Appendix

A. Additional Related Works

Difference with Existing Noise Learners: The learnable
noise in BadCLIP and TNT serves different purposes: the
former uses it as a universal trigger for injecting backdoor
attack in the model in a supervised few-shot prompt
learning setup, whereas TNT adapts noise specific to each
test sample under a TTA (un-supervised) setup to improve
zero-shot generalization.

Visual Prompting vs Noise Learning: Noise optimiza-
tion can be considered analogous to a Visual Prompting;
however, there are key distinctions: (a) While VPT learns
a generic visual prompt from few-shot training data, TNT
learns noise specific to each individual test sample, high-
lighting their application in very different settings. (b) VPT
operates in the latent space by appending learnable tokens
to the input layer of transformer (Eq. 4 of VPT), whereas
TNT uses learnable noise tensor (of shape 224 x 224 x 3) di-
rectly in the pixel space (Eq. 2 of our work). VPT requires
access to inside of the model whereas we do not need such
access, making our approach easier to implement.

Furthermore, when applied in the TTA setting, VPT
requires a significantly higher number of learnable param-
eters compared to our approach (TNT), as illustrated in
Figure 3 of our work.

Comparison with Recent Methods: A recent TTA
method, TDA [16], differs from our TNT in three distinctive
way:

* Memory-based modules: TDA employs memory-based
modules and avoids prompt tuning, whereas TNT does
not rely on external memory.

* Stream-based inference: TDA requires a continuous
stream or batch of test samples for computing dataset
statistics, while TNT adapts to a single test sample with-
out dependence on previous samples, depicting sample-
wise adaptation.

* Dataset-specific configurations: TDA necessitates ex-
tensive hyperparameter tuning for each dataset. In con-
trast, TNT applies a uniform configuration across all
datasets, ensuring robustness and efficiency.

Also, MTA [39] is not entirely training-free as it requires

Gaussian kernel optimization for each test sample (Eq. 1

in MTA). While MTA is computationally efficient, TNT

achieves better performance with around 3% better general-
ization on OOD samples as shown in Table 1. Additionally,

CoTTA [35], which enforces cross-entropy consistency be-

tween student and teacher models, TNT instead minimizes

the average distance between image embeddings across

Table 4. Top-1 accuracy % of different methods on ResNet50.
TNT* and TNT outperform baselines across different backbones.

RN50 CLIP CoOp | TPT RCLF TNT* TNT

ImageNet 5823 6335 | 6093 61.10 62.73 65.12
ImageNet-A | 21.47 2342 | 26774 2598 3244 34.26

Table 5. Impact of K on ImageNet-A Top-1 accuracy %. Here
K refers to selection of top-K views during inference as in Eq. 7.

K 1 6 12 24 32 64
TNT* | 60.23 61.87 61.54 60.24 59.02 58.93
TNT 6277 6393 6249 6093 5948 59.12

Table 6. Performance of proposed TNT* and TNT on 2 cor-
rupted datasets. Here, we consistently used Blur corruption
with severity = 5 consistently.

Corruption Dataset | CLIP CoOp | TPT RCLF TNT#* TNT

CIFAR10-C 8291 83.22 |82.60 82.66 83.25 83.54
55.74 60.09 | 56.24 55.86 56.51 60.29

ImageNet-C

Table 7. Impact of Temperature (7) on TNT* and TNT.

Temperature 7 | 9¢™!  9e¢72 972 9e7*  9e7P
TNT* 59.57 60.14 61.25 61.87 61.88
TNT 60.82 6145 63.02 6393 63.89

augmented views, eliminating the need for external mod-
els. These comparisons distinguish the TNT components as
innovative elements utilized in the zero-shot generalization
of VLMs.

B. Implementation Details

Number of Augmentations: All baselines, including TNT,
default to using 63 augmentations. We conducted an abla-
tion study (Figure 5(b)) showing that TNT consistently out-
performs baselines across different augmentation settings.
Noise Consistency: The same single trainable noise is
added across all augmentations for consistency in adapta-
tion. Thus, it is essentially optimizing a single learnable
noise during backpropagation.

C. Further Ablations

Evaluation on ResNet50 Backbone: Our proposed TNT*
and TNT outperform baselines on ResNet50, as shown in
Table 4.

Impact of Hyperparameters (o, 3): Across datasets, we
set « = 0.1 and 8 = 0.1, with performance remaining sta-
ble for variations in these values (0.2, ..., 0.5).

Impact of K on ImageNet-A: Table 5 shows how perfor-
mance varies with different values of K.

Evaluation on CIFAR-10-C and ImageNet-C: Table 6
presents our results on corruption datasets.

Impact of Temperature (7) on TNT* and TNT: Table 7
depicts TNT’s performance across different temperatures.



	Additional Related Works
	Implementation Details
	Further Ablations

