By increasing varx from 0 to 4, we get a sequence 874
of FD-avg / FD-all pairs and we plot them with the varx 875
in Figure 15. Our experimental results highlight the fol- 876
lowing conclusions. First, we observed that the minimum 877
of FD-all occurs at varx = 2, while that of FD-avg oc- 878
curs at varx = 1, which indicates that the optimal solutions 879
of varx to minimize FD-all and FD-avg are inconsistent. 880
In this case, FD-all and FD-avg lead to different rankings 881
of the models with varx = 1 and varx = 2. Addition- 882
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(a) Client 1 (b) Client 2 (c) Client 3

(d) Client 4 (e) Client 5 (f) Client 6

Figure 12. Illustration of random samples from randomly selected variance-limited clients on AFHQ dataset.

Larger Truncation

Larger Truncation

Figure 13. Evaluation on AFHQ dataset with StyleGAN2.

ally, we observed that, counterintuitively, the ‘ideal estima-883
tor’ did not reach the minimum average of the Fréchet dis-884
tances. The distance between KD-avg and KD-all remains885
the same with the change of varx and both of which reach886
minimum at varx = 2. The toy experiment highlights how887
a co-variance mismatch between clients and the collective888
dataset leads to inconsistent rankings according to aggre-889
gate Fréchet distances.890

The Log-Likelihood Score. We also evaluated the syn-891
thetic Gaussian mixture dataset with the standard log-892
likelihood (LL) score. In this experiment, we note that we893
have access to the probability density functions (PDF) of894
the simulated generator. We utilized the generator Gvarx895
described in the main text and performed the evaluation896
over the parameter varx in the range [0, 40]. As can be897
shown in the general case, LL-avg and LL-all led to the898

same value for every evaluated model. As shown in Fig- 899
ure 16(a), they reached their maximum value at varx = 2. 900
On the other hand, we set a new generator Gmeanx

gen- 901
erating samples according to N ([meanx, 0]

⊤,Σ), where 902
Σ = diag([2, 1]T ). We gradually increased meanx from -2 903
to 2 and plotted LL-avg, LL-all, and LL-ref in Figure 16(b). 904

10. Evaluation on Federated Image Datasets 905

10.1. Experiment Settings 906

We evaluated our theoretical results on standard image 907
datasets. In our experiments, we simulated heterogeneous 908
federated learning experiments consisting of non-i.i.d. data 909
at different clients: for CIFAR-10 [17], we considered 10 910
clients, each owning samples exclusively from a single class 911
of the image dataset. Therefore, every client’s dataset con- 912
tains images having the same label. Similar to the federated 913
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(a) Client 1 w/ glasses (b) Client 2 w/ glasses (c) Client 3 w/ glasses

(d) Client 4 w/ head accessories (e) Client 5 w/ head accessories (f) Client 6 w/ head accessories

Figure 14. Illustration of random samples from clients utilized in distributed optimization.
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Figure 15. Experimental results of Gaussian mixture dataset. (a): The optimal varx parameters are different under FD-avg and FD-all
evaluations. (b): Distance between KD-avg and KD-all remains the same.(c): the clients’ and generator’s samples.

CIFAR10, federated CIFAR100 and federated ImageNet-32914
are conducted by grouping samples from a each class.915

Neural Net-based Generators. We have trained916
WGAN-GP [29] and DDPM [12] in a federated learning917
setting by utilizing FedAvg approach [20]. The experi-918
ment protocols for WGAN-GP and DDPM are copied from919
original works. The communication interval of FedAvg is920
set as 160 iterations for both WGAN-GP and DDPM. We921
have tried different communication intervals for both mod-922
els. The communication frequency will affect model perfor-923
mance but have no influence on the conclusions in the main924
part of our paper.925

Perfect Data-simulating Generators. In our CIFAR-926
10 experiments, we also simulated and evaluated an ”ideal927
generator” capable of perfectly replicating all samples be-928
longing to the ’airplane’ class in CIFAR10. In this scenario,929
the samples ”generated” by the ideal generator exhibit im-930
peccable fidelity but lack diversity since no samples from931

other categories can be produced. 932

10.2. FD-based and KD-based Evaluation of Gen- 933
erative Models. 934

We evaluated the generative models according to FD-all, 935
FD-avg, KD-all, and KD-avg as defined in Section 4. In 936
several cases, we observed that FD-all / FD-avg could as- 937
sign inconsistent rankings to the generators. Specifically, 938
we computed FD-all and FD-avg for the ideal ’airplane’- 939
class-based generator and neural net-based DDPM gener- 940
ators under the distributed CIFAR10 setting. We present 941
some examples generated from the two generators in Fig- 942
ure 17 and report their scores according to the four met- 943
rics. The results suggest that FD-avg assigns a consid- 944
erably lower score to the ideal ’airplane’-based generator, 945
whose images preserve perfect details but lack diversity in 946
image categories. Conversely, FD-all assigns a relatively 947
lower value to the DDPM model because its images pos- 948
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Figure 16. Evaluation of synthetic Gaussian data with the aggregate log-likelihood scores.

FID-all   =   63.99  
FID-avg =  126.05
KID-all   =  0.047
KID-avg =  0.101  

FID-all   = 72.13  
FID-avg = 119.06
KID-all   = 0.045
KID-avg = 0.098  

Figure 17. Left: Images generated by a generative model obtain a lower FD-all. Right: Images from real datasets with class ’airplane’
obtain a lower FD-avg. FD-avg and FD-all lead to inconsistent rankings, while KD-avg and KD-all result in the same ranking.

sess greater diversity. On the other hand, we also observed949
that KD-avg and KD-all give consistent rankings. Both of950
them led to the evaluation that the ideal plane generator is951
slightly better than the DDPM generator. In our implemen-952
tation of KD-scores, we utilized the standard implemen-953
tation of KD measurement from data with a polynomial954

kernel, k(x,y) =
(
1
dx

Ty + 1
)3

, where d is the dimen-955
sion of feature vector. We note that our theoretical find-956
ing on the evaluation consistency under KD-all and KD-957
avg applies to every kernel similarity function. We also958
test KD-scores with a Gaussian RBF kernel krbf

σ (x,y) =959
exp

(
− 1

2σ2 ∥x− y∥2
)

as formulated in [2], where we chose960

σ =
√
d in the experiments. For images generated by diffu-961

sion model KDrbf-all gives 4.277e−3 while KDrbf-avg gives962
4.295e−3. And for the airplane images in CIFAR10, KDrbf-963
all gives 4.283e−3 while KDrbf-avg gives 4.301e−3. The964
results indicate that for Gaussian RBF kernel krbf

σ , KDrbf-all965
and KDrbf-avg still gives consistent results. In this case, the966
KDrbf-based evaluation suggests the images sampled from967
the diffusion model have higher quality than the set of air-968
plane images in the CIFAR10 dataset.969

10.3. Evaluate Sequence of Net-based Generator on 970
Federated CIFAR10 971

We trained the WGAN-GP[9] generative models multiple 972
times using different random states, and we set different 973
training lengths for every training procedure. We saved the 974
models at different checkpoints every 10 epochs, which is 975
common in training generative models to select the best- 976
performing saved model according to an evaluation metric. 977

Our numerical results suggest that the gap between KD- 978
all and KD-avg remains constant and hence they lead to 979
the same rankings of the generative models. Here, we 980
conducted our evaluations on all the generative models in- 981
stances as previously described, and the results are visu- 982
alized in the left sub-figure of Figure 18. These findings 983
reveal that all distinct generators consistently exhibit a uni- 984
form gap between KD-avg and KD-all. Consequently, our 985
results indicate that the rankings established by KD-avg 986
consistently align with those of KD-all in distributed learn- 987
ing settings. 988
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Figure 18. Left: KD evaluations of WGAN-GP checkpoints on federated CIFAR10. Right: FD-based evaluations on federated CIFAR-10.

10.4. Evaluate CIFAR100 Generator on Federated989
CIFAR10990

To further experiment the ranking of generative models991
according to the discussed aggregate scores, we extracted992
samples from each class of CIFAR-100 and treated them as993
the output of one hundred distinct generators, each corre-994
sponding to a single class. By assessing these generators on995
the federated CIFAR-10 dataset, we obtained one hundred996
pairs of FD-avg / FD-all values, and a subset of these pairs997
with inconsistent rankings according to FD-all/FD-avg is998
visualized in the right of Figure 18. The complete set of999
evaluation results is available on Table 3. These results fur-1000
ther highlight that the rankings provided by FD-all and FD-1001
avg can exhibit inconsistencies in the context of distributed1002
learning. Such inconsistencies could pose a challenge when1003
selecting from a series of checkpoints or model architec-1004
tures during the training of generative models in distributed1005
learning scenarios, where a distributed computation of FD-1006
all is more challenging than obtaining FD-avg due to pri-1007
vacy considerations.1008

10.5. Evaluate CIFAR100 on Federated ImageNet-1009
321010

We expand the evaluation of CIFAR100 to Federated1011
ImageNet-32 dataset. Similarly, we extracted samples from1012
each class of CIFAR-100 and treated them as the output1013
of one hundred distinct generators, each corresponding to1014
a single class. We also keep the first one hundred classes of1015
ImageNet-32 and simulate one hundred clients. Each client1016
hold all images (∼1300) from a single class. We evaluate1017
all the generators on Federated ImageNet-32 and the result1018
is shown in Figure 19. The ranks provided by FD-avg and1019
FD-all is inconsistent in a much more complex distributed1020
learning setting.1021
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Evaluation on Federated IN-32 (Zoom in)

Figure 19. Evaluate CIFAR100 on Federated ImageNet-32.

11. Evaluation on Variance-Limited Federated 1022

Datasets 1023

11.1. Experiment Setting 1024

In the federated learning literature, it is relatively common 1025
that each client possesses only a small portion of the collec- 1026
tive dataset, and the data diversity within each client’s hold- 1027
ings is significantly constrained. To illustrate, consider the 1028
case of smartphone users who exclusively own pictures of 1029
themselves, all of which share remarkable similarity. Nev- 1030
ertheless, in a network comprising millions of users, the 1031
overall dataset’s distribution still exhibits significant vari- 1032
ance. In such scenarios, our theoretical framework suggests 1033
that the disparity between FD-all and FD-avg can become 1034
more pronounced. To experiment the effect of such distri- 1035
bution heterogeneity, we simulated and evaluated genera- 1036
tive models under variance-limited federated datasets. To 1037
obtain a variance-limited federated dataset, for each class 1038
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Figure 20. Evaluation on Variance-Limited Federated CIFAR10.

Larger Variance

Larger Variance

Figure 21. Evaluation on Variance-Limited Federated CIFAR100.

in the image dataset, we kept only a single image and its1039
K-nearest neighbors. To find the K nearest neighbors, we1040
used the L2-distance in the Inception-V3 2048-dimensional1041
semantic space. It is worth noting that our experimentation1042
has shown that varying K within the range of 5 to 100 does1043
not alter the core conclusions. This approach effectively1044
mimics scenarios where each client’s data has limited vari-1045
ance. We simulated the variance-limited federated learning1046
setting for CIFAR-10, CIFAR-100 and a 32×32 version of1047
ImageNet (IN-32). For CIFAR-10 and CIFAR-100, we uti-1048
lized all the classes in the dataset and for IN-32 we utilized1049
the first 100 classes. We chose K = 20 in the experiments.1050
Intuitively, a larger K leads to a more significant intra-client1051
variance.1052

Variance-controlled Generators. To simulate a gener-1053
ator, we initiate the process by randomly selecting a sample1054
from the dataset. We then gather its M-nearest neighbors1055
from the original dataset (w/o federated learning setting).1056
We consider this subset of samples as a set of generated1057
samples generated by a generator denoted by GM . By in-1058

creasing the value of M , we generated a sequence of gen- 1059
erators with progressively higher variance values. We tried 1060
the M range from 100 to 50000. We evaluated all the gen- 1061
erative models, denoted as GM with the chosen M values, 1062
using the Variance-Limited Federated datasets. 1063

11.2. Results on Variance-Limited Federated CI- 1064
FAR10 1065

The evaluation results on CIFAR10 are shown in Figure 20. 1066
Our findings reveal a distinct pattern in the behavior of FD- 1067
avg and FD-all as generator variance varies while the dis- 1068
tance between KD-avg and KD-all remains the same. Our 1069
numerical results highlight the impact of the choice of FD- 1070
all and FD-avg on model rankings in federated learning 1071
settings with limited intra-client variance. , which can be 1072
broadly categorized into three phases. 1073

11.3. Results on Variance-Limited Federated CI- 1074
FAR100 1075

Similar to the experiments on CIFAR10, we have also ap- 1076
plied the variance-limited federated dataset setting to CI- 1077

8
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FAR100. We keeps K=20 images in each class. For1078
variance-controlled generators, we select a sample from1079
original CIFAR100 and gather the M-nearset neighbors.1080
The range of M keeps the same with that in the previous1081
subsection. We show the results in Figure 21. The results1082
still support our main claims: FD-avg and FD-all gives in-1083
consistent results while KD-avg and KD-all give the same.1084

11.4. Results on Variance-Limited Federated IN321085

Results on ImageNet-32 are illustrated in Figure 22. We1086
further plot the relationship between ranking given by FD-1087
scores and KD-scores in Figure 23.1088

11.5. The Effect of Intra-Client Variance1089

In the main body of this paper, we choose K = 20 when we1090
conduct the variance-limited federated CIFAR10 dataset.1091
Hyper-parameter K controls the intra-client variance, the1092
larger the K the larger the variance. The number of K will1093
not affect the key conclusion. We prove this claim by con-1094
ducting an ablation study on hyper-parameter K. The K is1095
selected from {5,10,20,50} in our experiment. The results1096
are illustrated in Figure 24. Each of these figure gives a1097
U-shape curve, which indicates that the rankings given by1098
FD-all and FD-avg are highly inconsistent, especially when1099
the intra-client variance and inter-client variance are mis-1100
matched.1101
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Figure 22. FD and KD-based Evaluations of variance-controlled generators on variance-limited federated ImageNet-32.
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Figure 23. Comparing FD-based and KD-based rankings of variance-limited federated Mini-ImageNet-based simulated generative models.
The lower the rank is, the better.
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Class FD-all FD-avg KD-all KD-avg Class FD-all FD-avg KD-all KD-avg

0 267.4 285.9 0.201 0.253 25 142.4 173.2 0.067 0.116
1 173.2 205.5 0.109 0.165 26 139.4 175.5 0.063 0.114
2 151.8 185.4 0.072 0.123 27 114.5 153.7 0.054 0.102
3 124.3 162.2 0.047 0.100 28 182.0 205.0 0.112 0.160
4 117.0 156.1 0.049 0.100 29 143.3 185.2 0.083 0.133
5 157.6 185.2 0.088 0.138 30 147.4 179.8 0.084 0.134
6 142.1 179.7 0.062 0.115 31 160.4 193.6 0.108 0.158
7 144.9 179.2 0.066 0.113 32 115.4 156.4 0.032 0.085
8 155.0 187.7 0.085 0.135 33 146.9 181.2 0.077 0.126
9 180.7 203.6 0.106 0.156 34 127.5 163.4 0.068 0.117

10 183.2 208.8 0.099 0.151 35 150.4 184.7 0.080 0.131
11 151.9 184.9 0.073 0.127 36 142.5 176.5 0.070 0.126
12 126.1 163.1 0.056 0.108 37 126.7 162.9 0.066 0.118
13 127.0 159.4 0.058 0.112 38 110.5 151.3 0.050 0.100
14 145.8 182.9 0.071 0.126 39 233.5 257.2 0.145 0.196
15 124.2 165.2 0.054 0.107 40 158.9 187.6 0.078 0.128
16 190.3 213.6 0.112 0.161 41 151.1 181.0 0.072 0.126
17 161.5 192.8 0.117 0.165 42 137.2 174.7 0.071 0.122
18 142.7 179.8 0.069 0.118 43 152.0 186.0 0.090 0.139
19 112.4 154.1 0.047 0.101 44 126.7 165.8 0.050 0.103
20 194.2 215.9 0.123 0.175 45 135.4 173.0 0.059 0.111
21 164.8 194.9 0.099 0.148 46 155.1 187.1 0.080 0.133
22 205.1 227.0 0.126 0.180 47 174.2 203.4 0.118 0.169
23 191.1 219.7 0.130 0.186 48 145.0 175.3 0.077 0.129
24 174.9 202.8 0.105 0.155 49 164.8 194.6 0.110 0.164
50 113.8 154.0 0.045 0.095 75 151.7 184.3 0.096 0.145
51 150.4 184.6 0.073 0.125 76 151.5 183.5 0.068 0.118
52 195.3 222.1 0.167 0.218 77 139.0 174.9 0.066 0.117
53 279.7 299.1 0.217 0.270 78 197.3 228.3 0.130 0.182
54 170.2 201.3 0.098 0.149 79 138.9 174.8 0.062 0.114
55 104.7 146.3 0.034 0.086 80 111.1 149.9 0.043 0.095
56 144.2 178.5 0.075 0.126 81 131.7 165.3 0.068 0.119
57 192.5 219.9 0.115 0.163 82 197.6 227.2 0.123 0.178
58 131.5 161.0 0.067 0.121 83 202.6 230.6 0.122 0.173
59 149.7 183.7 0.093 0.144 84 144.5 177.3 0.065 0.111
60 188.0 216.0 0.144 0.197 85 123.0 160.7 0.079 0.125
61 249.2 270.6 0.179 0.229 86 168.0 193.0 0.083 0.135
62 202.1 230.6 0.133 0.184 87 170.5 196.0 0.098 0.152
63 140.6 175.3 0.071 0.120 88 133.4 170.6 0.068 0.120
64 118.7 156.1 0.049 0.100 89 122.3 158.1 0.059 0.112
65 102.2 142.2 0.024 0.077 90 110.7 148.3 0.041 0.093
66 121.7 159.1 0.054 0.105 91 124.0 160.7 0.048 0.098
67 132.5 167.8 0.063 0.115 92 175.4 206.2 0.096 0.149
68 139.7 173.1 0.073 0.123 93 129.7 166.3 0.054 0.109
69 143.2 176.0 0.068 0.121 94 213.4 235.2 0.162 0.212
70 178.4 209.5 0.095 0.148 95 154.7 185.2 0.084 0.133
71 169.4 199.0 0.120 0.167 96 147.8 181.7 0.090 0.138
72 114.1 155.6 0.043 0.094 97 137.1 171.4 0.068 0.119
73 137.9 170.8 0.071 0.124 98 157.1 188.6 0.082 0.134
74 124.7 162.1 0.061 0.108 99 204.9 233.9 0.143 0.192

Table 3. Full evaluation of CIFAR100 on Federated CIFAR10.11
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Figure 24. Ablation study on hyper-paramter K.
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12. Proofs 1102

12.1. Proof of Theorem 1 1103

To show this theorem, we note that if ϕ(X) is the kernel feature map for kernel k used to define the KD distance, i.e. 1104
k(x, y) = ⟨ϕ(x), ϕ(y)⟩ is the inner product of the feature maps applied to x, y, then it can be seen that the kernel-k-based 1105
MMD distance can be written as 1106

MMD
(
PX , PG

)
:=EX,X′∼PX

[
k(X,X ′)

]
+ EY,Y ′∼PG

[
k(Y, Y ′)

]
− 2EX∼PX , Y∼PG

[
k(X,Y )

]
1107

=
∥∥∥E[ϕ(X)

]
− E

[
ϕ(Y )

]∥∥∥2. 1108

Therefore, following the definition of KD-avg, we can write 1109

KDavg

(
PX1

, . . . , PXk
; PG

)
:=

k∑
i=1

λiKD
(
PXi

, PG

)
1110

=

k∑
i=1

λiMMDϕ

(
PXi

, PG

)
1111

(a)
=

k∑
i=1

λi

∥∥∥E[ϕ(Xi)
]
− E

[
ϕ(G(Z))

]∥∥∥2 1112

(b)
=

∥∥E[ϕ(X̂)
]
− E

[
ϕ(G(Z))

]∥∥2+ k∑
i=1

[
λi

∥∥E[ϕ(Xi)
]
− E

[
ϕ(X̂)

]∥∥2] 1113

(c)
= MMDϕ

(
P̂X , PG

)
+

k∑
i=1

[
λiMMDϕ

(
P̂X , PXi

)]
1114

(d)
= KD

(
P̂X , PG

)
+

k∑
i=1

[
λiKD

(
P̂X , PXi

)]
1115

(e)
= KDall

(
PX1

, . . . , PXk
; PG

)
+

k∑
i=1

λiKD
(
P̂X , PXi

)
. 1116

In the above, (a) and (c) follow from the feature-map-based formulation of the MMD distance. (b) is the consequence of the 1117

fact that ∥ · ∥ is the norm in a reproducing kernel Hilbert space and for X̂ distributed as P̂X =
∑k

i=1 λPXi
we know that 1118

E
[
ϕ(X̂)

]
is the weighted barycenter of the individual mean vectors E

[
ϕ(X1)

]
, . . . ,E

[
ϕ(Xk)

]
. (d) is based on the definition 1119

of KD. Finally, (e) follows from the definition of KD-all, which completes the proof. 1120

12.2. Proof of Theorem 2 1121

1. Note that according to the definition, 1122

FDall

(
PX1 , . . . , PXk

; PG

)
= FD

( k∑
i=1

λiPXi , PG

)
. 1123

Since the FD score depends only on the the mean and covariance parameters in the Embedding-based semantic space, we 1124

can replace
∑k

i=1 λiPXi
with any other distribution that shares the same mean and covariance parameters, and the FD 1125

value will not change. Observe that given mean parameters µ1, . . . ,µk, the Embedding-based mean of
∑k

i=1 λiPXi
will 1126

13
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be µ̂ =
∑k

i=1 λiµi. Therefore, the Embedding-based covariance matrix of
∑k

i=1 λiPXi follows from1127

k∑
i=1

λiEPi

[(
Xi − µ̂

)(
Xi − µ̂

)⊤]
=

k∑
i=1

λi

[
Ci +

(
µi − µ̂

)(
µi − µ̂

)⊤]
1128

=

k∑
i=1

λi

[
Ci + µiµ

⊤
i

]
− µ̂µ̂⊤1129

= Ĉ.1130

Therefore, since we assume X̂ has the Embedding-based mean and covariance µ̂ and Ĉ, the proof of this part is complete.1131
2. According to the definition, FD-avg can be written as1132

FDavg

(
PX1

, . . . , PXk
; PG

)
:=

k∑
i=1

λiFD
(
PXi

, PG

)
.1133

Therefore, we have1134

FDavg

(
PX1

, . . . , PXk
; PG

)
1135

(a)
=

k∑
i=1

λiW
2
2

(
N (µi, Ci),N (µG, CG)

)
1136

(b)
=

k∑
i=1

λi

[
∥µi − µG∥22 +Tr

(
Ci + CG − (CiCG)

1/2
)]

1137

=

k∑
i=1

[
λi∥µi − µG∥22

]
+

k∑
i=1

[
λiTr

(
Ci + CG − (CiCG)

1/2
)]

1138

(c)
= ∥µ̂− µG∥22 +

k∑
i=1

[
λi∥µ̂− µi∥22

]
1139

+Tr
(
CG + Ĉ − (CGĈ)1/2

)
+

k∑
i=1

[
λiTr

(
Ci + Ĉ − (CiĈ)1/2

)]
1140

= ∥µ̂− µG∥22 +Tr
(
CG + Ĉ − (CGĈ)1/2

)
1141

+

k∑
i=1

[
λi∥µ̂− µi∥22 + λiTr

(
Ci + Ĉ − (CiĈ)1/2

)]
1142

= ∥µ̂− µG∥22 +Tr
(
CG + Ĉ − (CGĈ)1/2

)
1143

+

k∑
i=1

λi

[
∥µ̂− µi∥22 +Tr

(
Ci + Ĉ − (CiĈ)1/2

)]
1144

(d)
= FD(PX̂ , PG) +

k∑
i=1

λiFD(PX̂ , PXi
).1145

In the above, (a) follows from the Wasserstein-based definition of FD distance. (b) comes from the well-known1146
closed-form expression of the 2-Wasserstein distance between Gaussian distributions [36]. (c) is the result of apply-1147
ing the weighted barycenter of vector µ1, . . . ,µk that can be seen to be µ̂ and the weighted barycenter of positive1148
semi-definite covariance matrices C1, . . . , Ck that has been shown to be the unique matrix Ĉ that solves the equation1149

C̃ =
∑k

i=1 λi

(
C̃1/2CiC̃

1/2
)1/2

[24, 27]. (d) is the direct consequence of the Wasserstein-based definition of the FD dis-1150
tance and the closed-form expression of the 2-Wasserstein distance between Gaussians. Therefore, the proof is complete.1151
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12.3. Proof of Proposition 1 1152

Consider the FD-all-minimizing parameters in Theorem 2 resulting in 1153

FDall

(
PX1

, . . . , PXk
; PĜ

)
= FD

(
N (µ̂, Ĉ),N (µĜ, CĜ)

)
1154

=
∥∥µ̂− µĜ

∥∥2
2
+Tr

(
Ĉ + CĜ − 2

(
ĈCĜ

)1/2)
. 1155

Note that since we assume the number of clients k is less than the dimension of the embedding, there exists a unit-norm 1156
vector β (∥β∥2 = 1) in the embedding space that is orthogonal to all mean vectors µ1, . . . ,µk and hence to their mean 1157

µ̂ = 1
k

∑k
i=1 µi. Given u = Tr

(∑k
i=1 λi

(
µiµ

⊤
i − µ̂µ̂⊤)), we then consider the generator G′ with the following mean and 1158

covariance parameters: 1159

µG′ = µ̂+
√
uβ, CG′ = CĜ −

k∑
i=1

λi

(
µiµ

⊤
i − µ̂µ̂⊤)= ∑

i=1

λiCi. 1160

We claim that the generators Ĝ and G′ lead to the same client-based FD scores as for every i 1161

FD
(
PXi

, PG′
)
= FD

(
N (µi, Ci),N (µG′ , CG′)

)
1162

=
∥∥µi − µG′

∥∥2
2
+Tr

(
Ci + CG′ − 2

(
CiCG′

)1/2)
1163

=
∥∥µi − µĜ

∥∥2
2
+ u+Tr

(
Ci + CG′ − 2

(
CiCĜ

)1/2)− u 1164

=
∥∥µi − µĜ

∥∥2
2
+Tr

(
Ci + CG′ − 2

(
CiCĜ

)1/2)
1165

= FD
(
PXi

, PĜ

)
. 1166

On the other hand, for the FD-all of G′ we have 1167

FDall

(
PX1 , . . . , PXk

; PG′

)
= FD

(
N (µ̂, Ĉ),N (µG′ , CG′)

)
1168

=
∥∥µ̂− µG′

∥∥2
2
+Tr

(
Ĉ + CG′ − 2

(
ĈCG′

)1/2)
1169

=
∥∥µ̂− µĜ

∥∥2
2
+ uTr

(
Ĉ + CĜ − 2

(
ĈCĜ

)1/2)
+ u 1170

=
∥∥µ̂− µĜ

∥∥2
2
+Tr

(
Ĉ + CĜ − 2

(
ĈCĜ

)1/2)
1171

+ 2Tr
( k∑
i=1

λi

(
µiµ

⊤
i − µ̂µ̂⊤)) 1172

= FDall

(
PX1

, . . . , PXk
; PĜ

)
1173

+ 2Tr
( k∑
i=1

λi

(
µiµ

⊤
i − µ̂µ̂⊤)) 1174

Therefore, Proposition 1’s proof is complete. 1175
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