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S2. HR-VISPR Dataset

HR-VISPR retains most of the human-related attributes in
VISPR [S13], and introduces new labels to cover the soft-
biometric attributes, such as the clothing. We present exam-
ples of the newly introduced private attributes in HR-VISPR
in Fig. S1. The overall privacy attribute distribution in the
dataset is shown in Fig. S2, whereas HR-VISPR utility ob-
ject distribution is shown in Fig. S3.

S3. Implementation Details

This section presents the implementation and training de-
tails for the evaluation metrics. Table S1 shows the imple-
mentation details of the 11 anonymization methods selected
for evaluation on HR-VISPR by the proposed framework.

S3.1. Privacy Metric

A ResNet50 backbone was adopted for the multi-label clas-
sifier. The model was trained on the HR-VISPR at a 224
x 224 resolution for 100 epochs. The starting learning rate
was le — 3, following a linear warmup and a scheduler that
drops 1/5 with loss stagnation [S5], [S3]. The batch size
was set to 32, and we used Adam optimizer. To compen-
sate for the class imbalance in this multi-label classification
setup, we applied class-wise loss weighting (W,), where
weights are inversely proportional to class frequency and
normalized by the number of classes. The weights are com-
puted as W, = ﬁ, where N, N., and C denote the total
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number of samples, the number of samples per class, and
the total number of classes, respectively.

The dataset was augmented for training the classifier
similarly to prior works [S3, S5, S13, S20]. Additionally,
we applied random shifting, scaling, rotation, transpose,
grid-distortion, and elastic-transform from Albumentation
library [S1].

S3.2. Utility Metric

We apply the same training, validation, and testing sets as in
the privacy metric training. The utility model was chosen as
a YOLOv11 detector [S11], and trained following the same
strategy presented by the authors, on the 11 anonymized
versions of HR-VISPR. The dataset is augmented for train-
ing by the same techniques applied in the default implemen-
tation [S11]. For evaluation, the precision, F1-score, and
AUC scores are computed for each anonymized version.

S3.3. Practicality Metric

Throughput Score. We measured throughput in a unified
setting to eliminate variations due to image size and com-
putational power reported in previous works. First, we se-
lected 40 images from HR-VISPR containing multiple hu-
man instances. The images were then resized into 640 x 640
and processed by all anonymization methods, on a gpu-
enabled RTX 4090 device, to compute the throughput ac-
cording to Eq. 1. The processing time includes both the
detection and anonymization time.

Robustness Score.  We applied human detection on
anonymized images, similarly to utility, but employing a
pre-trained model [S11]. First, human objects were de-
tected on the anonymized and original test sets of the HR-
VISPR. Then, detections in the original and anonymized
sets were matched based on IoU and SSIM scores. Since
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Figure S1. Examples of the newly introduced attributes in HR-VISPR, reflecting the clothing type. Together with the previous clothing
attributes in VISPR, such as sports, ethnic, and religious clothing, they form a comprehensive set of soft-biometric attributes in HR-VISPR.

10000

w

<]

o

g 1000

]

[

o

-

()

9

g 100

=

Z

10
SO & F O 2 & A
7} X X A -Qf Q
00\ Q)‘;\ ?' Q_’O’ Q"D ’00 Qf_:o @@Q Zpé" é\‘\ &‘ %QO o{“'\' ’C&Q &00 (S&",g’.é (b\‘ ‘Q‘&
J & T T T @ TS S
&
S
Figure S2. Label distribution in the HR-VISPR dataset. The vertical axis represents the number of images per attribute.

background details are visible within human-object bound- were normalized (min-max scaling) before integration into
ing boxes, we applied a 0.99 threshold to prevent matches the practicality score. The weights were adjusted between
driven by background similarity alone. Instances with sim- 0.1 and 0.8, to show the contribution of one factor at a time,
ilarity scores higher than the threshold are summed up, rep- as explained in the next subsection.

resenting the method’s robustness score.
Intelligibility Score. We computed the CMMD metric S4. Additional Results
[S10] between the original and anonymized HR-VISPR test

sets. Since CMMD quantifies discrepancy, lower values $4.1. Privacy Evaluation

indicate a higher similarity to the original data, thereby, We analyze the privacy scores in conjunction with robust-
higher intelligibility. ness in Fig. S4, showing how joint analysis of both scores

The three scores are combined by a weighted sum of nor- can interpret ambiguities implied by the privacy metric. Ide-
malized values, as detailed in Section 3.2.3. To ensure com- ally, low privacy and high robustness scores reflect effective
parability, the inverted robustness and intelligibility scores anonymization, e.g. maintaining low false negative rate and
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Figure S3. Object label distribution in the HR-VISPR dataset. The vertical axis represents the number of object instances per object class.

Table S1. Implementation details and notation of the anonymization methods selected for the trade-off analysis.

Methods Papers Notation Implementation Details

Human Blurring [S18, S22]1 HB Segmentation [S7], followed by blurring (k = 101)
Human Pixelation  [S2] HP Segmentation [S7], followed by pixelation (k = 20)
Human Embossing [S2] HE Segmentation [S7], followed by embossing (k = 3)
Human Masking [S21] HM Segmentation [S7], followed by blackening

Human Encryption [S16] HEN Segmentation [S7], followed by AES pixel Encryption
Human 2D Avatars [S2] H2D DensePose [S6] with customized avatar

Human 3D Avatar  [S14, SI5]H3D ROMP [S17]

Human Synthesis [S9] HS DeepPrivacy?2 [S9]

Low Resolution + [S8] LR+SR  Downscale (30x30) [S19], upscale by SR (x8) [S12],
Super Resolution followed by SR (x3) [S4]

SPAct [S3] SPct Public Implementation

TeD-SPAD [S5] TSD Public Implementation

high dissimilarity of anonymized and original sensitive ob-
jects. In the light of this, the analysis of HS method re-
veals its effectiveness since it exhibits high robustness de-
spite showing the lowest protection according to the privacy
score only. The high robustness compensates for the privacy
metric limitation in distinguishing between generated and
original human identities. While the robustness of HS is rel-
atively lower than that of the other methods, this is primarily
due to the preservation of gender and clothing style details
in some cases, which consequently leads to high similarity
scores, thereby lowering the robustness. See the illustration
in Fig. S5.

Conversely, H3D shows extremely low robustness due to
missing human detections and poor alignment of the avatar-
to-human segments in many cases, as seen in Fig. S6.

S3

S4.2. Utility Evaluation

Fig. S7 summarizes the utility results, presenting the av-
erage Area Under PR Curves (AUC) across classes for
each method. Clearly, the HS and HE show the high-
est utility performance, followed by HM, H3D, H2D, HP,
and HB. Although this analysis highlights utility differ-
ences across anonymization methods, identifying the exact
causes of utility model failures remains challenging. Cer-
tain anonymization techniques introduce additional noise
due to poor human segmentation, missing detections, and
occlusions involving humans and other objects. Addition-
ally, the introduction of unique features, such as blurred re-
gions, avatars, embossing effects (highlight and shadow),
or encrypted pixels, may introduce bias to the models. For
these reasons, it can be difficult to draw generalized con-
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Figure S4. Privacy metric and normalized robustness. Ideal

anonymization methods show low privacy and high robustness
scores.

Figure S5. Examples of HS anonymization on HR-VISPR sam-
ples, generated by HS (DeepPrivacy2 [S9]). Top row shows orig-
inal, and bottom row shows anonymized images. Despite gener-
ating new identities, the method retains gender and clothing at-
tributes, thereby increasing the similarity and lowering the robust-
ness score for these cases.

Figure S6. Visualizations of H3D limitations [S17], which affect
its robustness score.

clusions to other tasks and contexts. Nevertheless, applying
the same evaluation framework and procedure to these tasks
offers a structured approach to extracting the same trade-off
insights.
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Figure S7. The privacy-utility trade-off evaluation for the

anonymization methods, with utility represented as the average
AUC of all HR-VISRP object.

To further demonstrate the effect of anonymization
methods on utility, we analyze the Precision-Recall (PR)
curves for the different classes under each anonymization
method, as shown in Fig. S8. The analysis reveals that
the approaches which show similar anonymization effects,
according to the human perception, may differ in their influ-
ence on utility. For instance, although both HM and HEN
fully remove human figures, their utility performance varies
significantly. HEN consistently underperforms HM (per-
son, bicycle, car, airplane, bus, truck, and boat), suggesting
that the noisy masks in HEN disrupt the utility more than
the single-color masks HM. In contrast, HP and HB tend
to align in most cases despite their different anonymization
effects, except that HP shows better performance on few
(non-human) classes, such as bus and truck. Despite reveal-
ing fine human features in the highlight and shadow effects,
HE does not contribute to a higher utility compared to HM,
HEN, HP, and HB, except for the person class, suggest-
ing a reinforcement of model bias towards human detection.
H2D and H3D reveal human parts in virtual avatars, and are
mostly correlated in performance, except for few objects,
such as person, motorcycle, and bicycle, where H2D is su-
perior to H3D. This is likely due to the misalignment be-
tween human figures and avatars in H3D, which introduces
significant noise into the data.
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Figure S8. Precision-Recall curves for all utility classes of HR-VISPR.
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