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Abstract

Visual prompt-based methods have seen growing interest in
incremental learning (IL) for image classification. These
approaches learn additional embedding vectors while keep-
ing the model frozen, making them efficient to train. How-
ever, no prior work has applied such methods to incremen-
tal object detection (IOD), leaving their generalizability
unclear. In this paper, we analyze three different prompt-
based methods under a complex domain-incremental learn-
ing setting. We additionally provide a wide range of ref-
erence baselines for comparison. Empirically, we show
that the prompt-based approaches we tested underper-
form in this setting. However, a strong yet practical
method—combining visual prompts with replaying a small
portion of previous data—achieves the best results. To-
gether with additional experiments on prompt length and
initialization, our findings offer valuable insights for ad-
vancing prompt-based IL in 10D.

1. Introduction

In incremental learning (IL), models are sequentially
trained on new tasks [46]. This work addresses domain
incremental learning (DIL) for object detection, wherein
each new task introduces data from a previously unseen
domain, though target classes remain consistent across
tasks [32, 46]. When training on a new domain, the opti-
mization process updates model weights to minimize task-
specific losses, inadvertently overwriting previously learned
representations. This phenomenon, termed catastrophic
forgetting, remains a central challenge in IL. Attempts to
mitigate forgetting often reduce model adaptability to new
tasks, resulting in the stability-plasticity dilemma [25].
Various strategies have been proposed to manage this
dilemma, with one promising direction involving learnable
prompts [60]. In prompt-based methods, trainable prompts
are prepended to inputs of pre-trained transformers to guide
task-specific feature extraction [48, 49, 60]. Typically, dis-
tinct prompts are allocated per task, and during inference,
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the appropriate prompt is selected based on task identifi-
cation [47-49]. Visual prompts differ from textual ones, as
they do not convey language meaning and can be considered
pseudo-words. Despite numerous variations, prompt-based
methods have mostly been evaluated only on classification
tasks, leaving their effectiveness in other computer vision
objectives largely unexplored [32, 60].

In this paper, we present the first study of prompt-based
IL methods applied to DIL for object detection. We es-
tablish several robust baselines and systematically evalu-
ate three widely-used prompt-based IL methods—L2P [49],
DualPrompt [48], and S-Prompt [47]—under varying con-
figurations. We extend our analysis by examining prompt
length and prompt initialization strategies.

Our experiments leverage the challenging D-RICO
benchmark [36], consisting of 15 tasks from automotive and
surveillance domains—Xkey application areas for object de-
tection. D-RICO integrates data from 14 diverse datasets,
spanning imaging sensors, lens types, perspectives, envi-
ronmental conditions (e.g., weather, daytime), and both
synthetic and real-world scenarios. This benchmark thus
embodies significant distributional shifts, offering a rigor-
ous framework for evaluating IL. methods.

We demonstrate that although the three examined
prompt-based methods perform well on classification tasks,
they significantly underperform on object detection within
D-RICO. Combining these findings with detailed analy-
ses of prompt initialization strategies and optimal prompt
lengths, we provide a comprehensive understanding of the
factors influencing prompt-based IL performance, thereby
paving the way for future developments in this area.

Our main contributions are:
We are the first to study prompt-based IL for object detec-
tion, showing common methods underperform, with Du-
alPrompt as the most effective tested method.
Our work presents strong baselines and shows that com-
bining visual prompt tuning with replaying previous task
data is a practical and straightforward approach to IL.
Further investigations show that choosing a fixed prompt
length is sufficient across tasks, and initializing prompts
with lower values is more effective.



2. Related Works

2.1. Incremental Object Detection

Object detection models broadly fall into two categories:
single-stage detectors, which focus on fast inference [4, 18],
and two-stage detectors, known for their higher accuracy [3,
10, 12, 38]. In incremental learning (IL) for object de-
tection, two-stage models have traditionally dominated re-
search [32, 34, 42, 44], though incremental learning with
single-stage is increasingly explored [8, 29, 33, 40]. To
mitigate catastrophic forgetting, distillation-based regular-
ization techniques [7-9, 14, 24, 33, 34, 37], as well as re-
hearsal methods that replay previously seen data [26, 28,
35, 40, 54], have emerged as leading approaches. Addition-
ally, representation-based strategies [30, 33], optimization-
oriented methods [22, 27, 50], and various hybrid or novel
methods [19, 29, 52] are progressively expanding the scope
of incremental object detection research. Nevertheless,
compared to the extensive body of work on incremental
classification, incremental learning for object detection re-
mains relatively understudied [46].

2.2. Prompt-based Incremental Learning

Visual prompts are a parameter-efficient fine-tuning tech-
nique to adapt pre-trained models to new data [20]. The
initial method L2P [49] demonstrated the feasibility of ap-
plying visual prompts to IL. They learned a pool of these
visual prompts and a corresponding key for each prompt.
The visual prompts are selected using cosine similarity
between the classification token and this key. Following
methods improve on this by distinguishing between gen-
eral and expert prompts [48], employing non-shared prompt
pools [47], prompt-selection through k-nearest neightbor
search [47], attention-based prompt combination [41], sep-
arate learning objectives [45], or generating prompts using
meta-networks [23, 31, 53]. A further overview is provided
by Wang et al. [46] and Zhou et al. [60]. However, these
prompt-based methods are not evaluated on other IL com-
puter vision types than classification.

3. Preliminary

3.1. Domain Incremental Object Detection

We study the problem of domain incremental object de-
tection, where a model is exposed to a sequence of tasks,
i.e. domains [46, 47, 58]. At step ¢, the model learns task
T: using the dataset D; = (X}, )), where the image set
X, = {x!}, consists of n; images. Each image x! has
dimensions x! € R *WixCi with H!, W}, and C? de-
noting height, width, and channel count, respectively.

The annotation set ), = {y!}:'*; corresponds to these
images, where each y! is a collection of object instances:

t
my

yi = {(c};, b} )}, Here, ¢ ; € C represents the class
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label of the j-th object in image x!, with C being the cat-
egory set, which is fixed for this domain IOD setting, and
b} € R* denotes the bounding box coordinates. The num-
ber of annotated objects m! may vary across images.
During training, the model has access to the task identity,
but this information is not provided at test time. A model
trained on task 7; using the data D; is denoted by M,.

3.2. Visual Prompt Tuning

A visual prompt is a set of learnable parameters p &
RE»*D “where L, is the prompt length, i.e. the number of
prompts, and D is the embedding dimension [20, 48]. The
backbone itself is kept frozen, and the visual prompts are
incorporated into it and optimized during training. There
are two prominent ways to incorporate the visual prompts
into the backbone.
* Prompt Tuning (Pro-T). The prompts are prepended to
the key hg, query hg and value hy of the multi-head
self-attention (MSA) layer.

Forompt = MSA([p: hol, [ps hix], [pihv]) (D)
Here, [-;] is the concatenation operation along the se-

quence length. The output sequence, compared to the
non-prompted MSA, is extended by the length of the
prompt.

Prefix Tuning (Pre-T). The prompt is split into two parts

that are prepended to the key and value, i.e. px,py €
RLp/2xD

Pre—T — MSA

prompt (hQ7 [pKa hKL [pV7 hV]) (2)

The length of the output sequence remains unchanged by
the visual prompts.

More details can be found here [20, 48].

4. Experiments

4.1. Setup

Model. We use the EVA-02 vision transformer [12] in its
big configuration. We include the prompts in the positional
embedding but exclude them from the rotary embedding.
We repeat the prompts on the window partitioning layers
by the number of windows. We use the COCO pre-trained
weights and freeze the backbone, region proposal network,
and head, leaving only the output layer trainable.
Optimization. We employ the AdamW optimizer with a
learning rate of 0.001 and cosine learning rate decay. We
train each task for 1,000 iterations and a batch size of 10.

4.1.1. Methods

We select three prominent methods for the evaluation:
L2P [49], DualPrompt [48], and S-prompt [47]. While these
are not the state-of-the-art (SOTA), their simplicity allows



Table 1. Results for different prompting techniques and prompt-based IL methods on the D-RICO benchmark. Joint and individual training
represent the upper bounds, Naive FT the lower bound, and the two replay configurations are strong baselines. The three prompt-based IL

methods fall behind even 1% replay. Best IL approach in bold.

Domain RICO
Method Prompt style Freeze Head after 1. Task mAP{1 FM| FWT{ IM+1t
Joint Training No Prompt X 25.45 - - -
Shallow Prompt X 26.39 - - -
Deep Prompt X 29.55 - - -
Individual Training ~ No Prompt X 26.92 - - -
Shallow Prompt X 28.98 - - -
Deep Prompt X 33.12 - - -
Naive FT No Prompt X 16.20 13.17 -7.31 -2.81
Shallow Prompt X 20.88 10.38 -4.25 -0.36
Deep Prompt X 21.98 16.60 2.54 5.71
No Prompt v 23.49 0 -11.32 -6.05
Shallow Prompt 4 23.23 2.54 -9.19 -4.27
Deep Prompt v 22.89 14.53 1.66 4.96
Replay 1% No Prompt X 21.44 7.08 -6.81 -2.44
Shallow Prompt X 23.16 6.79 -4.96 -0.95
Deep Prompt X 26.55 10.74 243 5.60
Shallow Prompt v 23.27 2.30 -9.29 -4.42
Deep Prompt v 26.94 9.71 1.77 5.16
Replay 10% No Prompt X 25.41 2.81 -6.11 -1.88
Shallow Prompt X 26.79 3.64 -3.64 0.14
Deep Prompt X 31.62 4.63 2.60 5.76
Shallow Prompt v 24.41 0.89 -9.29 -4.41
Deep Prompt v 31.15 3.59 1.11 5.76
L2P [49] X 20.92 10.33 -4.28 -0.35
v 23.28 1.89 -9.80 -4.76
DualPrompt [48] X 18.61 12.29 -5.16 -1.11
v 23.81 1.07 -9.94 -4.91
S-Prompt [47] X 20.71 10.27 -4.61 -0.62
v 22.78 1.36 -10.86 -5.66
for a clearer understanding of the problem and provides modifications.

valuable insights. We consider two different configurations:
fixing the head after the first task and continuing to train the
head.

We compare these prompt-based IL methods to a wide
variety of reference baselines [36]:

¢ Joint Training merges all tasks into a single training
dataset and trains a single model on these. The test
datasets are separate.

Individual Training trains and tests a separate model for
each task.

Naive finetuning (FT) trains a single model sequentially
on the tasks without any IL method.

Replay keeps a portion (1% and 10% in this case) for the
sequential tasks to train on new and some old data at the
same time.

We consider different configurations for these reference
baselines:

* Freeze Head after 1. Task to reduce model plasticity.
* No Prompt uses the standard EVA-02 model without
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e Shallow Prompt uses a trainable 50 prompts and
prepends them to the image embeddings before the first
attention block [20].

e Deep Prompt learns 100 prompts for each layer and
prepends them to the image embeddings [20].

All settings employ prompt tuning, with prefix tuning being

used only in DualPrompt.

4.2. Benchmark

We employ the D-RICO benchmark [36] as it offers the
most diverse domain distribution shifts. It consists of 14
different datasets from which 15 tasks are created. These
datasets encompass various camera sensors (RGB, thermal,
gated, and event), lenses, viewpoints, time of day, weather
conditions, and both real and synthetic domains. The out-
put distribution also varies in terms of bounding box lo-
cation, aspect ratio, and class ratios. Additionally, due to
the origin of multiple datasets, the label quality and policy
vary. Leading, all together, to the most diverse domain IOD
benchmark, providing a complex challenge for any method.



Table 2 lists the tasks, their names, classes, and brief de-
scriptions.

4.3. Evaluation Metrics

To assess IL performance, we adopt widely used met-

rics [5, 36, 46], using mean Average Precision (mAP) as

the primary evaluation criterion [32]. Our evaluation fo-
cuses on three aspects:

1. Overall effectiveness. We measure aggregate perfor-
mance with the average mAP, denoted as mAP. Let
mAP), ; represent the mAP achieved on test set D;
of task 7; after completing training on task 7j (where
7 < k). The cumulative performance after task k is de-
fined as:

k
mk = % ZmAPk’j, (3)
j=1

where larger values indicate better retention and gener-
alization across tasks.

Retention and forgetting. We evaluate memory stabil-
ity via the forgetting measure (FM), which captures the
decline in a model’s performance on earlier tasks. After

training on task k, the forgetting metric is computed as:
=
FMi = -— 2; | dnax | (mAP; ; — mAP; ;). (4)
j:

A higher FM value reflects increased forgetting, while

negative values suggest performance gains on prior

tasks.

Adaptability and transfer. A model’s ability to learn

new tasks effectively is characterized by two comple-

mentary metrics:

(a) Forward transfer (FWT) quantifies how previously
acquired knowledge benefits learning a new task. It
is calculated as:

k

> (mAP;; —mAP}), (5)

=2

1

where mAP;- denotes the performance of an inde-
pendently trained model on task 7;. Positive FWT
indicates improved learning due to prior experience.
Intransigence (IM) assesses the difficulty in learn-
ing new tasks relative to a jointly trained model. It
is defined as:

(b)

k
1
My, =+ > (mAP;; —mAPj),  (6)
j=1

where mAP} corresponds to the mAP obtained
from a model trained on all task data Uszle si-
multaneously. A positive IM implies greater adapt-
ability than joint training.
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At the conclusion of all T tasks, we denote the final met-
ric values as mAP = mAP7;, FM = FMyp, FWT =
FWTp, and IM = IMyp.

The overarching objective is for IL models to surpass
both standalone and joint models by leveraging inter-task
transfer, ideally satisfying mAP > % Z].Tzl mAP’, which
necessitates high adaptability and minimal forgetting.

4.4. Results

We first present the main results of three prompt-based
methods and reference baselines on the D-RICO bench-
mark, followed by additional analyses on initialization and
prompt length .We choose a diverse subset of five tasks, i.e.
[1,2,3,11, 15], from the 15 D-RICO tasks for the main re-
sults and all 15 tasks in the subsequent experiments.

4.4.1. Main Results

The main results on the D-RICO benchmark are shown in
Table 1 and Figure 1. Among the three prompt-based IL
methods, L2P achieves the highest performance when the
output layer is not frozen, while DualPrompt slightly out-
performs the other two methods when the output layer is
fixed after the first task. Regarding forgetting, DualPrompt
is also the lowest.

The three prompt-based IL. methods perform similarly to
Naive FT and lag substantially behind replay at both 1%
and 10%. In Figure 1, this becomes more obvious where
they show high forgetting while having mediocre overall
performance and plasticity. However, as all three methods
do not employ deep prompting, in a fair comparison to shal-
low prompting, they achieve a similar performance to replay
1%, though Naive FT is also close to that.

Fixing the output layer generally benefits all IL settings
except for the 10% replay scenario. Specifically, weaker
methods such as Naive FT, replay 1%, L2P, DualPrompt,
and S-Prompt all benefit from reduced model plasticity, as
their counterparts with non-fixed output layers exhibit lower
performance in terms of mAP and FM. However, strong
regularization via 10% replay benefits from increased plas-
ticity, enabling it to surpass individually trained models in
both shallow and deep prompt scenarios.

Overall, deep prompting consistently outperforms shal-
low prompting regarding mAP and FWT, although shal-
low prompting demonstrates lower FM. The two plasticity
metrics (FWT and IM) show an increase in model adaptabil-
ity. For Naive FT, deep and shallow prompting yield sim-
ilar m AP, highlighting a trade-off between stability (FM)
and plasticity (FWT). Employing prompts generally outper-
forms the no-prompt condition. However, when the output
layer is fixed (i.e., no further learning occurs after the initial
task), the mAP performance of the no-prompt condition
becomes similar to the three prompt-based methods. This
further illustrates that these standard methods are not suffi-
ciently competitive on this challenging benchmark.




Table 2. Description for D-RICO benchmark that consists of 15 tasks from 14 different datasets incorporating variations in multiple

different aspects.

Task Number  Task Name Dataset Classes Short Description
1 daytime nulmages [2] person, bicycle, vehicle  urban, daylight, real-world, vehicle-mounted, Singapore
2 thermal Teledyne FLIR [13] person, bicycle, vehicle  thermal, urban, varying lighting, weather conditions
3 fisheye fix FishEye8K [17] person, vehicle fisheye, daytime, urban traffic, Taiwan, wide-angle, multi-camera
4 drone VisDrone [61] person, bicycle, vehicle  drone, urban and rural, variable density, different lighting, 14 cities
5 simulation SHIFT [43] person, bicycle, vehicle  synthetic, urban driving, CARLA, daytime, clear weather
6 fisheye car WoodScape [56] person, vehicle fisheye, vehicle-mounted, driving perspectives, multiple positions
7 RGB + thermal fusion SMOD [6] person, bicycle, vehicle ~ RGB-thermal fusion using IFCNN [59]
8 video game Siml10k [21] vehicle synthetic, urban, GTA 'V, diverse driving scenarios
9 nighttime BDDI100K [57] person, bicycle, vehicle  urban, nighttime, perception challenge, street lighting
10 fisheye indoor LOAF [55] person fisheye, indoor, overhead, 360° view, surveillance
11 gated DENSE [1] person, vehicle gated, urban, various conditions, depth-enhanced imaging
12 photoreal. simulation Synscapes [51] person, vehicle photorealistic, synthetic, urban, physically based rendering
13 thermal fisheye indoor ~ TIMo [39] person thermal fisheye, indoor, human actions, multiple perspectives
14 inclement DENSE [1] person, vehicle fog, snow, rain, adverse weather
15 event camera DSEC [15, 16] person, bicycle, vehicle  event-based, driving, varied lighting, RGB overlay
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Figure 1. Incremental learning results on D-RICO benchmark. The left figure shows overall performance m AP versus the forgetting (FM)
and the right shows plasticity (FWT) versus FM. The three prompt-based IL methods are far from the optimal of high plasticity and low

forgetting (upper left corner).

4.4.2. Prompt Length

It is expected that different tasks require varying prompt
lengths depending on their diversity. To illustrate this, we
train each task in the D-RICO benchmark with different
prompt lengths (1, 5, 10, 25, 100, 250, 500) to identify the
optimal length for each. The results shown in Table 3 con-
firms this across three different prompting techniques. It is
evident that some tasks perform well with a single prompt,
while others require up to 500. Choosing the best prompt
length for each task slightly increases the final mAP. How-
ever, the difference compared to the next-best fixed prompt
length is minimal.

Figure 2 shows a histogram of how often a prompt length
yields the best outcome. When there’s a tie, the shorter
length is selected because it’s more computationally effi-
cient and thus preferred. It is clear that the optimal prompt
length depends on the prompting style (shallow versus deep
and remove versus keep prompt) and the task. Generally,
deep prompting can better utilize longer prompt lengths
compared to shallow prompting. If the prompt is removed
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Figure 2. Count for how often a prompt length led to the best mAP
in each of the three prompting categories. Plot a) shows result
for shallow prompting where the prompt is removed after the first
layer, b) shallow with keeping the prompt and ¢) deep prompt. The
results demonstrate that larger prompt length work well for deep
prompting, and shallow prompting requires a bit less.

after the first layer, i.e., it only influences the first MSA,
longer prompt lengths work better than when the prompt is
kept in the model.



Table 3. Analysis of optimal prompt length across three prompt techniques for each D-RICO task shows that not all prompt configurations
outperform training without prompts. Generally, shallow prompts offer only marginal gains. Selecting the optimal prompt length per task
yields the best average performance, though the improvement over a fixed prompt length is minimal.

Task | 0

‘ Shallow Prompt (Remove Prompt)

‘ Shallow Prompt (Keep Prompt)

‘ Deep Prompt

‘ I 5 10 25 50 100 250 500 Best

‘ I 5 10 25 50 100 250 500 Best

‘ 1 5 10 25 50 100 250 500 Best

41.2
332
20.3
18.7
30.7
39.9
44.9
44.8
20.5
37.3
27.7
24.6
69.6
48.5
12.2

00NN N AW =

41.0 41.3 41.2 41.6 41.2 41.3 41.2 41.4 41.6
33.2 34.1 34.1 34.2 34.6 34.5 34.8 35.3 353
19.6 19.7 20.0 20.0 20.5 20.5 20.3 20.6 20.6
18.7 18.6 18.6 18.7 18.6 18.6 18.8 18.7 18.8
30.2 29.8 29.7 29.9 29.6 29.6 29.1 29.7 30.2
39.8 39.7 39.7 40.0 39.8 39.7 39.9 39.9 40.0
44.6 44.6 45.0 44.9 45.0 44.9 45.0 44.7 45.0
44.9 45.0 45.0 45.0 44.8 45.1 44.7 44.7 45.1
21.0 21.2 20.7 21.5 20.8 21.8 21.5 21.7 21.8
37.7 37.9 37.4 38.2 37.6 37.5 38.0 37.4 38.2
27.8 28.2 27.5 27.8 27.8 27.4 27.7 27.5 28.2
24.1 24.0 23.8 24.0 24.1 24.0 23.9 24.0 24.1
72.1 71.4 70.9 72.4 72.3 72.6 72.0 73.6 73.6
48.6 48.6 48.5 48.6 48.5 48.6 48.5 48.7 48.7
17.1 20.1 18.4 19.2 19.3 21.3 18.9 204 21.3

41.241.4 41.2 41.2 41.1 41.0 41.0 40.5 41.4
33.4 33.4 34.2 34.8 34.7 35.0 35.3 34.6 353
20.0 20.1 20.3 20.3 20.4 20.3 20.7 20.6 20.7
18.7 18.8 18.8 18.9 18.9 19.0 18.8 18.8 19.0
30.1 30.1 30.3 30.0 29.8 29.7 29.6 29.3 30.3
39.8 39.9 39.9 39.9 40.1 40.0 39.9 39.3 40.1
44.9 44.8 45.0 44.8 45.0 44.2 442 434 45.0
45.2 45.0 45.1 45.2 45.1 44.8 44.6 44.4 45.2
20.4 21.3 21.1 21.3 21.5 21.4 20.9 21.1 21.5
37.4 37.9 37.9 37.8 38.0 37.2 36.9 36.9 38.0
28.1 27.2 27.3 26.6 27.0 24.7 27.4 21.0 28.1
24.1 242 24.1 24.3 24.5 24.5 24.4 24.3 245
69.8 70.5 72.6 72.9 73.0 73.0 71.1 71.8 73.0
48.7 48.6 48.6 48.7 48.6 48.3 48.4 47.9 48.7
15.8 18.8 18.3 21.0 21.7 18.7 20.0 20.1 21.7

425 43.4 43.6 43.9 44.4 439 44.5 445 445
37.7 38.5 39.1 39.3 39.9 40.3 39.8 39.9 40.3
23.1 24.0 24.2 24.8 25.0 24.8 25.0 24.4 25.0
20.2 20.4 20.8 20.9 21.1 21.2 21.1 21.2 21.2
31.1 31.6 32.0 32.3 32.5 32.6 32.7 32.5 32.7
41.1 41.7 41.9 42.3 42.0 42.3 42.2 424 424
47.1 49.8 50.0 50.4 50.4 50.4 50.8 50.3 50.8
45.8 46.1 46.5 46.6 46.3 46.5 46.1 46.8 46.8
21.3 222223229 227 23.1 23.4 22.7 234
43.1 43.9 43.4 43.2 443 444 44.4 434 444
30.7 31.5 32.2 32.5 32.9 33.5 33.2 33.2 335
25.4 259 26.1 26.2 26.4 26.5 26.6 26.7 26.7
80.2 82.6 82.7 83.4 83.6 84.7 84.3 84.0 84.7
49.4 50.0 50.0 51.0 50.9 50.9 51.1 51.1 51.1
20.3 23.5 21.3 23.4 23.2 23.1 25.4 23.2 254

Mean‘34.3‘34.7 34.9 34.7 35.1 35.0 35.2 35.0 35.2 35.5‘34.5 34.8 35.0 35.2 35.3 34.8 34.9 343 35.5‘37.3 38.3 38.4 38.9 39.0 39.1 39.4 39.1 39.5

4.4.3. Prompt Initialization

Previous works on visual prompt methods for IL used
uniform prompt initialization with random values between
-1 and 1. We noticed in preliminary experiments that
we can achieve better results with smaller intervals. To
study this further, we run experiments for the initializations
values init € {107%,1075,107%,1073,1072,107 %, 1},
meaning prompt initialization with uniform random
values in the interval [—init,init], for different configu-
rations. For the different configurations we use prompt
lengths Lp € {1,5,10,25,50,100,250,500} and in-
jection layers inject € {[0],]0,1,2,3],]0,1,2,3,4,5,6],
[0,1,2,3,4,5,6,7,8,9,10,11,12],(7,8,9,10, 11, 12]}.
We only train on task 4.

Figure 3 displays the average results for various initial-
ization configurations. It is evident that the commonly used
interval [—1, 1] does not produce the best outcomes. Be-
low 1072, results level off, indicating that for low uniform
initialization values, the specific value chosen has little ef-
fect on the outcome. The standard deviation remains similar
across all low initialization values and decreases slightly to-
wards 1.

5. Discussion

In this section, we collectively summarize and discuss these
findings, with key takeaways provided in the text box.

The results of DualPrompt in Table 1 demonstrate the
general feasibility of employing prompt-based IL methods
for domain IOD. However, all three tested methods under-
perform compared to randomly replaying data, highlighting
the necessity for more advanced prompt-based methods. A
wide variety of methods developed for classification could
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Figure 3. Results of different prompt initialization intervals

[—init, init] averaged over various prompt lengths and injection
layers for task 4 from D-RICO. For lower values, the results stabi-
lize and are better than for larger intervals.

be explored in future work.

The study of the reference baselines indicates that deep
prompting significantly outperforms shallow prompting.
Thus, future research should focus on deep prompts to en-
hance overall performance and increase plasticity.

As observed, replaying just 1% of data from previous
tasks represents a simple yet robust baseline. Expanding
the replay buffer to 10% further reduces forgetting and im-
proves overall performance.

Naive FT, replay 1%, L2P, DualPrompt, and S-Prompt
all benefit from fixing the output layer after the initial task.
Strong regularization, as employed in the 10% replay sce-
nario, further improves performance due to increased avail-
able plasticity. Therefore, future methods should also con-
sider adaptations at the output layer, as modifications solely
in the feature space are insufficient for achieving optimal IL
performance.



Determining the optimal prompt length is not straight-
forward, as it varies depending on the specific prompting
technique and task. While selecting an individual length
per task provides minor advantages, the benefits currently
do not justify the complexity and additional hyperparame-
ter tuning required. However, this aspect could become rel-
evant in future benchmarks or practical applications. Gen-
erally, object detection requires longer prompts compared
to classification tasks.

In contrast, the influence of prompt initialization on per-
formance is significant. Results presented in Figure 3 sug-
gest that initializing with smaller random values from the
uniform interval [—1072,1072] yields superior and more
stable performance. This differs from prompt-based classi-
fication methods, where random initialization typically oc-
curs within a larger interval, such as [—1, 1]. A better ini-
tialization scheme can notably improve results.

Future investigations and experiments should assess the
performance of class incremental learning (CIL) and few-
shot IL for DIL and CIL. CIL is particularly challenging, as
prompt-based methods only modify the backbone, necessi-
tating an additional mechanism to address forgetting in an
expanding head. Since the studied D-RICO benchmark sur-
passes existing benchmarks in diversity, we anticipate that
the results will apply to these less diverse benchmarks.

Key Takeaways

Feasibility. Visual-prompt methods studied here provide
minimal help in mitigating catastrophic forgetting for
domain incremental learning.

Best Method. DualPrompt [48] performs best among the
tested prompt-based approaches.

Deep vs. Shallow. Deep prompts significantly outperform
shallow prompts.

Output Layer. Unfreezing the output layer, paired with
strong regularization, enhances performance by increasing
plasticity. Weak methods profit from freezing the output
layer after the first task.

Replay. Replaying even 1% of previous data surpasses
prompt-based IL methods, especially in combination with
deep prompting.

Prompt Length. Deep prompting benefits more from longer
prompts. Using an individual prompt length for all tasks
yields only minimal improvement in the results.

Prompt Initialization. Random initialization values for the
prompts within [—10~2, 10~?] or narrower yield optimal
performance.

6. Conclusion

This work presents the first comprehensive analysis of

prompt-based IL methods for object detection. We eval-
uated three classification-derived approaches—L2P [11],
DualPrompt [48], and S-Prompt [47]—against a range

of strong reference baselines on the challenging D-RICO
benchmark [36]. Our findings confirm the general feasibil-
ity of applying prompt-based IL to object detection, with
DualPrompt achieving the highest performance among the
prompt-based methods. However, all evaluated methods are
still outperformed by simple replay-based strategies, un-
derscoring the need for further innovation in prompt de-
sign and learning mechanisms. We believe that our empir-
ical insights will serve as valuable guidance for advancing
prompt-based IL methods in object detection.
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