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A. Methodology Details
A.1. Dataset Details
In this study, we use four datasets, each contributing unique
strengths in taxonomic coverage, imaging methodology,
and ecological context. Below, we provide a comprehen-
sive breakdown of each, including their curation processes,
taxonomic scope, and key characteristics.

BeetlePUUM. This dataset digitize all pinned carabid
specimens from the NEON Pu’u Maka’ala ecological ob-
servatory site in Hawaii. The collection was assembled
from 600 original source images: 420 bulk images cap-
tured with a Canon EOS DSLR camera (model 7D with
a 24-105 macro lens) and 180 high-detail microscopic im-
ages acquired using a SWIFCAM SC1603 system featur-
ing a 16MP 1/2.33” CMOS sensor. The bulk images each
contained 3-5 pinned specimens arranged vertically in se-
quential order according to their unique specimen IDs, with
all individuals within a given image representing the same
species and captured from the same pitfall trap. To en-
sure the images are optimized for advanced ecological ap-
plications like automated trait extraction, we follow the
guidelines outlined in [13], which emphasize standardized
specimen positioning, consistent size and color calibration,
and comprehensive metadata documentation. Then we run
Grounding DINO [31] to precisely detect and crop out in-
dividual beetles from these group images. The group im-
ages include comprehensive metadata comprising geoloca-
tion coordinates, collection dates, and taxonomic authen-
tication by carabid specialists. Using the coordinates and
date, we extract relevant weather data for each specimen,
providing ecological context for morphological analyses.
Morphological traits are measured using a digital annota-
tion tool named TORAS [26]. Figure 5 displays a group
image of carabid specimens and their corresponding indi-
vidual crops.

BeetlePalooza. This dataset, also digitizing NEON speci-
mens, significantly expands geographic and taxonomic cov-
erage, comprising 11,399 images collected from 30 NEON

Figure 5. A sample group image and corresponding individual
crops from the BeetlePUUM dataset. Leftmost panel shows the
group image with measurement scale, while the four right panels
present images of those specimens individually cropped.

sites across the continental United States. Unlike traditional
pinned specimens, this dataset focuses on beetles preserved
in ethanol-filled vials—specifically, the ‘excess’ specimens
(those beyond the first 10 individuals per pitfall trap, which
are pinned separately). During digitization, specimens are
carefully air-dried to remove residual ethanol, mounted on
minute staging sticks to standardize orientation, and imaged
in bulk. However, due to the delicate and fragile nature of
ethanol-preserved specimens, some individuals could not be
repositioned, resulting in orientation variability. As with
BeetlePUUM, we run Grounding DINO to isolate individ-
ual beetles from group images; incorporated with weather
data and morphological traits (for this dataset, we use an-
other digital annotation platform, Zooniverse [47]). Fig-
ure 6 shows a group image and individual images after de-
tection and cropping.

Figure 6. A sample group image and corresponding individual
crops from the BeetlePalooza dataset. Leftmost panel shows the
group image with measurement checkbox, while the right panels
present individual crops of the same specimens.

[44] presents a compilation of datasets BeetlePUUM and
BeetlePalooza, featuring meticulously-measured morpho-
logical traits of individual specimens and offering a trait-
based foundation for exploring taxonomic relationships and
ecological variation among carabids. Beyond that, it serves
as a valuable testbed for small-data regimes with multi-
modal data, a relatively less-explored area in ML where
conventional approaches often underperform [49, 53].



NHMC. This dataset has 63,077 high-resolution habitus
images of 361 carabid species from the British Isles, dig-
itized from the curated collections of Natural History Mu-
seum in London. All specimens are taxonomically verified
to species level, with metadata including collection dates
(spanning 150+ years), collector annotations, and morpho-
logical descriptors. Imaging was performed under con-
trolled lighting, though some historical digitizations exhibit
moderate blurring. As a museum collection, it lacks eco-
logical metadata but provides an unparalleled reference for
alpha taxonomy, temporal trait shifts, and rare specimen
studies. Experiments on species-level classification with
CNN revealed that larger-bodied species and those in less
speciose genera were classified more reliably (See Fig. 7).

Figure 7. Sample specimens from the NHMC dataset

I1MC Diverse but Noisy Field and Lab Imagery Ex-
tracted from the Insect-1M foundational dataset, this sub-
set includes 24,606 carabid images combining in-situ field
observations and lab-digitized specimens. Sourced from
naturalist-contributed HTML repositories, the raw data un-
derwent expert vetting to remove mislabeled, corrupted, or
non-insect images, resulting in a cleaned dataset with hier-
archical taxonomic labels (Subphylum to Species). Despite
covering 206 genera and 1,531 species, the broadest taxo-
nomic range among all datasets used, only 60% of images
are identified to species level due to community-sourced
limitations (4328 samples not identified to species level;
and 424 samples not identified to genus level). Field images
often exhibit occlusions or uneven lighting, while lab spec-
imens vary in preservation quality. The dataset’s strength
lies in its ecological context and scale, supporting pretrain-
ing for generalist vision models. On the other hand, its pri-
mary limitation stems from image quality inconsistencies:
frequently having images of parts of a beetle rather than a
full beetle pictured, varying perspective orientations (dor-
sal, lateral, ventral, and anterior), and recurrent issues with
image clarity and focus (See Fig. 8).

A.2. Exploratory Data Analysis
We conduct an exploratory data analysis on the datasets to
uncover patterns in taxonomic diversity, sample distribu-
tion, and dataset overlap. The analysis leverages summary
statistics, quartile distributions, abundance classifications,

Figure 8. Sample specimens from the I1MC dataset. Complex
backgrounds: Top row, 1st to 3rd images; Varying viewpoints:
Ventral (Top row, 4th image), Anterior (Bottom row, 2nd image);
Partial occlusion: Bottom row, 3rd image; Incomplete: Top row,
5th image; Lighting/Shadow: Bottom row, 5th image

Jaccard indices for overlap, and visualizations of sample
distributions to provide a comprehensive understanding of
the datasets.

A.2.1. Summary Statistics and Distributional Insights
Table 4 presents detailed summary statistics for both gen-
era and species across the datasets. For genera, NHMC
exhibits the highest mean samples per genus (819.18) and
the largest maximum (13,298), but also the highest vari-
ability (standard deviation of 1,715.11), indicating a wide
range of sampling efforts. In contrast, BeetlePUUM has
a mean of 450.75 samples per genus but a much smaller
total genera count (4), reflecting its focused scope. I1MC
and BeetlePalooza show more moderate means (117.39 and
316.17, respectively), but both display high skewness (4.93
and 2.38) and kurtosis (32.22 and 5.14), suggesting long-
tailed distributions with many genera having few samples
and a few genera being heavily sampled. The merged
dataset, combining all four, has a mean of 438.62 sam-
ples per genus but an extremely high skewness (7.21) and
kurtosis (66.57), reflecting the combined effect of these
skewed distributions. For species, the patterns shift. NHMC
again shows a high mean (217.51 samples per species)
with a relatively low standard deviation (152.50), indicat-
ing a more balanced distribution. BeetlePUUM, despite its
small species count (14), has a mean of 128.79 samples per
species, suggesting dense sampling within its limited scope.
I1MC, however, has a low mean (13.24) and median (6.0),
with a high skewness (6.30) and kurtosis (53.01), indicat-
ing that most species are sparsely sampled. BeetlePalooza
shows a mean of 149.63 but a high maximum (1,568), re-
flecting a skewed distribution (skewness: 3.32, kurtosis:
11.72). The merged dataset for species has a mean of 54.57,
with a median of 9.0, further emphasizing the prevalence of
sparsely sampled species across the combined data.

A.2.2. Quartile Distribution
Table 5 provides quartile distributions for both species and
genera, illustrating the spread and central tendencies. For



Dataset Mean Median Std Dev Min Q1 (25%) Q3 (75%) IQR Max Total Genera Total Samples Skewness Kurtosis

I1MC 117.39 25.5 269.17 1 8.00 83.50 75.50 2457 206 24182 4.93 32.22
BeetlePUUM 450.75 333.5 523.45 9 52.50 731.75 679.25 1127 4 1803 0.79 -1.54
NHMC 819.18 355.0 1715.11 50 125.00 697.00 572.00 13298 77 63077 5.58 37.69
BeetlePalooza 316.17 60.5 562.79 1 9.25 328.75 319.50 2242 36 11382 2.38 5.14
Merged 438.62 58.0 1319.80 1 11.00 328.00 317.00 14771 229 100444 7.21 66.57

Dataset Mean Median Std Dev Min Q1 (25%) Q3 (75%) IQR Max Total Species Total Samples Skewness Kurtosis

I1MC 13.24 6.0 25.52 1 2.00 16.00 14.00 339 1531 20278 6.30 53.01
BeetlePUUM 128.79 32.0 251.45 2 4.00 62.00 58.00 811 14 1803 2.30 4.35
NHMC 217.51 170.0 152.50 50 111.25 282.50 171.25 888 290 63077 1.53 2.83
BeetlePalooza 149.63 35.0 305.27 1 10.00 116.75 106.75 1568 76 11372 3.32 11.72
Merged 54.57 9.0 126.57 1 3.00 25.00 22.00 1581 1769 96530 4.96 36.83

Table 4. Summary statistics for the datasets, divided into two sections. The top section (above the dashed line) presents descriptive
statistics for genera, including mean, median, standard deviation, minimum, 1st quartile (Q1, 25%), 3rd quartile (Q3, 75%), interquartile
range (IQR), maximum, total number of genera, total number of samples, skewness, and kurtosis. The bottom section (below the dashed
line) provides the same statistical measures for species across the same datasets, with the total number of species replacing total genera.

Figure 9. Horizontal swarm plot illustrating sample distribution across datasets: Data Codes are same as Table 1. X-axis: Number of
samples per species on a logarithmic scale (100 to 103). The boxplot shows interquartile range and median for each dataset, overlaid with
a swarm plot, where each data point reflects the number of samples for a species. The plot highlights sampling disparities: NHMC exhibits
the most balanced distribution, with a relatively even spread of samples per species from 102 to 103, while I1MC shows a heavy skew
toward minimal samples (near 100), indicating significant undersampling. BPM and BPZ display significant variability, with some species
having up to 102 samples but still showing a skew toward lower sample counts.

species, NHMC stands out with a median (Q2) of 170.0
and a third quartile (Q3) of 282.50, reflecting a higher base-
line of samples per species. BeetlePUUM, despite its small
species count, has a median of 32.0 and a Q3 of 62.0, indi-
cating dense sampling. In contrast, I1MC has a median of
6.0 and a Q3 of 16.0, showing that 75% of its species have
16 or fewer samples. BeetlePalooza’s median is 35.0, but its
Q4 (maximum) reaches 1,568, highlighting a long tail. For
genera, NHMC again shows a high median (355.0) and Q3
(697.0), while BeetlePUUM’s median is 333.5, reflecting its
focused but well-sampled genera. I1MC and BeetlePalooza
have medians of 25.5 and 60.5, respectively, with maximum
values (2,457 and 2,242) indicating the presence of a few
heavily sampled genera.

A.2.3. Sample Distribution Visualization

Figure 9 visualizes the sample distribution per species on
a logarithmic scale. I1MC shows a median of 6.0 and a
mean of 13.2, with a total of 1,531 species, but its distri-

Quartile Distribution: Species

Dataset Q0 (0%) Q1 (25%) Q2 (50%) Q3 (75%) Q4 (100%)

I1MC 1.0 2.00 6.0 16.00 339.0
BeetlePUUM 2.0 4.00 32.0 62.00 811.0
NHMC 50.0 111.25 170.0 282.50 888.0
BeetlePalooza 1.0 10.00 35.0 116.75 1568.0

Quartile Distribution: Genera

Dataset Q0 (0%) Q1 (25%) Q2 (50%) Q3 (75%) Q4 (100%)

I1MC 1.0 8.00 25.5 83.50 2457.0
BeetlePUUM 9.0 52.50 333.5 731.75 1127.0
NHMC 50.0 125.00 355.0 697.00 13298.0
BeetlePalooza 1.0 9.25 60.5 328.75 2242.0

Table 5. Quartile distribution statistics for the datasets: The top
section displays the quartile distribution for species, including the
minimum (Q0, 0%), first quartile (Q1, 25%), median (Q2, 50%),
third quartile (Q3, 75%), and maximum (Q4, 100%) values. The
bottom section provides the same quartile measures for genera
across the same datasets. These statistics illustrate the spread and
central tendencies of species and genera within each dataset.



Dataset Codes Rare Uncommon Common Abundant

I1MC 750 (48.99%) 469 (30.63%) 286 (18.68%) 26 (1.70%)
BPM 5 (35.71%) 1 (7.14%) 5 (35.71%) 3 (21.43%)
NHMC 0 (0.00%) 0 (0.00%) 61 (21.03%) 229 (78.97%)
BPZ 14 (18.42%) 16 (21.05%) 25 (32.89%) 21 (27.63%)

Table 6. Species abundance classification: The table categorizes
species into four abundance classes based on their counts: Rare
(less than 5), Uncommon (5–20), Common (21–100), and Abun-
dant (more than 100). For each dataset, the number of species in
each category is shown, followed by the percentage of total species
in that dataset. This classification highlights the distribution of
species abundance, reflecting differences in rarity and prevalence
across the datasets. Dataset codes are same as Table 1.

bution is heavily skewed, with many species having fewer
than 10 samples and a few outliers reaching up to 339.
BeetlePUUM, with only 14 species, has a median of 32.0
and a mean of 128.8, indicating denser sampling, though its
maximum is 811. NHMC, with 290 species, has a median
of 170.0 and a mean of 217.5, showing a more balanced
distribution, though outliers extend to 888. BeetlePalooza’s
76 species have a median of 35.0 and a mean of 149.6,
with a maximum of 1,568, reflecting a skewed distribu-
tion. Figure 2 illustrates these statistics on a logarithmic
scale, with probability density curves. I1MC’s distribution
is highly right-skewed (skewness: 6.30), with a peak near
the lower end (1–10 samples) and a long tail extending to
339. BeetlePUUM’s distribution, despite its small species
count, shows a peak around 32 samples but extends to 811,
with a skewness of 2.30. NHMC has a more symmetric
distribution (skewness: 1.53), peaking around 170 samples,
though it still has a tail up to 888. BeetlePalooza’s distribu-
tion is skewed, with a peak near 35 samples and a long tail
reaching 1,568.

A.2.4. Species Abundance Classication

Table 6 classifies species into four abundance categories:
Rare, Uncommon, Common, and Abundant. I1MC has
a striking 48.99% of its species (750) classified as Rare,
and 30.63% (469) as Uncommon, with only 1.70% (26)
being Abundant, confirming its highly skewed distribu-
tion. BeetlePUUM, with only 14 species, has 35.71% (5)
Rare and 21.43% (3) Abundant, reflecting its dense sam-
pling within a small scope. NHMC has no Rare or Un-
common species, with 21.03% (61) Common and 78.97%
(229) Abundant, highlighting its balanced and abundant
sampling. BeetlePalooza shows a more even spread, with
18.42% (14) Rare, 21.05% (16) Uncommon, 32.89% (25)
Common, and 27.63% (21) Abundant, indicating moderate
diversity but skewed representation.

I1MC BPM NHMC BPZ

I1MC - 0.0013 0.0388 0.0469
BPM 0.0096 - 0.0253 0.0256
NHMC 0.2522 0.0253 - 0.1649
BPZ 0.1691 0.0256 0.1649 -

Table 7. Jaccard index values representing the overlap of genera
and species: The upper triangle indicates the Jaccard index for
the number of common species shared between pairs of datasets,
while the lower triangle represents the Jaccard index for the num-
ber of common genera. Values range from 0 (no overlap) to 1
(complete overlap), with higher values indicating greater similar-
ity. Dataset codes correspond to those defined in Table 1.

A.2.5. Taxonomic Overlap
Taxonomic overlap between datasets was assessed using
the Jaccard index1 (Table 7) and raw counts of common
taxa (Table 2). The Jaccard index reveals minimal over-
lap overall. For species (upper triangle), I1MC shares the
highest overlap with BeetlePalooza (0.0469) and NHMC
(0.0388), while BeetlePUUM (BPM) shows very low over-
lap with all datasets (e.g., 0.0013 with I1MC). For genera
(lower triangle), NHMC and I1MC have the highest overlap
(0.2522), followed by BeetlePalooza and I1MC (0.1691).
BeetlePUUM remains isolated, with overlaps as low as
0.0096 with I1MC. Table 2 provides raw counts: I1MC
shares 68 species with NHMC and 73 with BeetlePalooza,
while BeetlePUUM shares only 2 species with I1MC
and NHMC, and none with BeetlePalooza. For genera,
I1MC and NHMC share 57 genera, while BeetlePUUM
shares only 2 genera with I1MC and NHMC, and 1 with
BeetlePalooza. This confirms BeetlePUUM’s isolation,
likely due to its endemic focus, while I1MC shows mod-
erate overlap with NHMC and BeetlePalooza.

Treemap Visualization. Figures 10 and 11 show the dis-
tribution of genera and species across four datasets through
treemap visualizations. These hierarchical visualizations
represent taxonomic abundance data where rectangle sizes
correspond to the relative frequency of each taxon. In both
figures, only the top 10 taxa are displayed individually for
each dataset, with remaining taxa consolidated into an ‘Oth-
ers’ category. The visualizations are normalized to ensure
comparable area allocation across datasets while maintain-
ing the relative proportions within each dataset. This repre-
sentation allows for immediate visual identification of dom-
inant taxa in each dataset and facilitates cross-dataset com-
parison of taxonomic composition patterns.

1The Jaccard Index between two sets A and B is defined as:

J(A,B) =
|A B|
|A B|

where |AB| is the size of the intersection of setsA andB, and |AB|
is the size of their union. If A and B are empty, J(A,B) is defined as 1.



Figure 10. Treemap representation of genus distribution across four datasets. In each dataset, the top 10 genera by frequency are shown
individually, with all other genera combined into an ‘Others’ category. Rectangle sizes are normalized to ensure each dataset has the same
total area, and the ‘Others’ group is set to 5% of the total size of the top genera.

Figure 11. Treemap visualization of species distribution across four datasets, presented in the same format as Figure 10. For each dataset,
the top 10 species by count are displayed individually, with all other species grouped into an ‘Others’ category. The area of each rectangle
is normalized to ensure equal total area per dataset, and the ‘Others’ category is scaled to 5% of the total size of the top species.

A.3. Pretrained Vision Encoders

Our evaluation includes three model categories to provide
comprehensive insights into representation learning for tax-
onomy. Vision-language models offer potential semantic
alignment between visual features and taxonomic concepts
through natural language grounding. Self-supervised mod-
els present the advantage of learning robust visual repre-
sentations without requiring extensive labeled data, which
is particularly valuable given the taxonomic annotation bot-
tleneck. And lastly, vision-only supervised models serve as
important baselines representing the conventional approach
to visual classification tasks. By systematically compar-
ing these complementary paradigms, we can identify which
fundamental learning approaches best capture the hierarchi-
cal and fine-grained distinctions for classification.

A.3.1. Data Preparation
First, we filter and clean the dataset so that it contains only
the images and corresponding genus and species labels,
with missing labels designated as Unknown. For feature ex-
traction, images were processed using a pretrained vision
model. Each image was loaded, converted to RGB, and
passed through a transformation pipeline—where images
were resized to 224× 224 pixels, converted to tensors, and
normalized using a mean of [0.485, 0.456, 0.406] and stan-
dard deviation of [0.229, 0.224, 0.225]. These preprocess-
ing parameters follow standard practices used for models
trained on the ImageNet dataset. The transformed images
were then fed into the model, and features were extracted

from the last hidden state, averaged across the sequence di-
mension, producing a 768-dimensional feature vector per
image. The dataset was divided into labeled and unlabeled
samples. Features for labeled samples were extracted and
stacked into a matrix, with labels encoded as integers using
a label encoder. A train-test split was applied to the labeled
samples, using a train-test ratio of 0.80 to 0.20. Features for
unlabeled samples were similarly extracted and combined
with the labeled test set to form the final test feature ma-
trix. To prepare the features for modeling, standardization
was performed using a standard scaler. The scaler was fitted
on the training features to compute the mean and variance,
then applied to both training and test features, ensuring zero
mean and unit variance across all dimensions. This step
optimizes the data for downstream machine learning algo-
rithms sensitive to feature scaling.

B. Result Details

B.1. Performance Evaluation Metrics

For our performance analysis, we select the Matthews Cor-
relation Coefficient (MCC) as one of our primary evalua-
tion metrics due to its robustness in handling significant
class imbalance, a key characteristic of the datasets we
use. For instance, some genera in our study comprise over
14,000 specimens, while others are represented by fewer
than 5. Unlike simpler metrics, MCC provides a balanced
assessment by integrating all elements of the confusion ma-
trix—true positives (TP), true negatives (TN), false posi-



tives (FP), and false negatives (FN) — making it particu-
larly well-suited for taxonomic identification tasks. In such
tasks, accurately classifying rare taxa is just as critical as
identifying common ones, and MCC’s sensitivity to all four
components ensures a comprehensive evaluation [7, 10, 11].
For completeness, we also report the four baseline perfor-
mance metrics- accuracy, precision, recall, and F1-score, to
provide a broader perspective on model performance. Addi-
tionally, given the long-tailed nature of our datasets, we cal-
culate macro-accuracy to better reflect performance across
all classes. Macro-accuracy averages the accuracy for each
class without weighting by class size, offering a clearer pic-
ture of the model’s ability to handle underrepresented taxa.
This complements the MCC by emphasizing equitable per-
formance across the dataset’s skewed distribution, ensuring
that our evaluation captures both overall effectiveness and
fairness in classification.

B.2. Benchmarking

Our comprehensive evaluation of vision and vision lan-
guage models reveals significant performance patterns. Ta-
bles 8 and 9 present the micro and macro accuracy scores
respectively, for genus and species classification across all
datasets, while Table 10 provides a breakdown of multiple
performance metrics. From the scores, we see that vision
language models consistently outperform other approaches,
with ViLT demonstrating superior performance across all
datasets and metrics. ViLT achieves perfect genus-level ac-
curacy (1.0) and exceptional species identification (0.997)
on smaller, curated collections like BeetlePUUM, with cor-
responding perfect MCC scores (1.0 for genus, 0.995 for
species). It maintains decent performance even on the chal-
lenging I1MC dataset (0.891 genus, 0.763 species micro-
accuracy; MCC scores of 0.889 and 0.763 respectively),
confirming that the integration of visual and textual fea-
tures provides powerful taxonomic discrimination capabil-
ities. Among other vision-language models, BioCLIP con-
sistently ranks second, showing particularly strong perfor-
mance on curated datasets but experiencing a more signif-
icant performance drop on larger, more heterogeneous col-
lections. CLIP and SigLIP follow similar patterns but with
lower performance scores.
Model’s performance generally declines as the dataset size
and heterogeneity increase, with all models showing a
marked reduction in species-level identification accuracy
on larger datasets. For instance, while ViLT maintains
high precision and recall (both >0.99) for both genus and
species on BeetlePUUM and BeetlePalooza, these metrics
decline to approximately 0.74 for species classification on
the I1MC dataset. Among vision-only models, supervised
approaches (particularly BeIT and ConvNeXt) outperform
self-supervised alternatives. BeIT achieves the best results
in its category (0.923 genus, 0.821 species micro-accuracy

on the merged dataset; MCC scores of 0.919 and 0.821),
indicating that representations pretrained on general im-
age collections transfer effectively to specialized taxonomic
tasks. Within self-supervised models, DINOv2 consistently
leads (with MCC scores reaching 0.968 for genus classifica-
tion on BeetlePUUM), though it falls short of both vision-
language models and supervised vision models. The perfor-
mance gap between genus and species classification widens
considerably in larger datasets, highlighting the increasing
difficulty of fine-grained classification as taxonomic speci-
ficity increases. This pattern is consistent across all model
types, with species-level F1 scores typically 10-30% points
lower than genus-level scores on the larger datasets.
Macro-accuracy scores reveal similar patterns, but all mod-
els show considerably lower macro-accuracy compared to
micro-accuracy, particularly for species-level classification,
highlighting significant class imbalance challenges in long-
tailed datasets. This disparity is most pronounced in larger,
more diverse datasets like I1MC, where even the top-
performing ViLT model shows a substantial gap between
micro-accuracy (0.763) and macro-accuracy (0.546) for
species classification. The gap between genus and species
classification is further amplified in macro-accuracy met-
rics. For example, on the merged dataset, ViLT achieves
a genus macro-accuracy of 0.783 but drops to 0.657 for
species classification, indicating that models struggle par-
ticularly with rare or underrepresented species. This pattern
holds across all categories but is most severe for vision-only
self-supervised models, where DINOv2’s species macro-
accuracy reaches only 0.391 on the merged dataset.

B.3. Sample Efcient Probing

To assess sample efficiency and evaluate the cost-
performance trade-offs for long-tailed datasets, we bench-
mark six leading vision models (ViLT, BioCLIP, ConvNeXt,
CLIP, SWINv2, LeViT) across multiple dataset sizes and
two sampling strategies: Balanced Sampling and Propor-
tional Sampling. Balanced Sampling ensures equal repre-
sentation across taxa, whereas Proportional Sampling main-
tains the natural class distribution, aligning with real-world
imbalances. In our experimental design, we implemented
both approaches across three dataset sizes. With Bal-
anced Sampling, we extracted precisely 10, 20, and 50
images per species, resulting in total datasets of 2,900,
5,800, and 14,500 images respectively (across 290 species).
For the corresponding Proportional Sampling datasets, we
maintained identical total image counts (2,900, 5,800, and
14,500) but distributed them according to the natural fre-
quency of each species in the source collection. This paral-
lel sampling approach allowed us to evaluate classification
performance under both artificial balance and natural distri-
bution conditions, providing insight into model robustness
across varying levels of class imbalance. The Balanced ap-



proach addresses potential bias against rare taxa, while the
Proportional approach better reflects deployment conditions
where certain species occur more frequently than others.
As illustrated in Figure 12 and Table 11, ViLT consistently
outperformed all other models across both sampling strate-
gies and all dataset sizes, achieving near-ceiling perfor-
mance with full supervision (Acc 0.9929, MCC 0.9928).
Notably, even on small balanced subsets (e.g., Subset1 with
2900 images), ViLT achieved a strong accuracy of 0.8345,
with a +0.107 jump in accuracy between the Subset1 (2900
images) and Subset2 (5800 images). However, the per-
formance gains quickly diminished with scale, culminating
in a marginal +0.003 improvement when scaling from the
Half-set to the Full-set. This highlights an important in-
sight: while adding more data improves results, the perfor-
mance gains become progressively smaller, implying that
strategically selected or subsampled training data - espe-
cially with balanced representation - can lead to compet-
itive or even near-optimal performance without the com-
putational burden of full-scale training. Furthermore, we
observe that models exhibit varied sensitivity to sampling
strategy. While ViLT maintained strong performance across
both strategies, models like CLIP and LeViT performed no-
tably worse under Proportional Sampling, suggesting that
class imbalance exacerbates weaknesses in certain archi-
tectures. These findings provide a critical guide for prac-
titioners working with long-tailed or resource-constrained
settings: strategic subsampling can yield high-performance
outcomes with significantly reduced data requirements, re-
inforcing the need for thoughtful dataset design over brute-
force scaling.

B.4. Cross-Dataset Domain Adaptation

The evaluation of pretrained vision models for cross-dataset
domain adaptation reveals significant insights into their
generalizability, particularly in the context of taxonomic
classification across lab and in-situ imaging domains. Our
experiments highlight the challenges and varying perfor-
mance levels when adapting models between curated lab
collections (NHMC and BeetlePalooza) and in-situ field im-
ages (I1MC). In the lab-to-lab adaptation scenario, where
models were trained on NHMC and tested on BeetlePalooza
at the genus level, ViLT demonstrated exceptional perfor-
mance with an accuracy of 0.9230 and an MCC of 0.9106
across 16 shared taxa. This high performance underscores
ViLT’s ability to generalize effectively between lab-based
datasets, likely due to the controlled imaging conditions and
taxonomic consistency between NHMC and BeetlePalooza.
In constrast, lab-to-in-situ adaptation scenarios – training
on NHMC or BeetlePalooza and testing on I1MC – re-
vealed a significant decline in performance across all mod-
els, reflecting the challenge of adapting from controlled lab
settings to the variable conditions of field images. When

trained on NHMC and tested on I1MC at the genus level
(57 taxa), ViLT again outperformed others with an accuracy
of 0.6907 and an MCC of 0.6736, though these scores are
notably lower than in the lab-to-lab case. At the species
level (68 taxa), ViLT’s accuracy dropped to 0.5740 with
an MCC of 0.5680, highlighting the increased difficulty
of fine-grained classification in in-situ contexts. Training
on BPZ and testing on I1MC produced similar trends. At
the genus level (33 taxa), ViLT achieved an accuracy of
0.6001 and an MCC of 0.5756; at the species level (72
taxa), ViLT’s accuracy was 0.4757 with an MCC of 0.4676.
These results underscore the inherent difficulty of adapting
to in-situ data, which is challenging by nature due to un-
controlled conditions. The drop in performance is further
exacerbated by I1MC-specific limitations, including incon-
sistent image quality, frequent partial views of specimens,
varied perspectives (dorsal, lateral, ventral, anterior), and is-
sues with focus and clarity. Figure 4 illustrates performance
across six cases, evaluating train and test distributions at
genus and species levels. Case E (Train: NHMC, Test:
BeetlePalooza, genus level) represents lab-to-lab adapta-
tion, achieving strong generalization with an accuracy of
0.911, due to consistent imaging and taxonomic alignment.
Cases A to D, involving lab-to-in-situ transfers with I1MC
as the test set, show reduced performance (average accuracy
of 0.571 across Case X), reflecting challenges from envi-
ronmental variability, inconsistent image quality, and partial
specimen views in field data. For fair comparison, in cases
A to D we fix I1MC as the test set, enabling direct evalu-
ation across training sets (NHMC vs. BeetlePalooza) and
taxonomic levels (genus vs. species). Case X summarizes
the mean performance of these lab-to-in-situ cases, with
red annotations in the figure indicating accuracy drops rel-
ative to Case E, emphasizing the domain gap. While direct
comparison between cases with different test sets can be
misleading due to inherent dataset complexity, our grouped
evaluation ensures comparability by fixing the test domain
within each analysis.

C. Multi-Modal Feature Integration

Fine-grained visual recognition often relies on more than
just visual cues [25, 35, 37, 57]. As two of our used datasets
contain morphological traits and environmental data, we
examine how effectively incorporating these additional
modalities enhances taxonomic classication. To investi-
gate this, we conduct experiments using the BeetlePalooza
dataset and a 1000-specimen subset, comparing image-only
classification to approaches that combine visual features
with morphological measurements (elytral dimensions) and
environment metadata (geographic coordinates, elevation).



Figure 12. Performance of vision models under Proportional and Balanced Sampling strategies across increasing dataset sizes, highlighting
sample efficiency and the impact of sampling on model performance. The models show a steep initial improvement with smaller subsets,
followed by a plateau in performance as dataset size grows, indicating diminishing returns with scale. ViLT outperforms the rest.

Experiment Results
We evaluate four models - BioCLIP, ConvNeXt, DINOv2,
and ViLT - across three data configurations: image-only,
image and morphological traits (image+traits), and image,
traits, and environmental data (image+traits+env). Sum-
mary of model performance on two data sets with four mod-
els across all modality configurations is presented in Ta-
ble 13. Scores show that for the 1,000-specimen subset,
vision-only models showed mixed responses to additional
modalities. DINOv2’s accuracy was 0.7750 with just im-
ages, dropping to 0.7600 with traits and further to 0.7550
with traits and environmental data, suggesting extra modal-
ities were not helpful. ConvNeXt started at 0.8150 with
images alone, improved slightly to 0.8350 with traits, but
fell to 0.8000 with environmental data added, indicating in-
consistent benefits. In contrast, vision-language models be-
haved differently. BioCLIP’s accuracy rose steadily from
0.8150 (image-only) to 0.8300 (image+traits) and 0.8450
(image+traits+env), showing consistent gains. ViLT, how-
ever, achieved a strong 0.9350 with images alone but re-
mained unchanged with traits (0.9350) and dropped sub-
stantially to 0.9050 with environmental data, suggesting ad-
ditional modalities may disrupt its performance.
On the full dataset, trends shifted. Vision-only models ben-
efited more from multi-modal inputs at scale. DINOv2’s
accuracy increased from 0.9496 (image-only) to 0.9478
(image+traits) and 0.9513 (image+traits+env), while Con-
vNeXt improved from 0.9531 (image-only) to 0.9566 (im-
age+traits) and 0.9649 (image+traits+env), indicating that
additional modalities became helpful with more data. For
vision-language models, BioCLIP again showed steady im-
provement, rising from 0.9373 (image-only) to 0.9417 (im-
age+traits) and 0.9579 (image+traits+env), reinforcing its
ability to leverage extra data. ViLT, starting near-perfect

at 0.9982 (image-only), dropped marginally to 0.9956 with
both traits and traits+env, suggesting limited or negative im-
pact from additional modalities. These results reveal dis-
tinct patterns. DINOv2 and ConvNeXt struggle to bene-
fit from extra modalities in the subset but improve at full
scale, possibly due to better generalization with larger data.
BioCLIP consistently gains from multi-modal inputs across
both scales, highlighting its robustness. ViLT, however,
shows no benefit in the subset where it suffers a substan-
tial drop, and a marginal decline at scale, possibly indicat-
ing saturation or sensitivity to non-visual data. Given these
inconsistencies, we cannot draw a firm conclusion on the
effectiveness of multi-modal integration. Further experi-
ments, varying dataset sizes, modalities, and model archi-
tectures, are needed to clarify these trends and determine
optimal strategies for taxonomic classification.

D. Feature Mapping
For better visualization of taxonomic relationships, we ex-
tract feature embeddings from pretrained vision models and
apply dimensionality reduction techniques. These embed-
dings are derived from high-dimensional representations of
the input data, capturing intricate patterns and characteris-
tics that are not easily discernible in their raw form. To
make these relationships more interpretable, we employ
a dimensionality reduction method, t-SNE, that projects
the high-dimensional embeddings into a two-dimensional
space while preserving the underlying structure of the data
as much as possible. The embeddings are then plotted to
reveal distinct clustering patterns. In the plot, each cluster
is represented by a unique color, with the legend indicating
the corresponding genera, allowing for a clear visual inter-
pretation of how closely related or distinct the groups are
based on their feature representations. This mapping helps



visualizing the effectiveness of pretrained models in captur-
ing meaningful taxonomic differences among various taxa
in a more intuitive manner. Such insights can guide further
analysis, such as identifying potential misclassifications or
discovering previously unrecognized similarities between
genera. Figures 13 and 14 illustrate how the pretrained
model captures meaningful taxonomic structure, with clear
cluster separation at both genus and species levels, and re-
veal cases of morphological similarity where overlap oc-
curs in the embedding space. On the other hand, figures 15
and 16 highlight the limitations of the I1MC dataset. In
these visualizations, the model struggles to clearly separate
genera and species, particularly at the genus level, where
scattered and overlapping clusters suggest that the dataset’s
inherent variability makes it difficult for the model to cap-
ture distinct genus boundaries. This high intra-genus vari-
ance and inter-genus proximity emphasize the challenges
of the dataset in providing clean and separable data rep-
resentations. At the species level, overlap within genera
Cicindela further underscores the dataset’s complexity, as
species within the same genus exhibit significant morpho-
logical similarity, making it harder for the model to differ-
entiate them. From the accuracy scores in Tables 8 and 9, it
is evident that the feature embeddings provide a prior signal
of how performance is likely to unfold.



Figure 13. t-SNE visualization of feature embeddings extracted from ViLT for the top 10 genera in the NHMC dataset. Areas of overlap
between genera suggest shared morphological traits that represent taxonomic challenges for automated identification systems.

Figure 14. t-SNE visualization of feature embeddings extracted from ViLT for the top 10 species in the NHMC dataset. Some species
(particularly within the same genus: Amara aenea and Amara familiaris) show partial overlap in feature space, indicating morphological
similarities that challenge classification. The distinct separation between most clusters demonstrates the model’s ability to capture species-
specific visual characteristics despite intraspecific variation.



Figure 15. t-SNE visualization of feature embeddings extracted from ViLT for the top 10 genera in the I1MC dataset. Scattered and
overlapping clusters imply that the model struggles to capture clear genus boundaries. High intra-genus variance and inter-genus proximity
highlight the limitations of the embedding space, reflecting inconsistencies in data representation.

Figure 16. t-SNE visualization of feature embeddings for the top 10 species in the I1MC dataset, extracted using ViLT. Species within
the genus Cicindela exhibit significant overlap, reflecting high morphological similarity within the genus. In contrast, species from other
genera (e.g., Calosoma scrutator, Chlaenius tricolor) form well-separated clusters, indicating more distinctive visual features. This suggests
that while the model captures genus-level distinctions well, species-level differentiation within certain genera remains a challenge.



Model BeetlePUUM BeetlePalooza NHMC I1MC Merged-Dataset

Genus Species Genus Species Genus Species Genus Species Genus Species

Vision-Language Models

ViLT 1.0000 0.9969 0.9987 0.9982 0.9984 0.9950 0.8905 0.7633 0.9715 0.9397
BioCLIP 0.9969 0.9292 0.9653 0.9376 0.9457 0.8498 0.7936 0.6095 0.9109 0.8054
SigLIP 0.9908 0.9323 0.9614 0.9328 0.9245 0.7864 0.6795 0.4852 0.8690 0.7372
CLIP 0.9815 0.8985 0.9310 0.8928 0.8725 0.7158 0.5483 0.3681 0.8037 0.6640

Vision-Only Self-Supervised Models

DINOv2 0.9846 0.9108 0.9715 0.9499 0.9367 0.8106 0.6440 0.4426 0.8663 0.7352
SwAV 0.9846 0.9231 0.9051 0.8660 0.8185 0.6582 0.4199 0.2571 0.7384 0.5928
MoCov3 0.9723 0.8923 0.8853 0.8418 0.7355 0.5543 0.3967 0.2414 0.6727 0.5142
ViTMAE 0.9354 0.8369 0.8770 0.8336 0.7303 0.5387 0.3861 0.2152 0.6496 0.4762

Vision-Only Supervised Models

BeIT 0.9969 0.9354 0.9798 0.9592 0.9673 0.8876 0.7641 0.5720 0.9225 0.8213
ConvNeXt 0.9938 0.9385 0.9793 0.9534 0.9620 0.8785 0.7505 0.5409 0.9138 0.8060
SWINv2 0.9692 0.8831 0.9618 0.9337 0.9105 0.7837 0.6425 0.4278 0.8511 0.7140
LeViT 0.9785 0.8985 0.9218 0.8779 0.8426 0.6719 0.5274 0.3306 0.7766 0.6171

Table 8. Performance comparison of vision and vision-language models: Models are grouped by category, and ranked by (micro)-accuracy
for genus and species classification. Bold and Underlined values denote the highest score in each column across all models and Underlined
values refer to category-wise highest score in each column. Italicized and underlined text indicates the top model within each category;
and Bold, Italicized and underlined text shows the best model across all categories.

Model BeetlePUUM BeetlePalooza NHMC I1MC Merged-Dataset

Genus Species Genus Species Genus Species Genus Species Genus Species

Vision-Language Models

ViLT 1.0000 0.9091 0.9650 0.9669 0.9978 0.9936 0.6798 0.5457 0.7830 0.6567
BioCLIP 0.9984 0.6612 0.8434 0.7908 0.9219 0.8317 0.6037 0.4303 0.6669 0.4983
SigLIP 0.9936 0.6470 0.8875 0.7497 0.8940 0.7671 0.4451 0.3118 0.5968 0.4069
CLIP 0.9593 0.5406 0.8365 0.6764 0.8269 0.6906 0.3100 0.2106 0.5069 0.3281

Vision-Only Self-Supervised Models

DINOv2 0.9380 0.5592 0.9006 0.7861 0.9092 0.7848 0.4195 0.2782 0.5786 0.3914
SwAV 0.9625 0.5464 0.7616 0.6058 0.7679 0.6267 0.2406 0.1681 0.4135 0.2625
MoCov3 0.9202 0.5060 0.7803 0.6130 0.6710 0.5173 0.2323 0.1415 0.3892 0.2339
ViTMAE 0.8485 0.3960 0.7797 0.5848 0.6384 0.5066 0.1893 0.1140 0.3490 0.1998

Vision-Only Supervised Models

BeIT 0.9984 0.7980 0.9189 0.8082 0.9533 0.8744 0.5686 0.3899 0.6979 0.5007
ConvNeXt 0.9936 0.7006 0.9075 0.7743 0.9464 0.8634 0.5359 0.3550 0.6880 0.4790
SWINv2 0.9202 0.5451 0.8711 0.7633 0.8841 0.7576 0.4589 0.2712 0.5877 0.3890
LeViT 0.9300 0.4932 0.7757 0.6267 0.7997 0.6454 0.2887 0.1838 0.4855 0.2916

Table 9. Performance comparison of vision and vision-language models: Models are grouped by category, and ranked bymacro-accuracy
for genus and species classification. Bold and Underlined values denote the highest score in each column across all models and Underlined
values refer to category-wise highest score in each column. Italicized and underlined text indicates the top model within each category;
and Bold, Italicized and underlined text shows the best model across all categories.



Model

BeetlePUUM BeetlePalooza

Genus Species Genus Species

Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC

Vision-Language Models

ViLT 1.0000 1.0000 1.0000 1.0000 1.0000 0.9969 0.9942 0.9969 0.9955 0.9954 0.9987 0.9983 0.9987 0.9985 0.9985 0.9982 0.9974 0.9982 0.9978 0.9981
BioCLIP 0.9969 0.9972 0.9969 0.9970 0.9936 0.9292 0.9208 0.9292 0.9233 0.8917 0.9653 0.9651 0.9653 0.9633 0.9608 0.9376 0.9327 0.9376 0.9326 0.9333
CLIP 0.9815 0.9816 0.9815 0.9815 0.9613 0.8985 0.8875 0.8985 0.8892 0.8435 0.9310 0.9312 0.9310 0.9302 0.9222 0.8928 0.8871 0.8928 0.8867 0.8854
SigLIP 0.9908 0.9908 0.9908 0.9908 0.9808 0.9323 0.9280 0.9323 0.9281 0.8971 0.9614 0.9612 0.9614 0.9603 0.9564 0.9328 0.9232 0.9328 0.9256 0.9282

Vision-Only Self-Supervised Models

DINOv2 0.9846 0.9877 0.9846 0.9859 0.9678 0.9108 0.9060 0.9108 0.9064 0.8637 0.9715 0.9709 0.9715 0.9707 0.9678 0.9499 0.9456 0.9499 0.9449 0.9465
ViTMAE 0.9354 0.9349 0.9354 0.9345 0.8636 0.8369 0.8212 0.8369 0.8228 0.7469 0.8770 0.8766 0.8770 0.8744 0.8612 0.8336 0.8176 0.8336 0.8206 0.8216
SwAV 0.9846 0.9847 0.9846 0.9846 0.9678 0.9231 0.9162 0.9231 0.9140 0.8824 0.9051 0.9075 0.9051 0.9034 0.8931 0.8660 0.8539 0.8660 0.8519 0.8565
MoCov3 0.9723 0.9723 0.9723 0.9720 0.9429 0.8923 0.8702 0.8923 0.8793 0.8349 0.8853 0.8868 0.8853 0.8831 0.8704 0.8418 0.8294 0.8418 0.8306 0.8305

Vision-Only Supervised Models

ConvNeXt 0.9938 0.9939 0.9938 0.9938 0.9871 0.9385 0.9329 0.9385 0.9350 0.9065 0.9793 0.9792 0.9793 0.9784 0.9767 0.9534 0.9428 0.9534 0.9464 0.9502
SWINv2 0.9692 0.9695 0.9692 0.9687 0.9353 0.8831 0.8762 0.8831 0.8749 0.8198 0.9618 0.9611 0.9618 0.9608 0.9569 0.9337 0.9261 0.9337 0.9269 0.9291
BeIT 0.9969 0.9970 0.9969 0.9969 0.9936 0.9354 0.9327 0.9354 0.9324 0.9024 0.9798 0.9790 0.9798 0.9791 0.9772 0.9592 0.9544 0.9592 0.9541 0.9564
LeViT 0.9785 0.9780 0.9785 0.9780 0.9549 0.8985 0.8873 0.8985 0.8890 0.8434 0.9218 0.9231 0.9218 0.9203 0.9118 0.8779 0.8697 0.8779 0.8687 0.8694

Model

NHMC I1MC

Genus Species Genus Species

Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC

Vision-Language Models

ViLT 0.9984 0.9984 0.9984 0.9984 0.9983 0.9950 0.9951 0.9950 0.9950 0.9950 0.8905 0.8883 0.8905 0.8855 0.8867 0.7633 0.7420 0.7633 0.7370 0.7626
BioCLIP 0.9457 0.9461 0.9457 0.9457 0.9417 0.8498 0.8533 0.8498 0.8498 0.8490 0.7936 0.7983 0.7936 0.7879 0.7865 0.6095 0.5977 0.6095 0.5800 0.6082
CLIP 0.8725 0.8734 0.8725 0.8723 0.8630 0.7158 0.7221 0.7158 0.7158 0.7143 0.5483 0.5472 0.5483 0.5391 0.5321 0.3681 0.3663 0.3681 0.3442 0.3659
SigLIP 0.9245 0.9248 0.9245 0.9243 0.9189 0.7864 0.7921 0.7864 0.7866 0.7852 0.6795 0.6784 0.6795 0.6714 0.6681 0.4852 0.4660 0.4852 0.4527 0.4835

Vision-Only Self-Supervised Models

DINOv2 0.9367 0.9372 0.9367 0.9366 0.9320 0.8106 0.8155 0.8106 0.8103 0.8096 0.6440 0.6388 0.6440 0.6353 0.6314 0.4426 0.4468 0.4426 0.4189 0.4407
ViTMAE 0.7303 0.7308 0.7303 0.7299 0.7104 0.5387 0.5439 0.5387 0.5385 0.5363 0.3792 0.3805 0.3792 0.3679 0.3559 0.2108 0.2127 0.2108 0.1910 0.2076
SwAV 0.8185 0.8192 0.8185 0.8184 0.8051 0.6582 0.6660 0.6582 0.6569 0.6564 0.4172 0.4144 0.4172 0.4041 0.3954 0.2571 0.2491 0.2571 0.2314 0.2542
MoCov3 0.7355 0.7372 0.7355 0.7353 0.7162 0.5543 0.5590 0.5543 0.5526 0.5519 0.3967 0.3916 0.3967 0.3850 0.3740 0.2411 0.2407 0.2411 0.2231 0.2382

Vision-Only Supervised Models

ConvNeXt 0.9620 0.9623 0.9620 0.9620 0.9591 0.8785 0.8819 0.8785 0.8784 0.8779 0.7505 0.7530 0.7505 0.7443 0.7417 0.5409 0.5385 0.5409 0.5164 0.5395
SWINv2 0.9105 0.9111 0.9105 0.9105 0.9039 0.7837 0.7902 0.7837 0.7845 0.7825 0.6425 0.6521 0.6425 0.6394 0.6299 0.4278 0.4437 0.4278 0.4103 0.4259
BeIT 0.9673 0.9675 0.9673 0.9673 0.9649 0.8876 0.8899 0.8876 0.8874 0.8870 0.7641 0.7661 0.7641 0.7582 0.7559 0.5720 0.5581 0.5720 0.5400 0.5706
LeViT 0.8426 0.8440 0.8426 0.8423 0.8309 0.6719 0.6784 0.6719 0.6716 0.6702 0.5274 0.5270 0.5274 0.5174 0.5104 0.3306 0.3159 0.3306 0.3022 0.3283

Model

I1MCv2 Merged-Dataset

Genus Species Genus Species

Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC Acc Pre Rec F1 MCC

Vision-Language Models

ViLT 0.8928 0.8907 0.8928 0.8879 0.8890 0.7638 0.7431 0.7638 0.7379 0.7631 0.9715 0.9709 0.9715 0.9706 0.9701 0.9397 0.9383 0.9397 0.9350 0.9394
BioCLIP 0.7936 0.7983 0.7936 0.7879 0.7865 0.6095 0.5977 0.6095 0.5800 0.6082 0.9109 0.9103 0.9109 0.9089 0.9067 0.8054 0.7993 0.8054 0.7958 0.8047
CLIP 0.5483 0.5472 0.5483 0.5391 0.5321 0.3681 0.3663 0.3681 0.3442 0.3659 0.8037 0.8011 0.8037 0.7997 0.7944 0.6640 0.6573 0.6640 0.6529 0.6627
SigLIP 0.6812 0.6802 0.6812 0.6736 0.6699 0.4862 0.4686 0.4862 0.4543 0.4845 0.8690 0.8677 0.8690 0.8670 0.8628 0.7372 0.7335 0.7372 0.7281 0.7362

Vision-Only Self-Supervised Models

DINOv2 0.6418 0.6394 0.6418 0.6336 0.6291 0.4426 0.4494 0.4426 0.4195 0.4407 0.8663 0.8658 0.8663 0.8641 0.8599 0.7352 0.7345 0.7352 0.7274 0.7342
ViTMAE 0.3861 0.3768 0.3861 0.3700 0.3625 0.2152 0.2138 0.2152 0.1943 0.2121 0.6496 0.6499 0.6496 0.6481 0.6332 0.4762 0.4763 0.4762 0.4697 0.4741
SwAV 0.4199 0.4176 0.4199 0.4081 0.3983 0.2554 0.2520 0.2554 0.2329 0.2526 0.7384 0.7368 0.7384 0.7353 0.7259 0.5928 0.5910 0.5928 0.5843 0.5913
MoCov3 0.3962 0.3925 0.3962 0.3854 0.3736 0.2414 0.2391 0.2414 0.2232 0.2385 0.6727 0.6693 0.6727 0.6687 0.6575 0.5142 0.5059 0.5142 0.5036 0.5123

Vision-Only Supervised Models

ConvNeXt 0.7505 0.7530 0.7505 0.7443 0.7417 0.5409 0.5385 0.5409 0.5164 0.5395 0.9138 0.9137 0.9138 0.9124 0.9098 0.8060 0.8074 0.8060 0.8004 0.8053
SWINv2 0.6425 0.6521 0.6425 0.6394 0.6299 0.4278 0.4437 0.4278 0.4103 0.4259 0.8511 0.8504 0.8511 0.8492 0.8441 0.7140 0.7117 0.7140 0.7063 0.7129
BeIT 0.7641 0.7661 0.7641 0.7582 0.7559 0.5720 0.5581 0.5720 0.5400 0.5706 0.9225 0.9221 0.9225 0.9211 0.9189 0.8213 0.8202 0.8213 0.8147 0.8206
LeViT 0.5274 0.5270 0.5274 0.5174 0.5104 0.3306 0.3159 0.3306 0.3022 0.3283 0.7766 0.7740 0.7766 0.7725 0.7661 0.6171 0.6086 0.6171 0.6048 0.6156

Table 10. Taxonomic Prediction at Genus and Species Level by Vision Models across all carabids datasets. Performance metrics include
Accuracy (Acc), Precision (Pre), Recall (Rec), F1 score (F1), and Matthews Correlation Coefficient (MCC). NB. I1MC-v2 is a version of
the I1MC dataset where we kept the images NOT identified to genus/species level in the test set for future work



Model
Subset1 (size: 2900) Subset2 (size: 5800) Subset3 (Size: 14500)

Acc Prec Rec F1 MCC Acc Prec Rec F1 MCC Acc Prec Rec F1 MCC

Balanced Sampling

ViLT 0.8345 0.8479 0.8345 0.8188 0.8341 0.9371 0.9457 0.9371 0.9344 0.9369 0.9797 0.9814 0.9797 0.9796 0.9796
BioCLIP 0.6655 0.6826 0.6655 0.6455 0.6647 0.7121 0.7415 0.7121 0.7071 0.7112 0.7793 0.7936 0.7793 0.7784 0.7786
ConvNeXt 0.5845 0.5836 0.5845 0.5585 0.5834 0.6810 0.7098 0.6810 0.6734 0.6801 0.7817 0.7922 0.7817 0.7789 0.7810
CLIP 0.4086 0.4093 0.4086 0.3839 0.4069 0.5000 0.5351 0.5000 0.4924 0.4984 0.6021 0.6160 0.6021 0.6005 0.6008
SWINv2 0.3983 0.3921 0.3983 0.3712 0.3965 0.5138 0.5516 0.5138 0.5081 0.5123 0.6521 0.6680 0.6521 0.6502 0.6509
LeViT 0.3345 0.3195 0.3345 0.3079 0.3325 0.4612 0.4998 0.4612 0.4518 0.4595 0.5690 0.5848 0.5690 0.5682 0.5675

Proportional Sampling

ViLT 0.8155 0.7740 0.8155 0.7782 0.8148 0.9224 0.9211 0.9224 0.9144 0.9221 0.9662 0.9676 0.9662 0.9646 0.9660
BioCLIP 0.5828 0.5336 0.5828 0.5351 0.5808 0.7026 0.7102 0.7026 0.6876 0.7012 0.7659 0.7713 0.7659 0.7592 0.7647
ConvNeXt 0.5431 0.5047 0.5431 0.4994 0.5409 0.7000 0.6968 0.7000 0.6809 0.6985 0.7752 0.7842 0.7752 0.7704 0.7740
CLIP 0.3741 0.3077 0.3741 0.3228 0.3708 0.5009 0.4983 0.5009 0.4784 0.4982 0.5921 0.5931 0.5921 0.5805 0.5899
SWINv2 0.3828 0.3358 0.3828 0.3445 0.3796 0.4931 0.4904 0.4931 0.4740 0.4904 0.6434 0.6455 0.6434 0.6347 0.6416
LeViT 0.3552 0.3121 0.3552 0.3151 0.3516 0.4586 0.4524 0.4586 0.4385 0.4557 0.5490 0.5600 0.5490 0.5418 0.5465

Model
Half-set (Size: 30000) Full-set (Size: 63077)

Acc Prec Rec F1 MCC Acc Prec Rec F1 MCC

ViLT 0.9900 0.9905 0.9900 0.9900 0.9900 0.9929 0.9930 0.9929 0.9928 0.9928
BioCLIP 0.8208 0.8274 0.8208 0.8207 0.8202 0.8496 0.8524 0.8496 0.8488 0.8488
ConvNeXt 0.8432 0.8491 0.8432 0.8434 0.8426 0.8699 0.8721 0.8699 0.8694 0.8693
CLIP 0.6753 0.6847 0.6753 0.6757 0.6742 0.7188 0.7215 0.7188 0.7177 0.7173
SWINv2 0.7320 0.7422 0.7320 0.7327 0.7311 0.7803 0.7832 0.7803 0.7792 0.7791
LeViT 0.6230 0.6375 0.6230 0.6249 0.6217 0.6713 0.6749 0.6713 0.6700 0.6696

Table 11. Performance of vision models across Balanced Sampling (equal class representation) and Proportional Sampling (natural class
distribution). Strategies and Varying Dataset Sizes (Subset1: 2900, Subset2: 5800, Subset3: 14500, Half-set: 30000, Full-set: 63077).
Metrics Include Accuracy (Acc), Precision (Prec), Recall (Rec), F1-Score (F1), and Matthews Correlation Coefficient (MCC)



Case Train Test Type #Taxa Model Accuracy Precision Recall F1-Score MCC

NHMC-I1MC-genus NHMC I1MC genus 57 BioCLIP 0.3899 0.6190 0.3899 0.4103 0.3623
NHMC-I1MC-genus NHMC I1MC genus 57 CLIP 0.1946 0.3595 0.1946 0.1844 0.1425
NHMC-I1MC-genus NHMC I1MC genus 57 ConvNeXt 0.3603 0.5438 0.3603 0.3610 0.3205
NHMC-I1MC-genus NHMC I1MC genus 57 LeViT 0.2497 0.3919 0.2497 0.2510 0.2070
NHMC-I1MC-genus NHMC I1MC genus 57 SWINv2 0.3238 0.4822 0.3238 0.3165 0.2898
NHMC-I1MC-genus NHMC I1MC genus 57 ViLT 0.6907 0.8168 0.6907 0.6966 0.6736

NHMC-I1MC-species NHMC I1MC species 68 BioCLIP 0.4221 0.6546 0.4221 0.4362 0.4133
NHMC-I1MC-species NHMC I1MC species 68 CLIP 0.0875 0.2436 0.0875 0.0856 0.0761
NHMC-I1MC-species NHMC I1MC species 68 ConvNeXt 0.2291 0.4589 0.2291 0.2507 0.2204
NHMC-I1MC-species NHMC I1MC species 68 LeViT 0.1120 0.1942 0.1120 0.1195 0.1026
NHMC-I1MC-species NHMC I1MC species 68 SWINv2 0.1750 0.3112 0.1750 0.1624 0.1618
NHMC-I1MC-species NHMC I1MC species 68 ViLT 0.5740 0.7737 0.5740 0.6132 0.5680

BPZ-I1MC-genus BPZ I1MC genus 33 BioCLIP 0.3553 0.5198 0.3553 0.3558 0.3257
BPZ-I1MC-genus BPZ I1MC genus 33 CLIP 0.1386 0.2623 0.1386 0.1489 0.1071
BPZ-I1MC-genus BPZ I1MC genus 33 ConvNeXt 0.3464 0.4843 0.3464 0.3430 0.3142
BPZ-I1MC-genus BPZ I1MC genus 33 LeViT 0.1985 0.3115 0.1985 0.2042 0.1725
BPZ-I1MC-genus BPZ I1MC genus 33 SWINv2 0.3395 0.3881 0.3395 0.3202 0.2986
BPZ-I1MC-genus BPZ I1MC genus 33 ViLT 0.6001 0.6931 0.6001 0.5823 0.5756

BPZ-I1MC-species BPZ I1MC species 72 BioCLIP 0.3656 0.4298 0.3656 0.3400 0.3558
BPZ-I1MC-species BPZ I1MC species 72 CLIP 0.1128 0.2835 0.1128 0.1107 0.1025
BPZ-I1MC-species BPZ I1MC species 72 ConvNeXt 0.2592 0.3895 0.2592 0.2394 0.2498
BPZ-I1MC-species BPZ I1MC species 72 LeViT 0.1422 0.1897 0.1422 0.1413 0.1276
BPZ-I1MC-species BPZ I1MC species 72 SWINv2 0.1913 0.3177 0.1913 0.1855 0.1802
BPZ-I1MC-species BPZ I1MC species 72 ViLT 0.4757 0.4998 0.4757 0.4287 0.4676

NHMC-BPZ-genus NHMC BPZ genus 16 BioCLIP 0.4632 0.7094 0.4632 0.5178 0.4222
NHMC-BPZ-genus NHMC BPZ genus 16 CLIP 0.3076 0.4796 0.3076 0.2993 0.2161
NHMC-BPZ-genus NHMC BPZ genus 16 ConvNeXt 0.3697 0.6106 0.3697 0.3770 0.3010
NHMC-BPZ-genus NHMC BPZ genus 16 LeViT 0.3481 0.4962 0.3481 0.3284 0.2591
NHMC-BPZ-genus NHMC BPZ genus 16 SWINv2 0.4371 0.5217 0.4371 0.3886 0.3546
NHMC-BPZ-genus NHMC BPZ genus 16 ViLT 0.9230 0.9552 0.9230 0.9311 0.9106

Table 12. Evaluation of Pretrained Vision Models for Cross-Dataset Domain Adaptation in Taxonomic Classification. This table reports
performance metrics, including accuracy and Matthews Correlation Coefficient (MCC), alongside Accuracy (Acc), Precision (Prec), Recall
(Rec), F1 Score (F1) - for models assessed in two domain adaptation scenarios: (1) lab-to-lab (NHMCC to BeetlePalooza) and (2) lab-to-
in-situ (NHMCC or BeetlePalooza to I1MCC). Results are presented at genus and species levels for taxa shared across source and target
datasets, illustrating model generalizability across lab and field imaging contexts.



Dataset Images Data Type Model Acc Prec Rec F1 MCC

Subset 1000 image BioCLIP 0.8150 0.7585 0.8150 0.7780 0.8038
Subset 1000 image ConvNeXt 0.8150 0.7733 0.8150 0.7864 0.8037
Subset 1000 image DINOv2 0.7750 0.7313 0.7750 0.7349 0.7609
Subset 1000 image ViLT 0.9350 0.9121 0.9350 0.9172 0.9314

Subset 1000 image+traits BioCLIP 0.8300 0.7603 0.8300 0.7850 0.8198
Subset 1000 image+traits ConvNeXt 0.8350 0.7899 0.8350 0.8052 0.8251
Subset 1000 image+traits DINOv2 0.7600 0.7312 0.7600 0.7290 0.7449
Subset 1000 image+traits ViLT 0.9350 0.9121 0.9350 0.9172 0.9314

Subset 1000 image+traits+env BioCLIP 0.8450 0.7958 0.8450 0.8064 0.8347
Subset 1000 image+traits+env ConvNeXt 0.8000 0.7304 0.8000 0.7528 0.7863
Subset 1000 image+traits+env DINOv2 0.7550 0.6896 0.7550 0.7030 0.7379
Subset 1000 image+traits+env ViLT 0.9050 0.8783 0.9050 0.8814 0.8990

Full 11372 image BioCLIP 0.9373 0.9325 0.9373 0.9323 0.9330
Full 11372 image ConvNeXt 0.9531 0.9426 0.9531 0.9461 0.9498
Full 11372 image DINOv2 0.9496 0.9453 0.9496 0.9446 0.9461
Full 11372 image ViLT 0.9982 0.9974 0.9982 0.9978 0.9981

Full 11372 image+traits BioCLIP 0.9417 0.9357 0.9417 0.9368 0.9375
Full 11372 image+traits ConvNeXt 0.9566 0.9512 0.9566 0.9514 0.9535
Full 11372 image+traits DINOv2 0.9478 0.9445 0.9478 0.9430 0.9441
Full 11372 image+traits ViLT 0.9956 0.9951 0.9956 0.9948 0.9953

Full 11372 image+traits+env BioCLIP 0.9579 0.9531 0.9579 0.9536 0.9549
Full 11372 image+traits+env ConvNeXt 0.9649 0.9604 0.9649 0.9604 0.9624
Full 11372 image+traits+env DINOv2 0.9513 0.9502 0.9513 0.9468 0.9479
Full 11372 image+traits+env ViLT 0.9956 0.9952 0.9956 0.9950 0.9953

Table 13. Performance comparison of four models (BioCLIP, ConvNeXt, DINOv2, ViLT) on species-level classification using the
BeetlePalooza dataset. Results are reported for both the full dataset and a 1,000-specimen subset across three input configurations: image-
only, image with morphological traits (image+traits), and image with both traits and environmental metadata (image+traits+env). Metrics
include Accuracy (Acc), Precision (Prec), Recall (Rec), F1 Score (F1), and Matthews Correlation Coefficient (MCC).


