
Appendix.

7. Extended Related Work

Vision Language Model Architecture Vision language
models (VLMs) primarily adopt two paradigms to pro-
cess visual input. The first paradigm freezes language
model weights and integrates visual information via cross-
attention mechanisms [1], while the second paradigm uti-
lizes a pre-trained image encoder, such as CLIP [50] or
SigLIP [75], to convert images into tokens. These tokens
are then concatenated with text tokens and input into the
language model [13, 35, 40]. This approach can be naturally
extended to video understanding by treating videos as se-
quences of images processed by the vision encoder [9, 29].
To enhance video processing, some works introduce spe-
cialized video encoders. For instance, InternVideo [64, 65]
uses VideoMAE [58] as a video encoder, while Kanga-
roo [41] integrates depth-wise 3D convolution for fusing
video tokens. In this work, we retain SigLIP as the vision
encoder and focus on enhancing long video understand-
ing by incorporating a linear-complexity temporal module
in the Mamba [18] architecture. Positioned between the
SigLIP vision encoder and the language model, this mod-
ule efficiently improves spatial-temporal modeling effec-
tiveness.

Long Video Understanding Understanding long videos
with VLMs presents significant challenges in both accuracy
and efficiency. Previous approaches have employed long-
context language models trained on short-context video data
to enable long video comprehension [76]. However, these
methods lack sufficient long video training data and incur
high computational costs during both training and infer-
ence as the number of frames increases. LongVILA [69]
addresses these challenges through a multi-modal sequence
parallelism system that directly handles long video data dur-
ing training and inference, but this approach requires cus-
tomized system implementations tailored for multi-GPU se-
tups. Another line of research focuses on token reduction
to shorten input sequences, thereby enabling efficient in-
ference for long videos [33, 51, 53, 54, 66, 71]. For in-
stance, VoCO-LLaMA [71] and VideoXL [54] use recur-
sive KV cache compression learnt in an end-to-end manner,
and LongVU [53] leverages DINO features for frame se-
lection and inter-frame similarity to reduce tokens. Despite
these diverse strategies, direct pooling along the temporal
or spatial dimensions often performs sufficiently well, with
additional gains being marginal. In this paper, we apply
temporal and spatial pooling for token reduction, achiev-
ing superior performance when combined with our tempo-
ral projector.

Mamba for Video Understanding Recent advances in
linear state space models such as Mamba [10, 18] have
sparked extensive exploration in applying them to video
understanding tasks. Due to their sub-quadratic compu-
tation complexity, Mamba models achieve significant effi-
ciency improvements compared to transformer-based archi-
tectures while still delivering competitive performance [10,
18, 59, 60, 82]. These properties make Mamba particularly
suitable for video processing as the models are required to
process long sequence inputs. For example, VideoMamba
in [31] and VideoMamba (identical model naming) in [48]
use Mamba-based visual backbone in video models and
demonstrates the model’s strong ability to capture both lo-
cal redundancy and long-term spatiotemporal dependen-
cies. VideoMambaPro [43] proposes to improve Mamba’s
video understanding ability by applying masking and resid-
ual connection during the backward scan. The Video
Mamba Suite [5] further explores various architectures to
integrate Mamba into existing video understanding models,
demonstrating favorable efficiency-performance trade-offs
for long sequence inputs. Mamba-ND [32] aims to improve
Mamba’s performance on multi-dimensional data by inves-
tigating design choices such as SSM layer structure and
scanning order within and across dimensions. However, un-
like our approach, these works do not directly apply Mamba
for Multimodal LLMs. More importantly, they primarily fo-
cus on replacing traditional backbones with Mamba archi-
tectures without explicitly leveraging Mamba’s unique abil-
ity to summarize historical information for reducing video
redundancy and enabling visual token compression. Our
paper addresses this research gap by proposing STORM,
which proves to be both effective and efficient for video un-
derstanding while significantly reducing computational de-
mands.

Concurrent Work Recently, BIMBA [20] explores a
similar architecture for long-video understanding, reporting
similar benefits through empirical evaluation. We are en-
couraged to see these independent findings further support
our hypothesis.

8. Qualitative Results
We present comprehensive qualitative evaluations in Fig-
ure 7 to Figure 11, which are segmented into three subsec-
tions
1. Effective Long Video Understanding: Demonstrating

STORM’s ability to effectively utilize long video inputs
by comparing it with existing long-video LLMs.

2. Importance of Long Video Context: Highlighting the
need for long video inputs by showcasing scenarios
where 128-frame inputs (with token compression) en-
able accurate predictions, whereas 32-frame inputs fail.



3. Showcase of Video Understanding Abilities: Illustrat-
ing STORM’s capabilities in various aspects such as
OCR, spatial perception, temporal reasoning, and so on.

Effective Long Video Understanding. We compare our
proposed STORM + Temporal Sampling with LongVILA
and LongVU, both designed for long video understanding.
We use a short film depicting a ”moonfall disaster” from
the VILA webpage 1. The models are prompted to provide
a narrative description of the video. The short film was cho-
sen for its engaging and dramatic storyline that spans vari-
ous interconnected scenarios, all contributing to a cohesive
narrative. Understanding this video requires the models to
comprehend each individual scene and effectively integrate
temporal events to grasp the complete story. Both STORM
and LongVILA use 128 input frames, while LongVU out-
put was obtained from its online demonstration which uses
1fps input.

As shown in Figure 7, STORM delivers the most detailed
and coherent summary of the video’s narrative, effectively
capturing key events and transitions throughout the entire
film. Its response showcases a comprehensive understand-
ing of the content, highlighting its ability to connect tem-
poral events across different scenes. In contrast, the base-
line models LongVILA and LongVU focus on some of the
events but fail to cover all critical moments that contribute
to the overall storyline. Their responses also highlight spe-
cific scenes without integrating them into the full context.
Moreover, we observed that the baseline models often gen-
erate redundant content, repeating the same sentences with
minimal new information, which reveals their limitations in
handling open-ended queries. Notably, our STORM with
Temporal Sampling is also computationally more efficient.
By applying temporal sampling, we reduce the number of
tokens to the equivalent of processing 32 frames. This com-
parison showcases STORM’s superior ability to leverage
long video inputs for in-depth visual understanding.

Importance of Long Video Context. We further demon-
strate the significance of incorporating long video con-
text by providing qualitative examples where a 128-frame
input yields more accurate predictions than a 32-frame
input, as shown in Figure 8. Using samples from the
VideoMME benchmark, we compare two configurations of
our STORM: one with a 32-frame input without compres-
sion, and another with a 128-frame input employing a tem-
poral sampling ratio of 4. In both settings, the number
of tokens fed into the LLM remains the same; however,
the STORM with temporal sampling encodes additional in-
formation into the compressed tokens due to the extended
frame sequence.

1https://vila.mit.edu/

The inclusion of more frames allows the model to cap-
ture richer temporal dynamics and contextual information.
For example, the 128-frame input enables the model to de-
velop a stronger understanding of the video’s narrative (Fig-
ure 8 top). It also allows the 128-frame model to capture
additional events that the 32-frame model misses (Figure 8
center). Finally, the additional information further improve
model’s ability to reason through different temporal events
across the entire video to form a coherent understanding
(Figure 8 bottom). These example demonstrate the crucial
role of long video context in tasks that require detailed tem-
poral reasoning and comprehensive content understanding.

Showcase of Video Understanding Abilities. Finally,
we conclude our qualitative evaluation by showcasing the
diverse video understanding capabilities of STORM, in-
cluding OCR, attribute perception, spatial perception, in-
formation synopsis, and temporal reasoning. Results are
shown in Figure 9 to Figure 11. We use the same setting
of STORM + Temporal Sampling with 128-frame input and
sampling ratio of 4. Utilizing videos from the VideoMME
benchmark, we designed a more challenging assessment to
thoroughly evaluate the model’s proficiency. Instead of pro-
viding the model with multiple-choice questions accompa-
nied by predefined answer options, we transformed these
tasks into open-ended queries that require the model to gen-
erate answers in raw text form without any given choices.
This modification significantly increases the task’s diffi-
culty, as it demands a precise understanding of the content
and the ability to accurately locate and extract specific in-
formation from the video input.

Our qualitative results demonstrate that STORM pro-
vides strong performance in these scenarios. Despite the
increased complexity, the model effectively interprets in-
tricate visual details, recognizes textual information within
videos, and provides coherent summaries of temporal
events. This showcases STORM’s robust ability to handle
various aspects of video understanding.

9. Additional Results

Ablation on Token Budget and Token Compression
Strategies. Table 8 extends Table 5 in the main text by
providing a comprehensive comparison of different com-
pression method combinations across various token budgets
during training. Overall, considering both compression ra-
tio and inference latency, we find that STORM with tempo-
ral pooling (STORM + T. Pooling) is the most efficient and
effective approach. Additionally, test-time temporal sam-
pling offers a lossless way to further enhance inference ef-
ficiency in inference time.



Task-Level Analysis on VideoMME Table 11 shows the
VideoMME results with different video lengths. The short
is less than 2 minutes, the medium is up to 15 minutes,
and the long is up to 60 minutes. Overall, our STORM
with token compression outperforms the VILA baseline and
STORM with no token compressions for all video lengths.
Figure 5 compares the VideoMME results by task cate-
gories. We find that STORM with temporal pooling es-
pecially improves the object reasoning task accuracy, and
STORM with test-time temporal sampling improves the at-
tribute perception accuracy. Both token compression meth-
ods improve the temporal perception task accuracies com-
pared to VILA and STORM. It indicates that the temporal
perception task requires a longer video context, and our to-
ken compression methods are effective for such tasks.

Effect of Dataset Composition Table 10 shows how
dataset composition affects model performance during 128
frames fine-tuning. We compare using the full LLaVA-
Video dataset (→ 1.35M samples) versus only its longest
25% videos with at least 128 frames (→ 360K samples). In-
terestingly, while STORM improves with the larger dataset
across all benchmarks, the baseline model actually per-
forms worse on several benchmarks when trained on the full
dataset.

Two key differences between these datasets are size
and video length distribution, where the full dataset con-
tains more data but with a mixture of short and long
videos, whereas the long-video subset exclusively consists
of longer videos. Since larger, more diverse datasets typ-
ically improve performance (assuming similar data qual-
ity), we attribute the baseline model’s unexpected perfor-
mance drop to its limited ability to generalize from shorter
to longer videos. More specifically, when trained predom-
inantly on shorter clips from the full dataset, the baseline
overfits and can not effectively handle long contexts at in-
ference time. Training solely on longer videos dataset vari-
ant better aligns with test conditions, partially addressing
this limitation.

In contrast, STORM shows consistent performance gains
in all benchmarks when trained on the larger and more di-
verse data set. This suggests that STORM is more robust in
handling longer sequences and is capable of using a wide
range of video lengths to enhance its overall performance.

10. Architecture Details
STORM is built on a standard multimodal pipeline but in-
troduces key modifications for improved reasoning abil-
ity and token efficiency. Figure 4 illustrates the detailed
composition of our models. Instead of an MLP projector,
STORM uses a linear layer followed by a Mamba-based
temporal module projector which integrates spatiotemporal
information into visual tokens.

STORM incorporates three main components: (1) The
Mamba-Based Temporal Projector captures and propagates
spatiotemporal information within visual tokens. (2) Tem-
poral Token Compression Module applies compression
on temporal dimension using training-based average pool-
ing and/or training-free sampling (applied only at test time).
(3) Spatial Token Compression further reduces token
number by performing training-based frame-level spatial
average pooling. Both spatial and temporal compression
methods—whether training-free or training-based—are in-
dependently applicable. Notably, spatial and temporal pool-
ing can be applied in parallel after the Mamba module,
while temporal sampling is performed separately at test
time. These components enable STORM to process longer
sequences more efficiently before passing them to the LLM.

11. Training Details
We utilize the pre-trained SigLIP [75] from PaliGemma [2]
and Qwen2-VL [62], respectively, and fine-tune them to
adapt to our video datasets. The temporal projector is ini-
tialized with random weights. Each image is always resized
to a 448 ↑ 448 resolution. In the first stage, known as the
Alignment Stage, we freeze both the image encoder and the
LLM, training only the temporal projector using a small
image-text dataset [79], containing 95K image-text pairs.
Note that the Mamba layers perform not only temporal scan
but also spatial scan within images, so video inputs are not
strictly required to train it. For alignment stage, we find it
sufficient to use only image-text pairs to pretrain the tempo-
ral projector. In the second stage, the supervised fine-tuning
stage (SFT), we fine-tune all three components using a large
and diverse dataset that includes text-only, image-text, and
video-text data. There are around 12.5M samples in our
SFT data mixture. due to space constraints. At this stage,
we use 32 frames for each video input. For models with
training-time token compression , we use a compression ra-
tio of 4↑ — temporal pooling models compress 32 frames
to 8 frames while spatial pooling models compress 256 to-
kens per image into 64 tokens. Moreover, for models with
training-time token compression , we further employ a long
video fine-tuning stage using 128-frames long-video inputs
from the LLaVA-Video dataset [78]. We provide further de-
tails about the full SFT dataset and long video fine-tuning
dataset in the Appendix Section 12.

12. Datasets Information
For all models, we begin with an alignment stage to
align the multi-modal projector using the LLaVA-CC3M-
Pretrain-595K dataset [40]. Following this, we proceed to
the visual instruction fine-tuning stage, experimenting with
two different training data mixtures. These SFT mixtures
incorporate both image and video data, encompassing three
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Figure 4. Breaking Down the STORM Architecture. We begin with a standard multimodal pipeline that uses a pixel-shuffle downsam-
pling layer and an MLP projector. In STORM, we replace the MLP with a linear layer and introduce our Mamba-based temporal module
on top. Since the Mamba layer propagates spatiotemporal information in each visual tokens, the model can then perform temporal and
spatial token compression of these tokens before passing them to the LLM, allowing STORM to handle longer sequences more efficiently.

task types: captioning, open-ended question answering, and
multiple-choice question answering. Further details are pro-
vided in the following:

• SFT Data: For most of our main experiments, we
construct an expanded mixture by incorporating addi-
tional high-quality image datasets—such as Cambrian-
1375K [57], Idefics2-SFT [26], and LLaVA-OneVision-
Images-SFT [28]—along with video datasets including
M4-Instruct-Video [77] and Youtube [81]. This enlarged
dataset is used to scale up training and enhance overall
performance. Detailed compositions of these mixtures
are provided in Table 7.

• Long Video SFT Data: In the long video fine-tuning
stage, our goal is to adapt models initially trained on full
SFT data with 32-frame inputs to handle 128-frame in-
puts. Because processing 128-frame input incurs signif-
icant computational cost, we reduce training time by us-
ing a smaller dataset at this stage. Specifically, we se-
lect videos from only the LLaVA-Video dataset [78] that
contains data amount roughly 11% of the full dataset (ap-
proximately 1.35M video-text pairs).

• Long Video 25% Data: As an ablation study to investi-
gate the impact of dataset composition in the long video
fine-tuning stage, we introduce an additional dataset de-
rived from the LLaVA-Video dataset [78]. This sub-
set consists exclusively of long videos with at least 128
frames, comprising approximately 25% of the full dataset
(around 360K video-text pairs). Unlike the Long Video
SFT Data, which includes both short and long videos,
this dataset contains only long videos. Our experiments

in Section 9 and Table 10 reveal distinct behaviors in our
models and baselines in the composition of the dataset.

13. Mamba Temporal Module Latency
In this section, we compare the latencies of the vanilla
VILA architecture and STORM across varying numbers
of frames without token compression and provide a break-
down of the percentage contribution of the multi-modal pro-
jector. All experiments are conducted on a single NVIDIA
DGX A100-80G. The results, shown in Figure 6, demon-
strate that STORM incurs negligible overhead compared to
the vanilla VILA architecture, with the introduced Mamba
Temporal Module accounting for no more than 3% of the
total latency.

14. Inference Details
Table 15 summarizes the number of frames used for infer-
ence. We evaluate all models between 8 and 512 frames and
select the number of frames with the best accuracy overall
for each task and setup.

Support for Streaming/Online Settings. To evaluate the
applicability of our method in streaming scenarios, we
replaced the default bi-directional Mamba with a uni-
directional variant, allowing the model to reuse prior states
for constant-time computation as new frames arrive. The
results are provided in Table 13. We find that both uni-
directional and bi-directional variants significantly out-
perform the baseline without temporal modeling. No-



Datasets

LLaVA-SFT [40], Idefics2-SFT [26]
MSR-VTT [68], Image Paragraph Captioning [25], ShareGPT4V-100K [8]

CLEVR [21], NLVR, VisualMRC [56]
ActivityNet-QA [74], LLaVA-OneVision-Images-SFT [28],

iVQA [70], MSRVTT-QA, STEM-QA [52]
DVQA [22], ST-VQA [3], SynthDoG-en [24], TextOCR-GPT4V [4], MTWI

ScienceQA-train [44], VQAv2-train, ViQuAE [27], Visual Dialog [12],
GQA-train [19], ChatQA [46], Geo170K [17],

LRV-Instruction [37], RefCOCO-train [72],
DocVQA [47], GeoQA [6], KVQA [45], Cambrian-1375K [57]

AI2D [23], Shikra [7], Unimm-Chat [73]
LRV-Instruction [36], SVIT [79], MMC-Instruction [38],

M4-Instruct-Images [39], M4-Instruct-Video [77] , WIT [55], Youtube [81], etc

Table 7. SFT data mixture.

Models Size Comp. Latency #Frames # Frames MVBench MLVU LongVideoBench VideoMME

Ratio (%) (s) (train) (test) test dev val (w/o sub.)

Duration 16 sec 3→120 min 8 sec→60 min 1→60 min

Token Budget: 8K
VILA Baseline 7B 100 4.31 32 256 69.5 70.2 55.9 60.1
STORM 7B 100 4.47 32 256 70.3 71.1 54.5 62.5
STORM + S. Pooling 7B 25 1.82 128 256 63.9 67.9 54.5 57.5
STORM + T. Pooling 7B 25 1.82 128 256 71.3 72.5 59.5 63.4
STORM + T. Sampling * 7B 50 2.50 32 256 70.1 70.8 54.8 63.1
STORM + S. Pooling + T. Sampling * 7B 12.5 1.51 128 256 65.2 68.3 55.0 57.6
STORM + T. Pooling + T. Sampling * 7B 12.5 1.51 128 256 70.6 72.9 60.5 62.4

Token budget: 2K
STORM + S. Pooling 7B 25 1.82 32 256 68.9 69.2 56.0 61.1
STORM + T. Pooling 7B 25 1.82 32 256 70.4 71.0 54.2 61.2
STORM + S. Pooling + Sampling * 7B 12.5 1.51 32 256 68.9 69.5 56.3 60.9
STORM + T. Pooling + Sampling * 7B 12.5 1.51 32 256 68.9 69.5 56.3 60.9

Token budget: 0.5K
STORM + S. Pooling + T. Pooling 7B 6.25 1.36 32 256 68.5 68.2 53.7 60.2
* 2x additional compression at test time.

Table 8. Ablation on Token Budget and Token Compression Strategies. Both spatial and temporal pooling are with 4→ compression.
The number of frames used during testing is consistent across models but can differ across tasks. The # frames is the maximum number of
frames during testing. We summarize the details of the number of frames for each task in Table 15. The temporal token sampling is with
2→ additional compression.

tably, the uni-directional Mamba performs competitively
and even slightly surpasses the bi-directional counterpart
when trained on 32-frame inputs. On the other hand, the
bi-directional model demonstrates stronger performance as
video length increases. These results highlight the critical
role of the Mamba module and suggest its potential in en-
abling future designs that support streaming video input for
video-LLMs.

14.1. STORM vs Other Temporal Fusion Strategies.

In this section, we present early explorations of temporal fu-
sion strategies and show that the simple Temporal-Pooling

design used in our final model is surprisingly effective when
combined with the Mamba module. Specifically, we exper-
imented with more complex fusion approaches, including
TSM [34] and SlowFast [14], using LLaMA3-8B + SigLip.
TSM incorporates temporal information by shifting tokens
from neighboring frames into the image-based visual en-
coder. On the other hand, SlowFast encodes video using
two token streams: one with high temporal but low spatial
resolution, and the other with the opposite configuration.

The results of these experiments are shown in Table 14.
These evaluations were conducted during the early stages of
our study, and as such, the number of input frames was not



Figure 5. VideoMME Results by Task Categories.

Models 8F 32F (T. Pooling) 128F (T. Pooling)

MVBench
VILA (w/o Mamba) 67.9 68.7 68.1
STORM (w/ Mamba) 68.8 70.4 71.3

MLVU
VILA (w/o Mamba) 67.7 71.0 69.9
STORM (w/ Mamba) 66.8 71.0 72.5

LongVidBench
VILA (w/o Mamba) 52.4 55.4 57.4
STORM (w/ Mamba) 50.6 54.2 59.5

VideoMME
VILA (w/o Mamba) 60.0 58.9 61.7
STORM (w/ Mamba) 60.2 61.2 63.4

Avg
VILA (w/o Mamba) 62.0 63.5 64.3
STORM (w/ Mamba) 61.6 64.2 66.7

Table 9. Detailed Comparison across Benchmarks for Ta-
ble 4. STORM consistently improves performance across all
benchmarks as the input video length increases from 8F to 32F to
128F. In contrast, the baseline VILA exhibits diminishing gains
with longer inputs and even experiences performance degrada-
tion on certain benchmarks when extending from 32F to 128F.
These results highlight the critical role of the Mamba module in
effectively leveraging long-video inputs to enhance model perfor-
mance.

consistently matched across variants, making exact compar-
isons difficult. However, the settings are generally favorable

Figure 6. Latency Comparison: VILA vs STORM. The multi-
modal projector in VILA is a 2-layer MLP, while it is the Mamba
Temporal Module in STORM.

to the TSM and SlowFast variants, as they use the same
or more frames than the baseline, which does not perform
any temporal fusion. Despite this, both fusion methods fail
to yield meaningful improvements over the VILA baseline.
In contrast, our STORM design achieves a significant gain,
outperforming all other variants.



Models Dataset MVBench MLVU LongVideoBench VideoMME

type test dev val (w/o sub.)

Duration 16 sec 3→120 min 8 sec→60 min 1→60 min

VILA Baseline + T. Pooling long-video only (25% of full) 67.2 71.4 59.2 62.2
VILA Baseline + T. Pooling full LLaVA-Video [78] 68.1 (+0.9) 69.9 (-1.5) 57.4 (-1.8) 61.7 (-0.5)

VILA Baseline + T. Pooling + T. Sampling * long-video only (25% of full) 64.5 71.4 59.2 61.0
VILA Baseline + T. Pooling + T. Sampling * full LLaVA-Video [78] 67.8 (+3.3) 70.1 (-1.3) 57.7 (-1.5) 59.3 (-1.7)

STORM + T. Pooling long-video only (25% of full) 69.4 71.7 57.6 63.2
STORM + T. Pooling full LLaVA-Video [78] 71.3 (+1.9) 72.5 (+0.8) 59.5 (+1.9) 63.4 (+0.2)

STORM + T. Pooling + T. Sampling * long-video only (25% of full) 68.8 72.7 59.2 62.6
STORM + T. Pooling + T. Sampling * full LLaVA-Video [78] 70.6 (+1.8) 72.9 (+0.2) 60.1 (+0.9) 62.4 (-0.2)
* 2x additional compression at test time.

Table 10. Effect of Dataset Composition on 128-frame Fine-Tuning. We compare models trained on two variants: the “full LLaVA-
Video” dataset [78] (↑1.35M video-text pairs) versus the “long-video only” subset using top 25% longest videos (minimum of 128 frames)
(↑360K pairs). Values in parentheses show performance differences between training on the long-video subset vs the full dataset. STORM
consistently benefits from the larger, more diverse dataset across benchmarks, while the baseline VILA model degrades on several bench-
marks when trained on the full dataset.

Models # frames Short Medium Long Avg.
(train) < 2 min 4↑15 min 30↑60 min

Token Budget: 8K
VILA Baseline 32 73.0 58.0 49.2 60.1
STORM 32 75.6 60.9 51.1 62.5
STORM + T. Sampling* 32 75.2 60.8 53.2 63.1
STORM + T. Pooling 128 72.4 64.4 53.4 63.4
STORM + T. Pooling + T. Sampling* 128 72.9 60.9 53.4 62.4
* 2x additional compression at test time.

Table 11. Break Donw of VideoMME Results by Input Video Length.

# Frames Compression Ratio Overall (ms) llm (ms) vision tower (ms) mm projector (ms)
4 1 162.92 103.80 52.41 6.71
8 1 270.87 174.61 85.11 11.15
16 1 486.37 321.73 144.47 20.17
32 1 933.99 623.41 269.49 41.09
64 1 1910 1310 515.17 82.41

128 1 4270 3090 1020 163.34
256 1 10340 7960 2030 348.22
512 1 28620 23710 4090 811.31

32 4 486.97 175.75 269.96 41.26
64 4 920.10 322.22 515.82 82.06

128 4 1800 622.29 1010 163.23
256 4 3680 1310 2020 348.52
512 4 7950 3080 4060 811.84

64 8 772.18 175.27 514.59 82.32
128 8 1500 322.73 1020 163.09
256 8 3000 622.56 2030 348.71
512 8 6200 1310 4070 815.08

Table 12. Full Latencies on Various Compression Ratios and Input Frames.



Q: Please provide a description of  the narrative of  the video.

• Ours: The video begins with a person playing with a ball on a rooftop, which is disrupted by a large, glowing moon-like object in the sky. The person looks 
up in awe as the moon-like object grows larger and more detailed. The scene transitions to a close-up of  the moon-like object, which then explodes, causing 
chaos on the rooftop. The person and a child run away from the explosion, and the scene shifts to a view of  the moon-like object in space, surrounded by 
debris. The person and the child watch the moon-like object on a television, which then explodes, causing a massive fireball. The video then shows a 
cityscape with buildings exploding and debris flying everywhere, followed by a view of  a city under attack with spaceships and debris in the sky. The scene 
transitions to a chaotic cityscape with buildings collapsing and debris flying everywhere. A person in a red shirt is seen running through the debris, followed 
by a view of  a city under attack with spaceships and debris in the sky. The scene shifts to a close-up of  a person in a spacesuit inside a spacecraft, looking 
out at the chaotic scene outside. The video concludes with a black screen displaying the text 'BUY TICKETS NOW IN THEATERS AND IMAX FRIDAY' along with a 
rating of  'PG-13' and the logo of  the production company, Lionsgate.

• LongVU: The video starts with a scene of  a man throwing a ball to another man who hits it back. The ball then flies towards the camera and hits the lens. 
The scene then shifts to a man looking through binoculars as a flock of  birds flies overhead. The man then throws a ball that hits a bird, which then falls to 
the ground. The scene then shows a man throwing a ball that hits a bird, which then explodes into pieces. The video then shows a man throwing a ball that 
hits a bird, which then explodes into pieces…

• LongVILA: The video begins with a man in black short sleeves throwing a ball at a target on a rooftop, followed by a scene of  a large explosion. 
Subsequently, a man in a spacesuit is seen flying through the air, transitioning to a scene of  a car driving on a road. The video then shows a man and a boy 
on a balcony, the man pointing at the sky. The scene shifts to a large white object in the sky, with a man and a boy observing birds, and then to a man and a 
woman on the balcony. The video continues with a man and a boy on a staircase, the man holding a rope, and a large object falling from the sky. The video 
then shows a large object falling, a man and a boy on a balcony, and a man and a woman looking at birds. The scene changes to a man and a boy on a 
balcony, a man holding a wooden box, and a large object falling from the sky…

Figure 7. Effective Long Video Understanding. We compare STORM + Temporal Sampling with existing long video LLMs. Reults
show that STORM delivers a more detailed and coherent summary, effectively capturing key events and transitions throughout the film.
The example video is included in the supplementary material (moon.mp4).



Q: What does this video tell? The best answer is:
A. The process of  building a starship. B. Why Starship is the holy grail for SpaceX. 
C.  Why Starlink is crucial to SpaceX's success. D. How SpaceX could Win The Space Race. (GT answer)

• STORM (32-Frame Input, 8K Visual Tokens, No Compression) : B. Why Starship is the holy grail for SpaceX.
• STORM +Token Compression (128-Frame Input, 8K Visual Tokens, 4x Compression) : D. How SpaceX could Win The Space Race.

Q: How many times do news segments appear in this video? The best answer is: 
A. 2. B. 4. C. 6. (GT answer) D. 8. 

• STORM (32-Frame Input, 8K Visual Tokens, No Compression) : B. 4.
• STORM +Token Compression (128-Frame Input, 8K Visual Tokens, 4x Compression) : C. 6.

Q: What is unique about the last performance? The best answer is:
A. The last performance features background dancers, distinguishing it from the others. 
B. The stage lighting is noticeably dimmer in the last performance compared to the others. 
C. Musical instruments are incorporated into the last performance, unlike the others. (GT answer)
D. The last performance showcases a collective group of  performers, while the others consist of  individual acts. 

• STORM (32-Frame Input, 8K Visual Tokens, No Compression) : D. The last performance showcases a collective group of  performers, while 
the others consist of  individual acts.

• STORM +Token Compression (128-Frame Input , 8K Visual Tokens, 4x Compression) : C. Musical instruments are incorporated 
into the last performance, unlike the others.

Figure 8. Importance of Long Video Context. We compare STORM with a 32-frame input to STORM + Temporal Sampling using a
128-frame input. Both configurations have negligible differences in computational cost; however, the latter encodes additional information
into compressed tokens due to the extended frame sequence. The examples illustrate that processing more frames allows the model to
capture richer temporal dynamics and contextual information. This leads to a stronger understanding of the video’s narrative, reduces
information loss, and enhances the ability to reason through temporal events across the entire video.



a. OCR Problem

b. Attribute Perception

Q: Whom is the poem in the video written by?

Ours: The poem in the video is written by Edgar Allan Poe.

Q: What are the red texts recognized on the white wall?

Ours: The red texts recognized on the white wall are 'GO BOWLING’.

Q: Which country does the swimmer who was given a close-up in the video hail from?

Ours: The swimmer who was given a close-up in the video hails from the USA.

Q: What color are his gloves in the video?

Ours: His gloves are black.

Figure 9. Showcase of Video Understanding Abilities in Various Task Categories. We provide additional examples to showcase
model’s video understanding capabilities in different aspects. This is done by providing the models with open-ended queries that require
the model to generate answers in raw text form without any given choices. Part 1. The OCR problem example videos are included in the
supplementary material (ocr.mp4).



d. Information Synopsis

c. Spatial Perception

Q: Where is this video most likely shot?

Ours: The video is most likely shot inside a birdhouse.

Q: Which hand did the person in the video wear a glove on?

Ours: The person wore a glove on their right hand.

Q: According to the video, why is it very difficult to capture footage of  sand cats?

Ours: Because their fur blends in with their surroundings and their tracks are barely visible.

Q: What is this video mainly about?

Ours: This video is mainly about demonstrating how to fold a shirt. The man in the video shows how to fold a shirt in a step-by-step manner, and he also 
demonstrates how to fold a t-shirt and a polo shirt.

Figure 10. Showcase of Video Understanding Abilities in Various Task Categories. Continue 2.



e. Temporal Reasoning

Q: What is the fourth-to-last news item in this news video? 
A. Josh Liendo swims into the history books. B. Coming soon | Rising demand for pet psychics. 
C.  U.S. vice president calls for Gaza ceasefire. D. California storm drops 2 meters of  snow.

Ours: A. Josh Liendo swims into the history books.

Q: In which order do the six tips are introduced in the video? 
(a) Clip coupons. (b) Eat at home. (c) Freeze leftovers. (d) Cook once, eat twice. (e) Meal plan. (f) Buy in bulk. 
A. b e d f  a c. B. b e f  c a d. C. e c d a b f. D. c e b f  a d.

Ours: A. b e d f  a c.

Figure 11. Showcase of Video Understanding Abilities in Various Task Categories. Continue 3.



Models 32F (T. Pooling) 128F (T. Pooling)
VILA 58.9 61.7
Uni-dir STORM 62.2 62.5
Bi-dir STORM 61.2 63.4

Table 13. Support for Streaming/Online Settings. We evaluate
a uni-directional variant of STORM designed for streaming video
inputs. Results show that the Uni-dir STORM consistently outper-
forms the VILA baseline, highlighting the potential of our design
to support streaming scenarios.

Table 14. Comparison of temporal fusion strategies.

16 frames 32-64 frames

Baseline Baseline TSM SlowFast STORM
(T.pool) (T.pool) (T.pool) (T.pool)

52.0 50.0 49.0 51.3 56.8



Models MVBench MLVU LongVidBench VideoMME

8-frame-models 8 64 32 64
+ Temporal Sampling 16 256 256 128

32-frame-models 16 64 64 64
+ Temporal Sampling 32 256 256 128

32-frame-models + Temporal Pooling 32 64 128 64
+ Temporal Sampling 64 256 256 128

Table 15. The Number of Frames Used for Inference. We evaluate all models for [8, 16, 32, 64, 128, 256, 512] frames and select the
best overall for each task and setup.
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and Christopher Ré. Hyena hierarchy: Towards larger con-
volutional language models. 2023. 2

[50] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,



Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International conference on machine learning.
PMLR, 2021. 1, 13

[51] Michael S. Ryoo, Honglu Zhou, Shrikant Kendre, Can Qin,
Le Xue, Manli Shu, Silvio Savarese, Ran Xu, Caiming
Xiong, and Juan Carlos Niebles. xgen-mm-vid (blip-3-
video): You only need 32 tokens to represent a video even
in vlms. arXiv preprint arXiv: 2410.16267, 2024. 13

[52] Jianhao Shen, Ye Yuan, Srbuhi Mirzoyan, Ming Zhang, and
Chenguang Wang. Measuring vision-language stem skills of
neural models, 2024. 17

[53] Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng
Wu, Jun Chen, Chenchen Zhu, Zechun Liu, Fanyi Xiao, Bal-
akrishnan Varadarajan, Florian Bordes, Zhuang Liu, Hu Xu,
Hyunwoo J. Kim, Bilge Soran, Raghuraman Krishnamoor-
thi, Mohamed Elhoseiny, and Vikas Chandra. Longvu: Spa-
tiotemporal adaptive compression for long video-language
understanding. arXiv preprint arXiv: 2410.17434, 2024. 1,
4, 5, 13

[54] Yan Shu, Peitian Zhang, Zheng Liu, Minghao Qin, Junjie
Zhou, Tiejun Huang, and Bo Zhao. Video-xl: Extra-long
vision language model for hour-scale video understanding.
arXiv preprint arXiv: 2409.14485, 2024. 4, 5, 13

[55] Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael
Bendersky, and Marc Najork. Wit: Wikipedia-based image
text dataset for multimodal multilingual machine learning.
In Proceedings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval.
ACM, 2021. 17

[56] Ryota Tanaka, Kyosuke Nishida, and Sen Yoshida. Vi-
sualmrc: Machine reading comprehension on document im-
ages. In Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 13878–13888. AAAI Press, 2021. 17

[57] Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun
Woo, Manoj Middepogu, Sai Charitha Akula, Jihan Yang,
Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang,
Rob Fergus, Yann LeCun, and Saining Xie. Cambrian-1:
A fully open, vision-centric exploration of multimodal llms.
arXiv preprint arXiv: 2406.16860, 2024. 16, 17

[58] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
Videomae: Masked autoencoders are data-efficient learners
for self-supervised video pre-training. Advances in neural
information processing systems, 35, 2022. 13

[59] Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert Gu, Ali
Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An
empirical study of mamba-based language models. arXiv
preprint arXiv:2406.07887, 2024. 13

[60] Junxiong Wang, Daniele Paliotta, Avner May, Alexander
Rush, and Tri Dao. The mamba in the llama: Distilling and
accelerating hybrid models. Advances in Neural Information
Processing Systems, 37:62432–62457, 2024. 13

[61] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks for action recognition in videos. IEEE transactions
on pattern analysis and machine intelligence, 41(11):2740–
2755, 2018. 3

[62] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui
Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Jun-
yang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint
arXiv: 2409.12191, 2024. 4, 5, 15

[63] Xidong Wang, Dingjie Song, Shunian Chen, Chen Zhang,
and Benyou Wang. Longllava: Scaling multi-modal llms
to 1000 images efficiently via hybrid architecture. arXiv
preprint arXiv: 2409.02889, 2024. 4, 5

[64] Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun
Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu, Zun
Wang, et al. Internvideo: General video foundation models
via generative and discriminative learning. arXiv preprint
arXiv:2212.03191, 2022. 1, 13

[65] Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan
He, Guo Chen, Baoqi Pei, Rongkun Zheng, Jilan Xu, Zun
Wang, et al. Internvideo2: Scaling video foundation mod-
els for multimodal video understanding. arXiv preprint
arXiv:2403.15377, 2024. 1, 13

[66] Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and
Bohan Zhuang. Longvlm: Efficient long video understand-
ing via large language models. In European Conference on
Computer Vision, pages 453–470. Springer, 2025. 13

[67] Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li.
Longvideobench: A benchmark for long-context inter-
leaved video-language understanding. arXiv preprint arXiv:
2407.15754, 2024. 4

[68] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A
large video description dataset for bridging video and lan-
guage. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 5288–5296. IEEE Computer Society,
2016. 17

[69] Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu,
Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian Tang, Shang
Yang, Zhijian Liu, Yihui He, Hongxu Yin, Pavlo Molchanov,
Jan Kautz, Linxi Fan, Yuke Zhu, Yao Lu, and Song Han.
Longvila: Scaling long-context visual language models for
long videos. arXiv preprint arXiv: 2408.10188, 2024. 1, 3,
4, 5, 13

[70] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and
Cordelia Schmid. Just ask: Learning to answer questions
from millions of narrated videos. In 2021 IEEE/CVF Inter-
national Conference on Computer Vision, ICCV 2021, Mon-
treal, QC, Canada, October 10-17, 2021, pages 1666–1677.
IEEE, 2021. 17

[71] Xubing Ye, Yukang Gan, Xiaoke Huang, Yixiao Ge, Ying
Shan, and Yansong Tang. Voco-llama: Towards vision
compression with large language models. arXiv preprint
arXiv:2406.12275, 2024. 13



[72] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C. Berg,
and Tamara L. Berg. Modeling context in referring expres-
sions, 2016. 17

[73] Tianyu Yu, Jinyi Hu, Yuan Yao, Haoye Zhang, Yue Zhao,
Chongyi Wang, Shan Wang, Yinxv Pan, Jiao Xue, Dahai
Li, et al. Reformulating vision-language foundation models
and datasets towards universal multimodal assistants. arXiv
preprint arXiv:2310.00653, 2023. 17

[74] Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-
ing Zhuang, and Dacheng Tao. Activitynet-qa: A dataset for
understanding complex web videos via question answering.
In The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial In-
telligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 9127–9134. AAAI Press, 2019. 17

[75] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 11975–11986, 2023. 1, 4, 13, 15

[76] Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng,
Jingkang Yang, Yuanhan Zhang, Ziyue Wang, Haoran Tan,
Chunyuan Li, and Ziwei Liu. Long context transfer from
language to vision. arXiv preprint arXiv:2406.16852, 2024.
1, 4, 5, 13

[77] Ruohong Zhang, Liangke Gui, Zhiqing Sun, Yihao Feng,
Keyang Xu, Yuanhan Zhang, Di Fu, Chunyuan Li, Alexander
Hauptmann, Yonatan Bisk, and Yiming Yang. Direct prefer-
ence optimization of video large multimodal models from
language model reward. arXiv preprint arXiv: 2404.01258,
2024. 16, 17

[78] Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Zi-
wei Liu, and Chunyuan Li. Video instruction tuning with
synthetic data, 2024. 15, 16, 19

[79] Bo Zhao, Boya Wu, Muyang He, and Tiejun Huang.
Svit: Scaling up visual instruction tuning. ArXiv preprint,
abs/2307.04087, 2023. 4, 15, 17

[80] Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi
Yang, Yongping Xiong, Bo Zhang, Tiejun Huang, and Zheng
Liu. Mlvu: A comprehensive benchmark for multi-task long
video understanding. arXiv preprint arXiv: 2406.04264,
2024. 4

[81] Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Hongfa
Wang, Yatian Pang, Wenhao Jiang, Junwu Zhang, Zongwei
Li, Wancai Zhang, Zhifeng Li, Wei Liu, and Liejie Yuan.
Languagebind: Extending video-language pretraining to n-
modality by language-based semantic alignment. Interna-
tional Conference on Learning Representations, 2023. 16,
17

[82] Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem, Ilyas
Chahed, Younes Belkada, Guillaume Kunsch, and Hakim
Hacid. Falcon mamba: The first competitive attention-free
7b language model. arXiv preprint arXiv:2410.05355, 2024.
13


	Introduction
	Method
	Preliminaries
	Mamba-Based Temporal Projector
	Training-Time Token Compression
	Training-Free Temporal Token Sampling

	Experiments
	Experiment Details
	Results on Video Understanding Benchmarks

	Analysis
	Conclusion
	Acknowledgments
	Extended Related Work
	Qualitative Results
	Additional Results
	Architecture Details
	Training Details
	Datasets Information
	Mamba Temporal Module Latency
	Inference Details
	STORM vs Other Temporal Fusion Strategies.


