
A. Dataset Details
Dataset Generation ICSD contains around 258,000 entries that are experimentally verified. We choose only the crystal
structures with lattice constants (a, b, c) less than 20 Å,because crystal structures with large lattice constants are relatively rare
in nature. This produces a list of ≈ 211,000 materials. The CIF files for these selected materials are imported into abTEM,
an electron microscopy simulation package, to render the crystal structure into 3-dimensional (3D) datacube sized (16, 100,
100) with the voxel sampling rate of (1.6 Å, 0.2 Å, 0.2 Å) along depth, height, and width dimensions. This anisotropic
voxel sampling is chosen to match with the electron ptychography resolution because typically the depth resolution is much
poorer compared to lateral (height and width) resolution. We also randomly remove 1% of the atoms to emulate vacancies
that are commonly observed in real materials, this enhance the applicability of the generative model although we did not
incorporate the vacancy-induced strain to the crystal. The dataset is further augmented 3 times by orienting crystals along
the 3 major a-, b-, and c-axis, resulting in a full dataset of ≈ 633,000 materials. The rendered 3D datacubes are converted
from atomic electrostatic potential (volts) to phase change angle (radians) by taking the angle of the complex function
O(r) ≈ exp(iσeV (r)), so x := σeV (r) = angle(O(r)), which is consistent with our electron ptychography forward
model. The value range of such phase change angle is bounded between [-π, π] but commonly within [0, 1] because both σe

and V (r) are larger than 0 and σeV is usually less than 1 radian given our voxel sampling.

Training Set Augmentation During training, we first apply random in-plane rotation (depth dimension being the rotating
axis), and then randomly crop a sub-cube sized (8, 64, 64). This produces a training datacube that spans across (12.8 Å,
12.8 Å, 12.8 Å) in space and covers a couple repeating units cells.

Diffraction Pattern Simulation For MEP-DIFFUSION sampling, we simulate diffraction patterns from test set materials
using abTEM. The diffraction patterns are simulated with optical parameters comparable to actual experimental conditions,
including 300 kV acceleration voltage for electrons, 21.4 semi-convergence angle, 200 Å overfocus, 500 nm spherical aber-
ration, 0.512 Å scan step size, 26 × 26 scan patterns, and electron dose of 106 e−/Å2. The diffraction patterns are simulated
with maximum collection angle of 2.5 Å−1 and resampled to 128 by 128 pixels. We did not include partial coherence or
phonon vibration because the effect will be quite limited at these experimental conditions.

B. Data Rescaling
We demonstrate how data rescaling can be interpreted as up-weighting the “x”-prediction component in the “v”-prediction
task. Consider the ground truth v = αtϵ − σtx and network prediction vθ(zt, t). The original “v”-prediction objective can
be decomposed as:

min
θ

||v − vθ||22 = min
θ

||(αtϵ− σtx)− (αtϵθ − σtxθ)||22

= min
θ

||αtϵ− σtx− αtϵθ + σtxθ||22

= min
θ

||αt(ϵ− ϵθ) + σt(xθ − x)||22

When we rescale the data by a factor c such that x′ = cx, the new objective becomes:

min
θ

||v′ − v′
θ||22 = min

θ
||αt(ϵ− ϵθ) + cσt(xθ − x)||22.

This shows that the “x”-prediction component is up-weighted by a factor of c in the revised objective.

C. PtyRAD Solver for Ptychographic Reconstruction
We use PtyRAD [26], an open-source ptychographic reconstruction package, to implement iterative gradient descent algo-
rithms for computing gradients required by DPS and to reconstruct baselines with Adam and L-BFGS optimizers. PtyRAD
leverages PyTorch’s automatic differentiation engine to efficiently compute gradients of optimizable tensors. For all experi-
ments, we first learn a single fixed probe using Adam, and hold it constant for all reconstruction methods using the physical
forward model because the test data are simulated with the same probe condition. The probe is fit on 32 examples from
our validation set. We minimize the electron ptychography reconstruction objective, except we minimize both the 32 atomic
structures and the probe simultaneously. For PtyRAD[Adam] and PtyRAD[L-BFGS] baselines, we adopt the mini-batch up-
date scheme and use a batch size of 32 diffraction patterns for each update step. A learning rate of 5e-4 was used for Adam,



while L-BFGS was ran three times with the following learning rates: 1, 1e-1, 1e-2. We select the best result from L-BFGS
according to the loss as our baseline. The Adam baseline is reconstructed with 200 iterations, while the L-BFGS baseline
is reconstructed with 5 iterations because it converges faster. Note that each iteration in the Adam baseline corresponds to
a full pass of all 676 diffraction patterns per example, while in the L-BFGS baseline each iteration is done by evaluating 20
randomly chosen mini-batches to get the estimation of the Hessian matrix. The total number of diffraction patterns seen by
each optimizer for each iteration is roughly the same.

D. Network Architecture Details

The UNet architecture is composed of five macro structures, illustrated in Figure 8.
• Stage 1 Down: Residual Block, Residual Block, 2D Downsampling/Convolutional Block
• Stage 2 Down: Residual Block, Residual Block, Attention, 3D Downsampling/Convolutional Block
• Bottleneck: Residual Block, Attention, Residual Block
• Stage 2 Up: 3D Upsampling/Convolutional Block, Residual Block, Residual Block, Attention
• Stage 1 Up: 2D Upsampling/Convolutional Block, Residual Block, Residual Block
The architecture only downsamples or upsamples the spatial dimensions when the channel count changes. Specifically, we
downsample when increasing channel dimensions and upsample when decreasing them. Each down structure maintains two
connections to its corresponding up structure. The channel progression for each stage is as follows:
• Stage 1 Down: 16, 16, 32, 32, 64, 64
• Stage 2 Down: 128, 128, 128, 128, 256, 256, 256, 256
• Bottleneck: 256
• Stage 2 Up: 256, 256, 256, 256, 128, 128, 128, 128
• Stage 1 Up: 64, 64, 32, 32, 16, 16
The network’s spatial transformation is significant: after Stage 1 Down, the input tensor of 8 × 64 × 64 is compressed to
8× 8× 8, with voxel sampling evolving from (1.6 Å, 0.2 Å, 0.2 Å) to (1.6 Å, 1.6 Å, 1.6 Å). Stage 2 Down performs uniform
downsampling across all dimensions, with Stage 1 Up ultimately restoring the original tensor size and sampling rate. The
model has 100M total parameters.
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Figure 8. 3D UNet architecture with anisotropic processing. The network first downsamples along height and width to match the coarser
spatial sampling along depth, then performs downsampling across all dimensions. Self-attention layers are applied in low resolution blocks.

E. Hyperparameters

See Table 3 for training hyperparameters, and Table 4 for sampling hyperparameters.



Hyperparameter Setting

Optimizer AdamW
Batch Size 256

Learning Rate 0.0001
Weight Decay 0.01

λ1 -20
λ0 20

w(λt)
N (λt;−7,3)

Z

Table 3. Table of Training Hyperparameters.

Hyperparameter Setting

Sampler SDE DPMSolver++
Schedule PolyExponential

Min Sigma 0.1
Max Sigma 800

ρ 1.0
g(λt) 5000 ∗ sigmoid(4− λt)

1/2

Table 4. Table of Sampling Hyperparameters.

F. Periodicity and logSNR
One of the critical adjustments required to fit a diffusion model on this periodic data was to tune our loss weighting to focus
the model on very low logSNR regions. This is because as soon as the faintest crystal emerges the model immediately
can recognize it. In order to unconditionally sample periodic crystals with our model we need the network to be capable of
hallucinating periodicity from Gaussian noise and therefore we focus training on the region where the periodicity is beginning
to emerge. We provide an example of the trained network predicting the crystal from diffusion latents at different logSNR
in Figure 3.

G. Additional Qualitative Comparisons
We include additional qualitative comparisons in Figure 9 and Figure 10. We do this primarily to illustrate the limitations
discussed in section 6. In Figure 9, subfigure (A) shows a near perfect reconstruction, subfigure (B) shows a generation where
the structure is blurred, subfigure (C) shows a generation where many slices are correct but misordered, subfigure (D) shows
a generation with incorrect structure. In Figure 10, all subfigures show partially correct structures of varying degrees.

H. Comparison of diffraction patterns
We include additional qualitative comparisons of diffraction patterns in Figure 11. The simulated diffraction patterns are
calculated by feeding the reconstructed crystals (generated by MEP-DIFFUSION) into the physical forward model. We
observe good agreement between ground truth and simulated patterns, indicating that the reconstructed crystals are similar
with the ground truth crystal structures.
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Figure 9. Additional qualitative comparisons. The slice indices denote the crystal structure at specific depth. The slice thickness is 1.6 Å
and the image width is 12.8 Å.
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Figure 10. Additional qualitative comparisons. The slice indices denote the crystal structure at specific depth. The slice thickness is 1.6 Å
and the image width is 12.8 Å.
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Figure 11. Ground truth and simulated diffraction patterns from reconstructed crystals using MEP-DIFFUSION. The corresponding crystals
are shown in Figure 1. We take the square root of the diffraction pattern intensity for better visualization.
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