Supplementary Material for ‘MONET: Multi-Modal Online
Continual Learning with Novelty Estimation’

Evelyn Chee, Wynne Hsu, Mong Li Lee
School of Computing, National University of Singapore

{echee,dcshsuw,dcsleeml }@comp.nus.edu.sg

S1. Hyperparameter Setting and Analysis

The hyperparameter values are determined through a sys-
tematic local search. Specifically, we search over 7, €
[0.01,5.0] and 72 € [0.01,5.0] for the loss weights, a €
[0,1] for the uncertainty threshold smoothing factor, and
T € [1,1000] for the uncertainty threshold update interval.
Consistent performance trends are observed across all three
datasets. Figure S1 presents the average F1,;; scores on the
CUB200 dataset when varying the individual hyperparame-
ter values.

In Figure S1(a), we observe the impact of the weight
on distillation loss, n;. Initially, the average Fl1,; score
improves with increasing 7; and remains stable within the
range of [0.1,1.0]. However, the score drops significantly
when 7, is set too high. Figure S1(b) illustrates the effect of
the weight on entropy loss, 7;. Similarly, performance im-
proves as 7, increases and remains relatively stable within
the range of [0.1,1.0].

In Figure S1(c), we see that performance improves as
the smoothing factor « increases up to 0.8 due to the en-
hanced stability of the uncertainty threshold. However,
when « is set too high, the uncertainty threshold does not
adapt quickly enough, resulting in large performance drop.
Lastly, Figure S1(d) shows that that frequent updates of the
uncertainty threshold 7" are unnecessary. The update inter-
val can be increased up to 100 while still maintaining robust
performance.

S2. Analysis on Percentile of Dropped Features

We vary the percentage of features dropped when gener-
ating pseudo representations in MONET. Table S1 shows
the average Fl1,;; scores. The optimal K generally falls
between 40% and 60%, with 50% being the most robust.
Dropping too few features can result in inaccurate uncer-
tainty thresholds as the pseudo representations do not suf-
ficiently reflect OOD instances, while dropping too many
features can reduce diversity of the pseudo representations
and diminishes their effectiveness as OOD instances.

(a) Weight on distillation loss, ny (b) Weight on entropy loss, n.
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(c) Uncertainty threshold
smoothing factor, a

(d) Uncertainty threshold
update interval, T
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Figure S1. Average F1,,; score with varying hyperparameters val-
ues on the CUB200 dataset.

Table S1. Average Fl,;; score for different top-K percentile of
dropped features.

K | AVE | UESTC-MMEA | CUB200
30 64.45+2.04 75.28 +0.67 63.71+048
40 65.42 4241 75.49 +0.93 67.16+051
50 65.52+255 75.40+0.73 68.64+0.63
60 65.70+236 74.69+0.76 68.52+075
70 65.26+292 73.92+0.94 67.22+0.79

S3. Robustness Against Baselines with Varying
Uncertainty Threshold Percentiles

In the main paper, baseline results are reported using
the 95" percentile to determine class-specific uncertainty
thresholds. Here, we present additional results where dif-
ferent percentile values are applied to the baselines for de-
riving the uncertainty thresholds. Figure S2 shows the aver-
age F1,;; scores of the baseline methods across percentiles
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Figure S2. Average F1,;; score of all baseline methods using different percentiles for computing the uncertainty thresholds.
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Figure S3. Flgcen across time steps ¢ on the three datasets.

ranging from the 70" to the 95", We see that MONET con-
sistently outperforms the baselines, regardless of the per-
centile used.

S4. Performance Analysis Across Time Steps

From Figure 3 in the main paper, we see that MONET con-
sistently outperforms the baselines at all time steps in terms
of overall classification performance, with the performance
gap widening over time. To gain deeper insights, we break
down the results and examine the classification accuracy of
seen class samples and the novelty detection capabilities of

the methods across time steps.

Figure S3 presents the classification accuracy for seen
classes (Flgeen), showing that MONET increasingly out-
performs the baselines as learning progresses. For novelty
detection, we observe from the false positive rates in Fig-
ure S4 that the baseline methods increasingly misidentify
samples from newly learned classes as unknown. In con-
trast, MONET remains robust in correctly identifying sam-
ples from unknown classes as learning progresses.
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Figure S4. False positive rate (FPR) for identifying samples as unknown across time steps ¢ on the three datasets.
Table S2. Results across different values of standard deviation o for Gaussian data stream on the CUB200 dataset.
| o =0.01 | 0=025 | c=0.5
Method ‘ I:'lall T Flsecen T Flnovel T KLR\L ‘ Flall T Flsecen T Flnovel T KLR\L ‘ Flall T Flscen T Flnovel T KLR\L
ER 32.20+120 66.37+160 60.24+088 50.52+1.19 | 17.23+097 55.95+092 33.61+221 25794102 | 14.62+1.12 55.56+035 23.894236 24.00+023
DER++ |31.69+071 62.52+4021 60.17+062 51.00+1.10 | 22.17+073 52.85+061 33.58+227 26914045 | 21.39+123 53.21+079 23.914200 25.46+4056
MIR 31.86+127 67.86+146 60.85+147 53.51+033 | 15.68+059 56.36+1.04 33.77+240 27.184067 | 13.12+051 56.51+051 24.054223 25.16+0384
GDumb | 18.93+076 76.83+126 60.74+103 45.89+1.13 | 2.754+037 64.64+074 32.85+204 18.14+017 | 0.93+003 62.24+052 23.244212 17.52+0.10
CLIB 32964091 78.86+053 61.22+084 35.77+125(29.23+107 71.78+090 34.83+229 16.03+060 | 29.08+065 72.45+060 24.35+234 13.69+042
MVP 30.86+082 72.27+091 60.89+075 26.34+1.04 | 18.00+£126 63.00+066 33.75+232 17.144033 | 15.76+143 63.33+075 23.80+261 15.13+0.8
PCR 35.194071 77.50+037 61.18+119 25.83+059 | 21.10+082 69.33+036 34.06+249 13.83+0.5 | 19.20+083 70.08+067 24.354238 12.05+046
SDP 30.92+091 80.75+088 61.50+084 29.69+0.62 | 28.40+052 74.47+022 34.80+230 12.314025 | 28.13+071 74.80+062 24.204220 11.17+000
MONET | 67.82+021 82.61+045 63.22+228 25.77+039 | 71.35+058 76.95+062 40.90+516 9.29+027 | 72.18+055 77.07+036 30.86+533 8.25+0.11

SS. Robustness with Varying Gaussian Spread

We also compare the continual learning methods on Gaus-
sian data streams with different standard deviations o. A
larger standard deviation implies a greater overlap in the
data spread between different classes.

Table S2 shows the results of all methods on the CUB200
dataset with o set to 0.01, 0.25, and 0.5. The baseline meth-
ods exhibit a general decline in the average F1,;; scores as
o increases. In contrast, MONET maintains high and con-
sistent F1,;; scores across all o values. MONET also con-
sistently outperforms the baseline methods in classification
accuracy on seen classes and demonstrates reduced forget-
ting, as evidenced by achieving the highest F1..,, and low-
est KLR scores.
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