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A. Using the RICO Benchmark

Domain RICO (D-RICO) and Extending-Classes RICO
(EC-RICO) are developed as a platform to advance research
in Incremental Learning (IL) within more realistic settings.
We propose this benchmark to serve dual purposes: (1) as
a challenging evaluation framework for future IL methods
and (2) as a resource for deriving novel insights into IL
mechanisms. We have made the benchmark set up and eval-
uation framework openly accessible to facilitate broader re-
search engagement. This section provides an overview of
the benchmark utilization process, with additional technical
specifications available in the GitHub repository. Details on
using our training and evaluation framework are given in
Section E.

Since we do not hold rights to the constituent datasets,
we cannot distribute the complete benchmark as a unified
package. Utilizing the benchmark therefore requires the fol-
lowing steps:

1. Downloading the original datasets from their respec-
tive sources;

2. Processing the images and annotations;
3. Combining the processed images and annotations

into D-RICO and EC-RICO.
The following subsections elaborate on each of these

steps.
1. Downloading the Datasets The initial step requires ac-
quiring all constituent datasets from their original sources.

• nuImages [7] • SHIFT [83]

• BDD100K [98] • Teledyne FLIR [26]

• WoodScape [97] • LOAF [96]

• FishEye8K [32] • SMOD [13]

• DENSE [4] • VisDrone [111]

• Sim10k [38] • Synscapes [92]

• TIMo [74] • DSEC [28, 29]

Due to potential storage location changes, we do not pro-
vide direct download links. However, all information can be
accessed through the cited papers, respective dataset home-
pages, and associated GitHub repositories. Some datasets
require access requests, which are typically granted for
research purposes. While the complete raw data across
all datasets comprises several terabytes, the benchmark-
specific subset is substantially smaller.

2. Processing the images and annotations Section B
provides detailed descriptions of all datasets and their re-
quired processing protocols. To get the raw annotations
and images into the correct format required for D-RICO
and EC-RICO, we provide a script for each dataset. For
some datasets, it is enough to just merge the classes in the
RICO classes; for other datasets, extensive calculations are
required.
3. Combining the processed images and annotations into
D-RICO and EC-RICO We provide a template file for the
final D-RICO and EC-RICO annotation file. These files
miss the actual annotations but hold all other relevant in-
formation like file name and image size. The missing an-
notations can either be filled in with a custom script or be
reproduced using one of the provided scripts.

The D-RICO and EC-RICO benchmark can then be
used. We provide our training and evaluation framework
that is based on Detectron2 [93]. See Section E for further
details.

B. More Details on the D-RICO and EC-RICO
Section 3 introduces the Domain-RICO and Expanding-
Classes RICO benchmarks. In this section, we present ad-
ditional statistics and comparisons regarding the tasks, as
well as a comprehensive explanation of the construction of
each task and the data processing and preparation.

B.1. Additional Statistics
B.1.1. Detailed Class Distribution
Tables S.1 and S.2 show the relative values and total label
counts for each task, with visual distributions in Figure 2 e)
and j). Intra-task differences vary significantly, and annota-
tions are unevenly distributed. For D-RICO, thermal fisheye
indoor holds less than 1% of labels, while photorealistic
simulation and drone each contribute 22%. In EC-RICO,
fisheye car has 3%, whereas drone accounts for 33%. This
variation enhances task diversity, as class distributions and
object counts differ across tasks.

B.1.2. t-SNE and Nearest Mean Classifier of Image Fea-
tures

We project extracted image features into a two-dimensional
space using t-SNE to analyze the differences between tasks
in image space. The features are obtained from a model
trained following the setup in Section 4.1.

Figure S.1 presents the t-SNE visualization. The image
features are well-separated for EC-RICO, whereas in D-



Table S.1. Annotation counts per task and class as percentages,
including total dataset contribution. A dash (-) indicates that there
are no available annotations for that class in the respective dataset.

Task person vehicle bicycle Total Total in %

daytime 37.8 57.86 4.34 28255 3.24
thermal 35.14 59.76 5.1 58337 6.70
fisheye fix 8.58 91.42 - 99688 11.45
drone 29.91 67.66 2.42 187425 21.52
simulation 42.48 54.55 2.97 42698 4.90
fisheye car 25.15 74.85 - 54298 6.24
RGB + thermal fusion 26.14 20.12 53.73 20686 2.38
video game - 100.0 - 27038 3.10
nighttime 6.52 92.91 0.58 48139 5.53
fisheye indoor 100.0 - - 21752 2.50
gated 39.56 60.44 - 35050 4.02
photoreal. simulation 62.5 37.5 - 195263 22.42
thermal fisheye indoor 100.0 - - 5747 0.66
inclement 29.34 70.66 - 23022 2.64
event camera 20.2 77.33 2.48 23418 2.69

Table S.2. Annotation counts per task and class as percentages,
including total dataset contribution. A dash (-) indicates that there
are no available annotations for that class in the respective dataset.

Task person car bicycle motor-
cycle truck bus traffic

light
traffic
sign Total Total in %

fisheye car 100.00 - - - - - - - 18777 3.20
gated 41.95 58.05 - - - - - - 35963 6.13
daytime 39.62 40.74 19.64 - - - - - 27461 4.68
fisheye fix 8.91 33.11 - 57.97 - - - - 102594 17.48
simulation 43.95 39.82 3.1 4.31 8.82 - - - 44100 7.51
drone 27.65 53.93 2.47 9.47 4.01 2.47 - - 196355 33.45
thermal 33.15 39.41 4.52 0.87 0.54 1.24 20.28 - 79521 13.55
nighttime 4.31 56.22 0.28 0.15 1.18 0.47 17.82 19.57 82285 14.02

RICO, some tasks are closer while remaining distinguish-
able. This indicates that tasks differ in terms of image rep-
resentations.

Furthermore, a simple nearest mean classifier (as used
in LDB [81]) can already achieve good task classification
based on these features. Figure S.2 shows the corresponding
confusion matrix, reinforcing the distinctiveness of tasks in
feature space.

B.1.3. Image sizes
The input to the network is always 1536× 1536× 3, while
the original dataset images vary in size, as shown in Ta-
ble S.3. Except for fisheye fix and drone, all tasks maintain a
constant intra-task resolution. The thermal, gated, and ther-
mal fisheye indoor tasks contain grayscale images, whereas
all others are RGB.

Since none of the original image sizes match 1536 ×
1536, all images are padded, resized, or cropped accord-
ingly. Grayscale images are duplicated across channels to
match the required three-channel format. This highlights
the benchmark’s diversity, in contrast to others that typi-
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Figure S.1. t-SNE features
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Figure S.2. Confusion Matrix of the Nearest Mean Classifier based
on image features.

cally maintain uniform image resolutions.

B.1.4. Labeling Policy
Each dataset follows a specific labeling policy that defines
how objects in an image are labeled. In Section B.2 the
labeling policies and how we processed them are stated in
more detail. Additional details can be found in the respec-
tive publications.

Figures S.3 and S.4 illustrate randomly sampled objects
for each class of D-RICO and EC-RICO. The visualizations



Table S.3. Image sizes for each task (mean ± standard deviation).

Task Width × Height

daytime 1600±0 × 900±0 × 3

thermal 640±0 × 512±0 × 1

fisheye fix 1404±312 × 1232±310 × 3

drone 1484±229 × 951±208 × 3

simulation 1280±0 × 800±0 × 3

fisheye car 1280±0 × 966±0 × 3

RGB + thermal fusion 640±0 × 512±0 × 3

video game 1914±0 × 1052±0 × 3

nighttime 1280±0 × 720±0 × 3

fisheye indoor 1024±0 × 1024±0 × 3

gated 1280±0 × 720±0 × 1

photoreal. simulation 1440±0 × 720±0 × 3

thermal fisheye indoor 512±0 × 512±0 × 1

inclement 1920±0 × 1024±0 × 3

event camera 640±0 × 480±0 × 3

highlight substantial differences in labeling policies and an-
notation quality. The differences concern tight vs. loose
bounding boxes, amodal vs. visible bounding boxes, back-
ground objects, small objects, groups of objects, and class
definitions. In addition to these differences, there are also
differences in terms of objects that are not being labeled.

B.2. Detailed Task and Dataset Description

B.2.1. Daytime (nuImages [7])
NuImages [7] is a large-scale dataset derived from nuScenes
that contains 93,000 annotated images captured in Boston
and Singapore under various weather conditions and times
of day. The dataset encompasses diverse urban driving sce-
narios, emphasizing autonomous perception tasks such as
object detection and scene understanding.
Dataset Processing. We chose daytime images exclu-
sively from the Singapore One-North district to make
the task more distinct. We exclude images with vehi-
cle.bus.bendy instances due to inconsistent annotation pro-
tocols wherein bus segments are individually labeled, con-
trary to standard buses’ unified labeling. Merging these seg-
mented annotations poses difficulties, especially in multi-
bus scenes. Additionally, we exclude images featuring the
class static object.bicycle rack as it contradicts with the ve-
hicle.bicycle class, as the bicycles in the rack are not labeled
to the bicycle class. Examples are given in Figure S.5.
Train, Val, and Test Split. To prevent data leakage, we en-
force scene-level integrity by ensuring all images from the
same scene ID remain in a single partition. We employ a
stochastic optimization approach to achieve the target dis-
tribution of 60% train, 10% validation, and 30% test. We
repeatedly generate random scene-to-partition assignments
and evaluate how closely they match the desired propor-
tions. Among these, we select the configuration that min-
imizes deviation while preserving scene consistency. This
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Figure S.3. Random example objects to visualize the D-RICO
benchmark’s different annotation policies and qualities.



Person Car Bicycle Motorcycle Truck Bus Traffic Light Street Sign
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Figure S.4. Random examples of objects to visualize the various annotation policies and qualities for the EC-RICO benchmark.

Figure S.5. Example images of the daytime task with labels for
D-RICO.

Monte Carlo-based strategy ensures a balanced partitioning
while maintaining contextual coherence within each split.
Labeling Policy We use this dataset’s labeling policy as a
reference for the other datasets and compare them to this
one. Objects are labeled tightly, and their bounding boxes
cover only the visible parts. Bicycles and motorcycles in-
clude the rider within the bounding box. Small visible ob-
jects in the background are labeled.
D-RICO Classes.

• person:
– human.pedestrian.adult
– human.pedestrian.child
– human.pedestrian.construction worker
– human.pedestrian.personal mobility
– human.pedestrian.police officer

• bicycle: vehicle.bicycle
• vehicle:

– vehicle.bus.rigid
– vehicle.car
– vehicle.construction
– vehicle.emergency.ambulance
– vehicle.emergency.police
– vehicle.motorcycle
– vehicle.trailer
– vehicle.truck

EC-RICO Classes.
• person:

– human.pedestrian.adult
– human.pedestrian.child
– human.pedestrian.construction worker
– human.pedestrian.personal mobility
– human.pedestrian.police officer

• Car: vehicle.car



Figure S.6. Example images of the thermal task.

• Bicycle: vehicle.bicycle

B.2.2. Thermal (Teledyne FLIR [26])
The Teledyne FLIR [26] dataset consists of 26,000 thermal
images collected in various urban environments, covering
a range of lighting and weather conditions. The dataset is
used for thermal-based object detection and multispectral
perception in autonomous driving applications.
Dataset Processing. The dataset labels the rider and the
bicycle separately, as we define the bicycle class as the bi-
cycle with the rider, we need to merge the two. The rider
is labeled as person, so we calculate the intersection over
union (IoU) of all person and bicycle bounding boxes. If
the IoU exceeds 25%, the two boxes are merged and la-
beled bicycle. This is not always perfect; it also merges if
someone is standing next to a bicycle. See Figure S.6 for
four example images.
Train, Val, and Test Split. The dataset provides a scene ID
from which the train, validation, and test split is created like
described in Section B.2.1.
Labeling Policy The labeling policy is close to that of
nuImages (see Section B.2.1)
D-RICO Classes.

• person: person
• bicycle: bicycle
• vehicle: car, truck, bus

EC-RICO Classes. The naming of the classes in the dataset
matches the naming of EC-RICO, hence, we select for the
EC-RICO classes the following labels: person, car, bicycle,
motorcycle, truck, bus, and traffic light. All other available
labels are not used.

B.2.3. Fisheye Fix (FishEye8K [32])
FishEye8K [32] is a dataset comprising 8,000 fisheye im-
ages collected from 18 surveillance cameras at road inter-
sections in Taiwan. It features over 157,000 annotated ob-

Figure S.7. Example images of the fisheye fix task.

jects across five categories, capturing a range of lighting
conditions and object scales to support fisheye-based per-
ception research.
Dataset Processing. No further processing is required for
this dataset. Examples are shown in Figure S.7.
Train, Val, and Test Split. The dataset provides a scene ID
from which the train, validation, and test split is created like
described in Section B.2.1.
Labeling Policy Compared to the reference labeling policy
(see Section B.2.1), the bike class consists of motorcycles
and bicycles. However, as the number of motorcycles in this
dataset is much greater than that of bicycles, we decided to
label all as vehicles.
D-RICO Classes.

• person: Pedestrian
• vehicle: Car, Bus, Truck, Bike

EC-RICO Classes.
• person: Pedestrian
• car: Car
• motorcycle: Bike

B.2.4. Drone (VisDrone [111])
VisDrone [111] is a large-scale dataset comprising over
10,000 images and 263 video clips captured by drones in
14 cities across China. It includes dense urban and subur-
ban scenes with millions of object annotations, facilitating
aerial-based object detection and tracking research.
Dataset Processing. We remove images with regions la-
beled as ignore. These regions have many small objects that
are not individually labeled. Bicycle and rider are merged
into a combined bicycle class, as described in Section B.2.2.
Figure S.8 depicts example images.



Figure S.8. Example images of the drone task.

Train, Val, and Test Split. The dataset provides a scene ID
from which the train, validation, and test split is created like
described in Section B.2.1.
Labeling Policy Compared to the reference labeling pol-
icy (see Section B.2.1), the rider of a motorcycle is labeled
as a person and is not part of the motorcycle class. Some
objects are left unlabeled; however, since the total number
of labels is large, this is only a small fraction. The objects
have amodal bounding boxes, but due to the bird’s-eye view,
these are generally not much different from visual bounding
boxes.
D-RICO Classes.

• person: pedestrian, people
• bicycle: bicycle
• vehicle: car, van, truck, tricycle, awning-tricycle,

bus, motor, others

EC-RICO Classes.
• person: Pedestrian
• car: car, van,tricycle, awning-tricycle,
• bicycle: bicycle,
• motorcycle: motor,
• truck: truck
• bus: bus

B.2.5. Simulation (SHIFT [83])
SHIFT [83] is a synthetic dataset created using the CARLA
simulator, which contains 2.5 million annotated frames
across 4,800 driving sequences. It encompasses a variety of
environmental conditions, including weather changes, time
of day, and traffic density, to investigate robustness in au-
tonomous driving models.
Dataset Processing. As the frames are samples at a high
frequency, we keep only every 50th frame. Example images
are given in Figure S.9.
Train, Val, and Test Split. The dataset provides a scene ID
from which the train, validation, and test split is created like
described in Section B.2.1.

Figure S.9. Example images of the simulation task.

Labeling Policy The labeling policy matches the reference
of Section B.2.1.
D-RICO Classes.

• person: pedestrian
• bicycle: bicycle
• vehicle: car, truck, bus, motorcycle

EC-RICO Classes.
• person: Pedestrian
• car: car
• bicycle: bicycle,
• motorcycle: motorcycle,
• truck: truck

B.2.6. Fisheye Car (WoodScape [97])
WoodScape [97] is a fisheye dataset created for autonomous
driving, featuring over 100,000 images captured with
surround-view cameras. It offers multi-task annotations for
object detection, depth estimation, and semantic segmenta-
tion, emphasizing addressing fisheye distortion in percep-
tion models.
Dataset Processing. We recalculate the bounding boxes
from the semantic and instance segmentation masks, as the
provided bounding boxes are low-quality. We discard anno-
tations with bounding boxes smaller than 25 × 25. To re-
move nighttime images from the dataset, we calculate each
image’s mean grayscale value and discard those below 0.3.
This value was found by manual inspection of the images.
See Figure S.10 for examples.
Train, Val, and Test Split. First, we discard two large sec-
tions of the image sequence to ensure a proper dataset split
without overlap. This is necessary because no scene ID is
provided, and we assume the data consists of a single con-
tinuous sequence. By removing sufficiently large portions,
we break the sequence into three distinct parts while ensur-
ing that the remaining data is split into approximately 60%
for training, 10% for validation, and 30% for testing. This
approach ensures that each subset represents a separate seg-
ment of the sequence, preventing consecutive frames from



Figure S.10. Example images of the fisheye car task.

appearing across different splits and improving the robust-
ness of the evaluation.
Labeling Policy Creating bounding boxes from segmenta-
tion masks can result in some individual objects being la-
beled with multiple bounding boxes due to interruptions
in the segmentation. Aside from that, the labeling policy
aligns with the reference in Section B.2.1.
D-RICO Classes.

• person: person
• vehicle: car, train/tram, truck, trailer, van, caravan,

bus, motorcycle

B.2.7. RGB + Thermal Fusion (SMOD [13])

The SMOD dataset [13] comprises 8,676 well-aligned RGB
and thermal image pairs, gathered for pedestrian detection
and multispectral object recognition. The dataset features
four object categories with comprehensive occlusion anno-
tations, highlighting challenging low-light scenarios.
Dataset Processing. We first select low visibility images
by calculating the mean gray value of each image and keep
only those with a value below 0.35. For fusing the two
modalities we use the neural network approach by [105]. It
inputs the normalized RGB and thermal image and outputs
a fused RGB image. See Figure S.11 for examples.
Train, Val, and Test Split. As no scene IDs are available,
the dataset is split into train, val, and test set like described
in Section B.2.6
Labeling Policy In this dataset, motorcycles are labeled as
bicycles and, hence, are not part of the vehicle class. There
are also numerous objects not labeled.
D-RICO Classes.

• person: person
• bicycle: bicycle, rider
• vehicle: car

Figure S.11. Example images of the RGB + thermal fusion task.

Figure S.12. Example images of the video game task.

B.2.8. Video Game (Sim10k [38])
SIM10K [38] is a synthetic dataset created using the Grand
Theft Auto V game, consisting of 10,000 images anno-
tated with vehicle information. It is used to investigate do-
main adaptation and transfer learning from synthetic to real-
world driving datasets.
Dataset Processing. We select high visible images like de-
scribed in Section B.2.6 with a gray value threshold of 0.4.
Examples are presented in Figure S.12.
Train, Val, and Test Split. As the dataset does not include
scene IDs, we split it up like in Section B.2.6 described.
Labeling Policy Compared to Section B.2.1, the rider on
the motorcycle is not included in the bounding box. The
rider, however, is also not labeled as a person.
D-RICO Classes. We only use the vehicle class, con-
structed from car and motorbike classes.

B.2.9. Nighttime (BDD100K [98])
BDD100K [98] is a large-scale driving dataset of 100,000
videos captured under various conditions, including night-
time driving. It offers extensive annotations for multiple
perception tasks, making it one of the most comprehensive



Figure S.13. Example images of the nighttime task.

datasets in autonomous driving.
Dataset Processing. Based on the provided meta-data, we
select only those images from the dataset that are labeled
as night and clear weather. Rider and bicycle are merged
like in Section B.2.2 described. Figure S.13 shows example
images.
Train, Val, and Test Split. Based on the available scene
IDs, the data is split into training, validation, and test like in
Section B.2.1 described.
Labeling Policy The labeling policy aligns with the refer-
ence in Section B.2.1.
D-RICO Classes.

• person: person, rider
• bicycle: bike
• vehicle: car, truck, motor, train, bus

EC-RICO Classes.
• person: person, rider
• car: car
• bicycle: bike,
• motorcycle: motor,
• truck: truck
• bus: bus
• traffic light: traffic light
• street sign: street sign

B.2.10. Fisheye Indoor (LOAF [96])
LOAF [96] is a dataset designed for person detection in fish-
eye images, comprising 43,000 frames extracted from 70
videos filmed in indoor and outdoor surveillance environ-
ments. It features radius-aligned bounding boxes specifi-
cally adapted for fisheye distortion, emphasizing person lo-
calization from overhead camera perspectives.
Dataset Processing. The dataset only provides rotated
bounding boxes. We transform them into non-rotated
bounding boxes using the given angle. However, this re-
sults in boxes that aren’t tightly fitted around the object. To
narrow the task, we manually choose only indoor scenes.
Example images are illustrated in Figure S.14.
Train, Val, and Test Split. Based on the available scene

Figure S.14. Example images of the fisheye indoor task.

IDs, the data is split into training, validation, and test like in
Section B.2.1 described.
Labeling Policy The labeling policy corresponds with the
reference in Section B.2.1.
D-RICO Classes. The dataset only provides labels for the
person class.

B.2.11. Gated (DENSE [4])
DENSE [4] is a multimodal dataset collected over 10,000
kilometers of driving, featuring data from gated cameras,
LiDAR, and radar. It focuses on autonomous perception in
adverse weather conditions like fog, rain, and snow.
Dataset Processing. We select all non-inclement images
from the dataset. We further remove all images that in-
clude one of the following classes: DontCare, LargeVe-
hicle is group, Vehicle is group, PassengerCar is group,
RidableVehicle is group, and Pedestrian is group This is
because the objects of the group could be separated and
therefore create contradictions. We remove all objects
smaller than 7 × 7, as such small objects are not labeled
in other datasets.

Figure S.15 provides example images.
Train, Val, and Test Split. The data is divided into training,
validation, and test sets based on the available scene IDs, as
outlined in Section B.2.1.
Labeling Policy The labeling policy aligns with Sec-
tion B.2.1.
D-RICO Classes.

• person: Pedestrian,
• vehicle: PassengerCar, Vehicle, LargeVehicle

EC-RICO Classes.
• person: Pedestrian



Figure S.15. Example images of the gated task.

Figure S.16. Example images of the photorealistic simulation task.

• car: PassengerCar

B.2.12. Realistic Simulation (Synscapes [92])
Synscapes [92] is a synthetic dataset of 25,000 photoreal-
istic urban driving images created using physically based
rendering techniques. It provides per-pixel semantic seg-
mentation and instance annotations, which are designed for
training perception models with realistic lighting and mate-
rial properties.
Dataset Processing. The dataset provides bounding boxes;
however, these also include labels for objects that are com-
pletely hidden. We calculate the bounding boxes for each
visible object based on the semantic and instance segmen-
tation masks. We only select images with mean gray values
above 0.38 to exclude low visibility and night images (see
Section B.2.6). Refer to Figure S.16 for examples.
Train, Val, and Test Split. Each image is rendered from
a unique scene, and the images can, therefore, be randomly
assigned into training, validation, and test splits.
Labeling Policy Multiple objects are not labeled, and some
bicycles are labeled as vehicles.
D-RICO Classes.

• person: person,
• vehicle: car, truck, bus, train, motorcycle, rider

B.2.13. Thermal Fisheye Indoor (TIMo [74])
TIMo [74] is a thermal imaging dataset designed for in-
door person detection, comprising over 612,000 frames cap-

Figure S.17. Example images of the thermal fisheye indoor task.

tured with infrared cameras. It features detailed annota-
tions for tracking individuals and detecting anomalies in
low-visibility environments.
Dataset Processing. We use only the infrared images from
the dataset and keep every sixth frame. The images pro-
vided in the dataset are in signal strength. We calculate the
logarithm of the images and normalize them. Examples are
displayed in Figure S.17.
Train, Val, and Test Split. The dataset is separated into
training, validation, and test sets according to the scene IDs
as detailed in Section B.2.1.
Labeling Policy The labeling policy is consistent with Sec-
tion B.2.1.
D-RICO Classes. The dataset exclusively offers labels for
the person class.

B.2.14. Inclement (DENSE [4])
This subset of DENSE [4] includes images taken in non-
clear weather conditions like heavy fog, snow, and rain. It
offers a challenging testbed for assessing robustness in per-
ception systems under limited visibility.
Dataset Processing. We manually sort each image accord-
ing to the weather conditions. We select those that depict
intense fog, snow, and heavy rain. Additionally, we elimi-
nate small objects and images based on the group classes,
as described in Section B.2.11. Example images are shown
in Figure S.18.
Train, Val, and Test Split. The dataset is divided into train-
ing, validation, and test sets based on the scene IDs outlined
in Section B.2.1.
Labeling Policy The labeling policy is consistent with Sec-
tion B.2.1.



Figure S.18. Example images of the inclement task.

Figure S.19. Example images of the event camera task.

D-RICO Classes.
• person: Pedestrian,
• vehicle: PassengerCar, Vehicle, LargeVehicle

B.2.15. Event Camera (DSEC [28, 29])
DSEC [28, 29] is a multimodal dataset that features high-
resolution stereo event cameras, as well as RGB and LiDAR
data. It captures 53 driving sequences in urban and rural
settings, facilitating research on event-based perception in
dynamic environments.
Dataset Processing. The gated and RGB images are over-
laid according to the provided algorithm [28, 29]. Since
this creates bounding boxes that extend beyond the images,
we adjust them to fit the image size. As detailed in Sec-
tion B.2.2, the rider and bicycle are combined. Figure S.19
showcases example images.
Train, Val, and Test Split. Since the dataset lacks scene
IDs, we divided it as outlined in Section B.2.6.
Labeling Policy The labeling policy matches with Sec-
tion B.2.1, except for the missing labels for trams.
D-RICO Classes.

• person: pedestrian, rider
• bicycle bicycle
• vehicle: car, bus, truck, motorcycle, train

EC-RICO Classes.
• person: Pedestrian
• car: PassengerCar
• bicycle: bicycle
• motorcycle: motorcycle

C. Additional Details on the Experimental
Setup

In this section, we provide additional details on the experi-
mental setup, including the hyperparameters and the adap-
tations made during the implementation of the IL methods.

C.1. Hyperparameters
We mostly used the hyperparameters as specified in [24].
Table S.4 lists the general hyperparameters we used for all
experiments that differ from [24]. In Table S.5 to S.14,
the experiment-specific hyperparameters are listed. For all
trainings, we conducted a small random hyperparameters
search on the learning rate and the method-specific hyper-
parameters.

C.2. Implementation Details of IL Methods
In this section we elaborate on the implementation details
of the Replay approach and ABR[55], Meta-ILOD [39],
BPF [66] and LDB [81].

C.2.1. Replay
We employ a growing memory buffer that is initialized
empty. For each new task, a subset of training data is ran-
domly selected and added to the buffer. During training, the
remaining task data is merged with the memory buffer.

A growing buffer is preferable to a static one, especially
for long task sequences. A fixed-size buffer either over-
replays early task examples, wasting compute, or retains too
few examples as tasks accumulate. If memory constraints
are not strict, an expanding buffer ensures stability by main-
taining consistent replay examples per task.

To keep the number of training iterations on new task
data constant, the total iterations must increase over time.
Consequently, both memory and compute requirements
grow with the number of tasks. This approach is feasible
only if resource constraints are not too restrictive.

C.2.2. ABR
In the original ABR implementation, the memory buffer ac-
cumulates boxes from previous tasks but is only divided by
class. We introduce an additional split by task, motivated
by the feature dissimilarity across objects, which prevents
defining a uniform proximity metric to the class mean.

Our approach retains a fixed-size memory buffer, as in
the original method, but after each task, the half containing
the least representative boxes for each class and task is dis-
carded. We compute each object’s feature vector without



Table S.4. General hyperparameters used in all experiments if not
specified differently.

Hyperparameter Value

batch size 20

input image size 1536× 1536× 3

training iterations 696

evaluation period 500

warm-up length 0.1

warm-up factor 0.001

learning rate 0.001

learning rate scheduler cosine

learning rate scheduler end value 0

Aug.: rnd. flip True

Aug.: resize scale True

Aug.: fixed size crop True

Aug.: rnd. brightness True

Aug.: rnd. contrast True

Aug.: rnd. saturation True

Aug.: rnd. lightning True

Aug.: resize scale, min scale 0.1

Aug.: resize scale, max scale 2

Aug.: rnd. brightness, min. intensity 0.6

Aug.: rnd. brightness, max. intensity 1.4

Aug.: rnd. contrast, min. intensity 0.6

Aug.: rnd. contrast, max. intensity 1.4

Aug.: rnd. saturation, min. intensity 0.6

Aug.: rnd. saturation, max. intensity 1.4

Aug.: rnd. lightning, scale 0.1

Aug. for evaluation and testing False

Abbreviations: Aug. = augmentation, min. = minimum, max. maximum, rnd. =
random

Table S.5. Hyperparameters for joint training on D-RICO.

Hyperparameter Value

training iterations 10, 440

evaluation period 696

Table S.6. Hyperparameters for joint training on EC-RICO.

Hyperparameter Value

training iterations 5, 568

evaluation period 696

Table S.7. Hyperparameters for ABR [55] training on D-RICO.

Hyperparameter Value

learning rate 0.001

α for class distillation 1

α for box distillation 1

β for box distillation 0

γ for box distillation 0

memory buffer size 2, 000

training iterations 870

Table S.8. Hyperparameters for ABR [55] training on EC-RICO.

Hyperparameter Value

learning rate 0.001

α for class distillation 1

α for box distillation 1

β for box distillation 0

γ for box distillation 0

memory buffer size 2, 000

training iterations 870

Table S.9. Hyperparameters for Meta-IOD [39] training on D-
RICO.

Hyperparameter Value

learning rate 0.0001

Number of features per class 5000

Number of images per class 5000

Distillation weight 1

Warp Iteration 20

Warp Layer box head.2.conv4

augmentations to ensure representative features. Stability
is improved by selecting only non-overlapping boxes and
excluding those smaller than 20× 20 pixels [88].

For mixup and mosaic, we closely follow the ABR im-
plementation. Since we apply resize augmentation, we also
scale replayed boxes in the mixup to match the resized im-
age.

Using the Cascade Faster-RCNN [8] detection head pre-
vents direct application of the same distillation approach.
Instead, we generate soft labels from the last (i.e. third) cas-
cade stage without filtering empty boxes. Given our large
input image size of 1536× 1536, we stabilize the bounding
box distillation loss by computing it on the logarithm of the



Table S.10. Hyperparameters for Meta-IOD [39] training on EC-
RICO.

Hyperparameter Value

learning rate 0.0001

Number of features per class 5000

Number of images per class 5000

Distillation weight 1

Warp Iteration 20

Warp Layer box head.2.conv4

Table S.11. Hyperparameters for BPF [66] training on D-RICO.

Hyperparameter Value

learning rate 0.001

α for class distillation 0.1

α for box distillation 0.15

memory buffer size 2000

Table S.12. Hyperparameters for BPF [66] training on EC-RICO.

Hyperparameter Value

learning rate 0.001

α for class distillation 0.15

α for box distillation 0.15

memory buffer size 2000

Table S.13. Hyperparameters for LDB [81] training on D-RICO.

Hyperparameter Value

learning rate 0.001

batch size 5

training iterations 2784

Table S.14. Hyperparameters for LDB [81] training on EC-RICO.

Hyperparameter Value

learning rate 0.001

batch size 5

training iterations 2784

box coordinates.
Since not all objects are labeled for every class in each

task, we apply a mask during distillation to ensure it only
affects classes seen by the teacher during training.

C.2.3. Meta-ILOD
We follow the original implementation for image and fea-
ture storage. The warping operation is applied to the last
convolution layer of the final (i.e. third) cascade stage.

Since the backbone is fixed and not trained, we omit the
backbone feature distillation loss. The warp loss is com-
puted using the last cascade stage.

In all other aspects, we adhere closely to the original im-
plementation.

C.2.4. BPF
BPF involves generating pseudo labels using the previous
model. However, since we do not operate in a CIL setting,
we disable this feature.

For distillation, we obtain soft predictions from the fi-
nal cascade stage, similar to ABR. Additionally, we apply
masking in the distillation loss to ensure learning only from
predictions the teacher model was trained on. As the fine-
tuning teacher, we use the model trained for the individual
training baseline.

C.2.5. LDB
Since we apply augmentations during training but not dur-
ing inference, we cannot directly collect image features for
the nearest mean classifier during training. Instead, we
compute the image features and class means separately,
storing the means for use during IL.

Our IL framework enables task iteration without requir-
ing separate training for each task. To improve efficiency,
we store domain bias terms and output layers as matrices,
selecting the corresponding row based on the determined
task ID. This setup allows a single model to be used for in-
ference, automatically selecting the appropriate model com-
ponents based on the task ID.

C.3. Mean Average Precision
We report the COCO-style mean Average Precision (mAP),
computed by averaging the AP at ten intersection over union
(IoU) thresholds from 0.50 to 0.95 in increments of 0.05,
denoted as mAP@[0.50 : 0.05 : 0.95].

C.4. Task Affinity
For the task affinity metric, only the output layers of the
backbone are adapted, meaning the last layer in both the
classification and bounding box regression parts.

D. Additional Results
The main paper holds the primary results of this work. We
included here some additional results.

D.1. Quantitative Comparison to Existing Bench-
marks

In Table 1, we qualitatively compare the proposed bench-
marks to existing ones. To highlight these differences



quantitatively, we conduct a comparative analysis with the
CLAD-D [85] and VOC Series [81] benchmarks (see Sec-
tion 2 for brief descriptions). Specifically, we evaluate joint
training, individual training, naive FT, and replay with 10%
of the training data. The results for CLAD-D and VOC Se-
ries are presented in Table S.15, while the results for D-
RICO and EC-RICO are shown in Table 3.

We observe the most significant difference in naive FT
forgetting rates: 19% for D-RICO compared to just 4.33%
and 4.21% for CLAD-D and VOC Series, respectively. A
similar pattern emerges in the 1% replay scenario, where
forgetting is minimal for CLAD-D and VOC Series but re-
mains relatively high (8.91%) for D-RICO. Additionally,
the mAP is lower for D-RICO, indicating that a larger,
more comprehensive model is necessary to achieve strong
overall performance.

Beyond incremental learning experiments, we also eval-
uate task affinity (see Section 3.5) across these benchmarks.
We report mean TA scores of 94% for CLAD-D, 98% for
VOC Series, and notably lower at 76% for D-RICO. This in-
dicates that the output layer alone is insufficient for adapting
to new tasks in D-RICO, underscoring greater task diversity
and dissimilarity.

Overall, these experiments clearly demonstrate that
the diversity present in D-RICO and consequently EC-
RICO significantly exceeds that of the existing benchmarks,
CLAD-D and VOC Series.

Table S.15. Results on the CLAD-D and VOC Series benchmarks.

Benchmark Method mAP ↑ FM ↓ FWT ↑ IM ↑

Joint Training 59.96

CLAD-D Individual Training 55.24

Naive FT 49.88 4.33 −1.05 −2.24

Replay 1% 50.36 3.79 −0.36 −2.17

Joint Training 62.54

VOC Series Individual Training 64.49

Naive FT 59.86 4.21 −1.06 0.46

Replay 1% 61.45 2.24 −0.49 0.59

D.2. Unfrozen Backbone
In addition to the experiments with a frozen backbone,
we analyze the impact of making the backbone train-
able. For simplicity, we use a subset of D-RICO (tasks:
1 ) 2 ) 3 ) 11 ) 15) and compare joint and individual training,
naive fine-tuning (FT), and 1% replay in this reduced set-
ting, both with and without a frozen backbone.

Table S.16 presents the results, showing that unfreezing
the backbone improves model plasticity and overall perfor-
mance. However, in the naive FT scenario, this comes at the
cost of increased forgetting. Since 1% replay is generally
effective at mitigating forgetting, it also helps reduce for-
getting when the backbone is unfrozen. These findings sug-

gest that while an unfrozen backbone can offer performance
benefits, it also amplifies forgetting, making the choice be-
tween frozen and unfrozen non-trivial. In such cases, more
robust IL methods become necessary to counteract the neg-
ative effects of increased plasticity.

Table S.16. Un/frozen backbones (tasks: 1 ) 2 ) 3 ) 11 ) 15).

Benchmark Method mAP ↑ FM ↓ FWT ↑ IM ↑

Joint Training 37.30

frozen Individual Training 42.15

backbone Naive FT 26.77 18.99 −2.76 6.94

Replay 1% 38.53 3.33 −0.16 6.18

Joint Training 38.33

unfrozen Individual Training 44.80

backbone Naive FT 29.03 21.57 2.94 9.38

Replay 1% 42.03 2.58 1.21 6.57

D.3. Detailed Run Results
Table 3 presents the AA, FM, FWT, and IM metrics, sum-
marizing each method’s performance. To provide a more
detailed view, Figure S.20 illustrates the progression of each
task after its initial learning, along with the evolution of
these metrics.

Performance generally declines after learning a new task.
With increasing replay size, IL metrics become more par-
allel and stable. The ABR and BPF methods closely re-
semble naı̈ve FT, highlighting their underperformance in IL
settings. In contrast, Meta-ILOD and LDB exhibit greater
stability.

Qualitatively, D-RICO and EC-RICO behave similarly,
with weaker methods showing more unstable learning
curves. Both benchmarks exhibit a decreasing AA trend.
The IM drops across all runs, while FWT increases, indi-
cating that at the start of training, all approaches outper-
form joint training but still lag behind individual training.
Interestingly, FWT continues to rise, suggesting increased
model plasticity, though this effect is minor and stabilizes
after one or two tasks.

As expected, FM increases for D-RICO, reflecting the
growing challenge of knowledge retention with additional
tasks. However, unexpectedly, FM decreases in EC-RICO.
We hypothesize that this results from the increasing number
of labels, reducing the relative contribution of early tasks.

Analyzing individual runs reveals that some tasks follow
similar trends, suggesting they rely on overlapping features.

D.4. Joint and Individual Training Results
Joint and individual training represent two kinds of up-
per bounds, with joint training (D-RICO: 43.75, EC-RICO:
38.46) serving as a practical upper bound for single model
configurations. The individual training (D-RICO: 49.37,
EC-RICO: 45.54) demonstrates what would be possible
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Figure S.20. Test performance on D-RICO and EC-RICO for the
tested methods. The value of FWT and IM (except for LDB for
EC-RICO) are scaled by a factor five to enhance visibility.

without the restriction of a single model. To analyze this
discrepancy further, we compare individual and joint train-
ing using the relative difference to individual training.

Table S.17 quantifies the performance gap between joint
and individual training. Smaller objects have the highest
differences, with mAPsmall dropping most (D: 0.25, EC:
0.23), highlighting the challenge of learning fine-grained
details in a joint setting.

For D-RICO, bicycles show the highest discrepancy
(0.39) due to inconsistent labeling, often misclassified as
motorcycles or treating bicycle racks differently. In EC-
RICO, motorcycles (0.27) and bicycles (0.19) also exhibit
high gaps due to annotation policies, where motorcycles are
sometimes only labeled when ridden. Traffic lights (0.24)
and street signs (0.35) show notable differences, driven by
noisy annotations and small bounding boxes.

As street signs appear in only one task, this suggests that
intra-class contradictions alone do not fully explain the dis-
crepancy, making the benchmark inherently challenging for
both IL methods and joint training. The reason could be that
the street sign class is introduced during nighttime tasks,
making it not always clearly visible and somewhat ambigu-
ous.

Our further analysis in this regard yields the following
concrete examples, which demonstrate contradictions and
false negatives during both training and evaluation:
1. Thermal+RGB: The object labeled as a bicycle in the

ground truth is actually a motorbike, which is instead
predicted as a vehicle by the model.

2. Drone: In this case, the ground truth labels for bicy-
cles are annotated as vehicle, whereas the prediction
correctly identifies them as bicycle. Additionally, the
amodal ground truth bounding boxes do not match with
the predictions.

3. Video game: The ground truth annotations exclude the
rider from the motorbike bounding boxes, in contrast to
the predictions, which include the rider as part of the
object.

4. Fisheye car and Fisheye Fixed: In these settings, small
and distant objects present in the ground truth are fre-
quently missed by the model’s predictions.

D.5. Task Order
In Section 4.7, we analyze the effect of different task orders
on performance. The following task orders were evaluated:
A) 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) 7 ) 8 ) 9 ) 10 ) 11 ) 12 ) 13 ) 14 ) 15
B) 15 ) 14 ) 13 ) 12 ) 11 ) 10 ) 9 ) 8 ) 7 ) 6 ) 5 ) 4 ) 3 ) 2 ) 1
C) 1 ) 15 ) 8 ) 6 ) 13 ) 10 ) 14 ) 11 ) 12 ) 3 ) 5 ) 2 ) 9 ) 4 ) 7
D) 13 ) 10 ) 14 ) 11 ) 8 ) 6 ) 4 ) 15 ) 9 ) 2 ) 5 ) 12 ) 3 ) 1 ) 7
E) 15 ) 4 ) 7 ) 13 ) 2 ) 3 ) 9 ) 11 ) 1 ) 12 ) 5 ) 10 ) 8 ) 14 ) 6

To evaluate robustness to task ordering, we extend this
with five additional randomly sampled orders (ten total).
These experiments confirm that performance is largely in-
sensitive to task order for replay-based methods, with aver-
age performance mAP = 42.57±0.46 and forgetting mea-
sure FM = 4.41±0.65. In contrast, naı̈ve fine-tuning (FT)



Table S.17. Results for D-RICO and EC-RICO.

D-RICO EC-RICO

Metric Rel. Diff. Metric Rel. Diff.

mAP 0.13±0.05 mAP 0.16±0.05

mAPlarge 0.08±0.06 mAPlarge 0.12±0.06

mAPmedium 0.13±0.05 mAPmedium 0.16±0.06

mAPsmall 0.25±0.19 mAPsmall 0.23±0.09

mAPperson 0.14±0.06 mAPperson 0.16±0.06

mAPbicycle 0.39±0.48 mAPcar 0.11±0.07

mAPvehicle 0.11±0.06 mAPbicycle 0.19±0.10

mAPmotorcycle 0.27±0.22

mAPtruck 0.17±0.09

mAPbus 0.14±0.02

mAPtraffic light 0.24±0.02

mAPstreet sign 0.35±0.01
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Figure S.21. Task affinity to the next task for different task orders.

exhibits moderate sensitivity, with mAP = 32.33±3.39 and
FM = 17.85±3.75.

The TA score, as defined in Section 3.5, is visualized for

each order in Figure S.21. Interestingly, task order B) re-
sults in the best outcome for naı̈ve FT, despite having the
lowest average TA and exhibiting several sharp drops in
affinity. This reinforces our finding that TA does not corre-
late with IL performance for either FT or replay. However
TA remains a valuable unified metric for quantifying task
(dis)similarity—even if it does not predict continual learn-
ing performance directly or capture all influencing factors.

D.6. Class imbalance

We evaluated federated loss (EVA-02 implementation) for
EC-RICO, but see no gains (Tab. S.18). Improving balanc-
ing further could boost future methods, but that lies beyond
this benchmark’s scope.

Table S.18. Results on EC-RICO with federated loss.

Method mAP ↑ FM ↓ FWT ↑ IM ↑

joint training 37.48

individual training 45.40

naive finetuning 37.86 7.51 −0.67 6.96

replay 10% 37.69 3.39 −4.90 3.18

E. Detectron2 for IL

Incremental Learning (IL) for classification typically relies
on the Avalanche library [58]. However, the model architec-
ture and evaluation protocols for object detection differ sub-
stantially from classification, necessitating extensive modi-
fications to the Avalanche framework. Most prior research
on IL for object detection utilizes established object detec-
tion frameworks such as Detectron2 [93], restarting the en-
tire codebase for each task while preserving and transferring
essential information between tasks [39, 55, 66, 81].

While this approach is functional and existing templates
can facilitate future work, we opted to refactor Detectron2
to better accommodate IL requirements. The primary en-
hancement is the implementation of task-iterative process-
ing, allowing seamless storage of data, models, and images
as variables between consecutive tasks. This refactoring re-
quired the following modifications:

• Data Sampler: We developed a specialized data sampler
that processes the complete training, validation, and test-
ing annotation files while allowing selective loading of
task-specific data.

• Evaluator: IL frameworks necessitate evaluation across
both current and previous tasks. We modified the evalua-
tor to systematically iterate through and assess all tasks.

• Event Storage: When training and evaluating tasks
within iterative loops, metrics must be stored in task-
specific contexts. Our custom event storage mechanism
preserves metrics separately for each task.



• IL Metrics: After each task, all test sets are evaluated
and key IL metrics are calculated, including Average Ac-
curacy, Average Incremental Accuracy, Forgetting Mea-
sure, and Backwards Transfer. Plasticity metrics require
subsequent computation using results from both joint and
individual training paradigms.

• Joint and Individual Training: Both joint and individ-
ual training runs must be conducted to calculate plasticity
metrics. These results can be generated using a desig-
nated flag in our framework.

• Replay: Using a configurable percentage parameter, his-
torical data can be incorporated into a replay buffer and
utilized in subsequent tasks.
Beyond these core modifications, numerous additional

changes were implemented regarding hooks, model persis-
tence mechanisms, task ordering protocols, and other sys-
tem components.

The advantages of our customized Detectron2 version in-
clude:
• Accelerated integration of novel methodologies
• More coherent experimental configuration
• Enhanced training efficiency

Detailed installation instructions for Detectron2-IL
are provided in the corresponding GitHub Repository.


