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Supplementary Material

7. Experimental Setting

In addition to the details presented in the main paper, the
additional experimental settings are detailed below.

7.1. Hyperparameter Details:

The values of € and ® have been set to 0.9. Additionally,
we used linear beta time scheduling (3;) with the standard
DDPM [22] configurations in all the cases.

ImageNet: We used the Guided Diffusion model [15]
from OpenAl on this dataset. The batch size was set to 4.
We used 512 images, each of size 224 x 224. The val-
ues of tstqrt and te,q here are 80 and 60 respectively. We
also kept ¢ = 4/255 when comparing against PGD, Au-
toAttack, and AdaMSI-FGM. While testing against ACA,
we used the MobileNet-V2 as the source and target model
and 1000 images were chosen at random. The reported time
is in seconds/image. The momentum factor was set to 1.2,
and I was fixed at 20 iterations in both of these experiments.
We perform a 10-class classification and randomly choose
a class from the top-5 classes next in line to the true label
class for creating the Grad-CAM.

CelebA-HQ: Whilst testing against BPDA+EOT, we kept
€ = 8/255, tstart = 20 and t.,q = 18 and batch size as 4.
Since there are only two classes in this case, we choose the
class that does not correspond to the true label in this case
for creating the Grad-CAM.

CIFAR-10: We set batch size as 8, I = 50, 512 as the
number of images, tstqrt = 80 and tenq = H55. We
also fixed ¢ = 4/255 when comparing the robust accu-
racy against SPSA, Square Attack, Joint Attack (Full), Dift-
BPDA and Auto-Attack. The momentum factor is 1.8. We
perform a 1000-class classification and choose a class ran-
domly from the top-500 classes, which are next in line to
the true label class for creating the Grad-CAM.

7.2. Additional Experimental Results:

To compare the image quality against the two variations
(that is, with and without early stopping) of our algorithm,
we randomly choose 512 images from the validation set of
CIFAR-10 and report the PSNR and SSIM values in Ta-
ble 7. We also showcase our algorithm with early stopping
in Algorithm 2. We observe that image quality is retained
more with early stopping. However, one limitation of using
this is that the images become more susceptible to purifi-
cation algorithms like Diffpure [40]. This is because, with

PSNR SSIM
Clean 24.16  81.55
w/o early stopping | 22.42  75.39
w early stopping 23.28 77.12

Table 7. PSNR and SSIM values on the CIFAR-10 dataset. The
model used is the standard WideResNet-28-10 with e = 4/255.

Algorithm 2 Adversarial Image Generation with Early
Stopping

function TAIGEN(Input Image xo, Noise Schedule (31.r,
Target Classifier f, Grad-CAM gcawm, Diffusion U-Net Model
€g, Ground Truth y, Adversarial Iterations /, Momentum Factor
u, Step Size «, Cross-Entropy loss .J)

Ensure: Adversarial Image aqy

Initialize: z1 < zo - \/ar + V1 —ar - e, e ~ N(0,1)

BLY = Biyygres 07 < Broz ~ N(0,1), N = tatare —
tend

fort € [T, T —1,...,1] do

€, Wt—1 < 60(&31},1’)

Ti—1 = \/% (It - 7ﬁﬁj&t €t) + otz
To < \/%—t(a:t — \/1 — dtet)
if arg max f(xo) # y then
2o = o
break
elseif (t < tstart) & (¢ > tena) then

a

€t < €9 (jt dva t)

20 — \/% (azt — \/%et) + o0z
Gi—1 < 1(gcam > Q)

W1 l(wtfl > @)

Ci—1 + (W1 ® Geo1 @ Gi—1)

foric[0,1,2,..] — 1] do
_ V. J(zi,y)
9it1 = 19i + 950

Zit1 = z;i + o - Sign(git1)
end for
return zy
end if
B Coo1 O + (1= Cio1) © 21
if t == tenq then
(IAit _ i:?dv
end if
end for
return Zo
end function

early stopping, the images are not as robust as those that
have undergone more iterations of adding adversarial noise.
Thus, they are easier to purify. Since we present a black-box
attack, we use the WideResNet-50-2 classifier [43] as the



Model Clean Accuracy (%) | ASR (%)
R50 [20] 76.52 96.10
R50 [43] 64.02 57.23
WRN-50-2 [43] 68.46 54.11
R50 [17] 62.56 57.43
ViT-B [37] 68.38 49.22

Table 8. Accuracy and ASR on the ImageNet dataset with € =
4/255 using the WideResNet-50-2 as the source model.

source model and test the efficacy on various adversarially
trained target models, ResNet-50 [17], ResNet-50[43] and
WideResNet-50-2 [43], ViT-B [37] and a standard ResNet-
50 model [20]. The values for this experiment are reported
in Table 8.

8. Finding Mixing Step

[60] has explained in detail about the mixing step. We give
a brief explanation of the same. We first define the radius
of a high-dimensional Gaussian space. Mathematically, it
can defined as r = ov/d. Now let us take a point in this
vector space, ¢ = (21,2, ...,Zq), chosen at random from
Gaussian, the square root of the expected square length of x
is formulated in Equation 8.

VE@E a3+t a) =\ JdE@D) = Ve ®)

Equation 8 is used to find the radius of our sampled latent
variables at each time step. We also define the total variation
distance which will be used in the further proofs in Equation
9.

=iy = 5 S lule) ~ 7@ ©)
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Here ;1 and 7 are two probability distributions on X.
Next, we define the quantity o (z, y) for an irreducible tran-
sition matrix P with stationary distribution 7 in Equation 10
and d®) distance in Equation 11.

_ Pl(z,y)
oila,y) = — o5 (10)

dP(t) := max,ex||o(x,.) — 1||p (11)

Replacing the above notations with the ones from a stan-
dard DDPM model, we get Equations 12 and 13.

d(t) := maxgex||oy(z,.) — 1|1 (12)

and,

or(z.4) = Pixz,y)  x~N(wi;/1— By, Bil)
WY Ty T Yy~ N(0,14)

13)
Mathematically, we can define the mixing time via Equa-
tion 14

e

mix

(e) := inf{t > 0; dl(t) <e} (14)
Taking € = 1/2, we get Equation 15

)

mix

(€) :=inf{t > 0;d*(t) < %} 15)

Replacing Equation 15 with Equation 13, we get Equa-
tion 16.

x ~ N(ze;v/1 = Bexy_1, Be])
Yy~ N(O7Id)

1
maxge x| — =5 (6

Using Equation 9, we can substitute in Equation 16
which gives us the approximation in Equation 17.

|z ~ N (x5 7/ 1 — Brae—1, BeI)|| < 4 (17)

Equation 17 searches for the mixing step where the
Gaussian radius changes by an amount of 4 units.

9. Solid Angle using Quaternions

To find the similarity between the latent variable x; during
the forward process and Z; during the backward process,
we use the cosine similarity between these two variables.
Specifically, we consider the vector or quaternion ¢; and g
and the cosine similarity is found using Equation 18.

Q = cos? (4“ L2 ) (18)
llarllz  [laz2l]2

As observed from the graph (Figure 3 of the main pa-
per), it forms a concave curve. Intuitively, we can say that
while the Gaussian distribution doesn’t converge with the
stationary distribution, the solid angle or dissimilarity in-
creases. At a certain point, in this case the maxima, they
converge and then the similarity increases between the two
vectors. Thus, via this analysis, it is evident that the inver-
sion and the sampling processes are not symmetric. Now
our intuition lies in utilizing this fact and perturbing the Z;
around the time step corresponding to the maxima. If in-
stead, we perturbed at any other time step, the dissimilar-
ity would again increase till it reached a maximum (which
would not be the mixing step) and then decrease. In the lat-
ter case, we empirically found the artifacts are visible in the
reconstructed image.
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