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A. Supervised Holistic Metrics

Segmentation is an intermediate processing step where de-
sired features, such as defect structures, are identified from
input transmission electron microscopy (TEM) images. Ma-
chine learning metrics like loss, precision, recall, and F1-
score, focus on the similarity between human annotations
and model predictions. Therefore, these metrics may not
fully capture the realistic usefulness of a model. In Secs. 4
and 5 of the main text, we evaluated the practical usefulness
of a model using the total number of defects detected from
model predictions. The detected defect count is a holistic
metric because it intrinsically depends on all ML metrics.
That is, a model must not only have good classification
performance, but also must avoid noisy and uncertain pre-
dictions, as measured by the proposed pixel value histogram
metrics, certainty and abundance.

Detected defect count can act as an effective and unsu-
pervised indicator of practical model performance, but it

does not measure the ML model accuracy. For example,
the post-processing algorithm CHAC [4] could detect the
same number of grains in a ground truth image and a model
prediction image, but their shapes and locations could be
very different. Therefore, we also included two additional
supervised holistic metrics to capture model accuracy and
to provide a more complete evaluation of practical model
performance. As discussed in Sec. 4.3, the use of the human
annotation as ground truth does introduce some bias due to
the presence of human errors, but the insights gained are
nonetheless valuable.

A.1. Intersection-over-Union

A common metric used in object detection, intersection-over-
union (IoU) can be presently used to measure the similarity
between defects detected in ground truth images and model
prediction images [2]. IoU provides information about the
accuracy of both defect shape and location. Although it is

Figure A.1. Visualization of holistic metrics. (a) shows intersection-over-union (IoU) using the grain boundary dataset. j corresponds to a
specific cross-validation model. P,A corresponds to concatenated validation predictions and corresponding ground truth annotations. Colors
are shown only for visualization where purple are predictions, green are ground truth annotations, yellow are their intersection, and blue are
their union. (b) shows L1-distance calculated, in this case, using grain diameter data. Again, j corresponds to a specific cross-validation
model. i corresponds to a specific size bin
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Figure A.2. Holistic metrics plotted by L2-regularization strength λ and U-Net architecture for the grain boundary dataset using the CHAC
post-processing algorithm. (a) is the number of detected defects (grains) across the entire dataset, (b) is the intersection-over-union, and (c)
is the L1-distance based on grain diameter

similar to F1-score, IoU is a holistic metric because it oper-
ates on the final, post-processed dataset, and thus describes
the ability of a model to produce usable segmentations yield-
ing defects consistent with ground truth data. It is calculated
using the equation

IOU(P,A) =

∑
(P ⊙A)∑

[(P ⊕A)− (P ⊙A)]

where P,A are the concatenation of all post-processed bi-
nary validation predictions and ground truth annotations,
respectively, ⊕,⊙ are element-wise addition and multiplica-
tion, respectively, and

∑
· is the sum over all pixel values

for the resulting binary arrays. A pictorial visualization of
IoU using the grain boundary dataset is shown in Fig. A.1a.

A.2. L1 (Manhattan) Distance
Defects are often studied statistically by computing the his-
togram of their sizes. Models which yield size histograms
similar to the ground truth histogram will be of more practi-
cal value. Measuring the dissimilarity between histograms
is a common mathematical procedure with many available
techniques, the simplest of which being L1, or Manhattan,
distance [1]. It is calculated using the equation

L1(p, a) =
∑
i

|pi − ai|

where p, a are prediction and ground truth annotation defect
size histograms and i corresponds to a specific bin. If p
and q are left unnormalized, L1-distance will depend on
both sample shape accuracy and sample size. It therefore
represents the overall ability of a model to yield quality
defect statistics. It is visualized using the grain boundary
dataset in Fig. A.1b.

A.3. Comparison of Holistic Metrics

Fig. A.2 shows results for the three holistic metrics discussed,
applied to the grain boundary dataset. The prediction quality
improvement from L2-regularization and the EfficientNetB7
encoder seen in Figs. 4 and 5 is repeated by IoU in Fig. A.2b,
where an increase from 0.41 to 0.50 is observed. This implies
that there is a greater agreement with the ground truth, but a
substantial disagreement (0.50) still persists. Given that Fig.
A.2a shows many more grains are being predicted, even sur-
passing the ground truth, most appear exclusively in either
the prediction or ground truth, not both. This is demonstrated
by a few representative examples taken from the Eff-UNet
architecture (λ=1e-3) in Fig. A.3. Despite the mismatched
position of many grains, L1-distance in Fig. A.2c shows that
this architecture still yields more similar grain shapes on
average than insufficiently regularized models. Furthermore,
it indicates that Eff-UNet only marginally outperforms UNet
when both are optimally regularized, despite the improve-
ments to model self-confidence by the former. L1-distance
is also one of the only cases where Eff-UNet++ clearly out-
performs Eff-UNet, indicating some potential value in the
U-Net++ architecture.

B. Generalization to Other TEM Datasets

In this work, it has been shown that EfficientNetB7 and
L2-regularization contribute important prediction quality
enhancements, at least for the grain boundary dataset used.
Since every TEM dataset is unique, typically having a unique
segmentation task, the methodology and conclusions must be
able to generalize to other datasets. Here, the λ grid search
and architecture comparison (Fig. 5) was repeated for two
datasets with their own specific materials, environmental con-
ditions, imaging conditions, and defect type of interest. The
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Figure A.3. Visualization of IoU results for validation predictions from the Eff-UNet, λ=1e-3 model. Purple polygons correspond to grains
detected in prediction images, while green polygons correspond to grains detected in ground truth annotation images

Figure A.4. Representative helium bubble dataset TEM images (top) and corresponding ground truth annotation images (bottom)
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same dataset pre-processing procedure was applied to both
datasets and the same hyperparameters were used for train-
ing. UNet++ and Eff-UNet++ architectures were neglected
due to their minimal difference with UNet and Eff-UNet
architectures.

B.1. Helium Bubble Dataset

The first dataset is composed of 10 bright field TEM images
which have been downscaled to 1024×1024, then quartered
into 4-512×512 images. The defect of interest is helium
bubbles, which are a result of 200 keV He+ irradiation to
a fluence of 5e16 ions/cm2. The bulk materials imaged are
Ni-based alloys with varying concentrations of minor alloy-
ing elements Fe, Cr, Co, etc. More details about material
fabrication and dataset creation can be found in [3]. The
post-processing algorithm we call BubbleFinder was used.
It is designed to fit circles around segmented bubbles us-
ing LoG and Hough transforms, and was also developed
in [3]. Some representative images and their ground truth
annotations from the dataset are presented in Fig. A.4.

The results for the bubble dataset (all metrics) are shown

in Fig. B.1, where familiar trends are seen: (1) precision
and recall trade off as λ increases with F1-score showing
little improvement, other than UNet having higher scores
on average, (2) certainty and abundance are higher on aver-
age for Eff-UNet models, and (3) more defects tend to be
detected by Eff-UNet models for all λ values. Interestingly
though, Figs. B.1g-h show very similar performance for both
architectures, and the ML metrics in B.2a-e are much higher
numerically than for the grain boundary dataset. In addition
to the less exaggerated trends, this behavior is result of much
less intrinsic ambiguity in the dataset. Nearly every bubble
is obvious and with clear boundary, leading to less human
errors and higher model self-confidence. As a result, little
performance gains are to be expected from L2-regularization
and pre-trained EfficientNet encoders.

B.2. Faulted Dislocation Loop Dataset

The second dataset is composed of 31 Rel-Rod TEM dark-
field images of irradiated ion alloys. . The defect of interest
is faulted dislocation loops of type a/3⟨111⟩{111} which
were imaged perpendicular to the habit plane such that they

Figure B.1. All 8 metrics calculated for UNet and Eff-UNet architectures for the helium bubble dataset. (a-c) are classification metrics, (d-e)
are histogram metrics, and (f-h) are holistic metrics

4



Figure B.2. Representative faulted dislocation dataset TEM images (top) and corresponding ground truth annotation images (bottom)

Figure B.3. All 8 metrics calculated for UNet and Eff-UNet architectures for the faulted dislocation dataset. (a-c) are classification metrics,
(d-e) are histogram metrics, and (f-h) are holistic metrics
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appear as lines not ellipses. The post-processing algorithm is
a simple bounding box fitter which we call Bbox, allowing
dislocation length to be extracted by measuring the bounding
box diagonal length. Some representative TEM images and
ground truth annotations from this dataset are shown in Fig.
B.2.

The same trends with the grain boundary and bubble
datasets are also present in the Fig. B.3 results for this
dataset, only with some interesting differences: (1) preci-
sion and recall both show the expected tradeoff but F1-score
is marginally, but consistently higher for Eff-UNet and recall
is far lower at 0.38 for all models, (2) certainty and abun-
dance are again much higher for Eff-UNet than U-Net, and it
peaks at λ=1e-4 instead of λ=5-e4, 1e-3 and (3) Bbox detects
less dislocations for more self-confident models, though it
yields statistics more similar to ground truth data. This is
because Bbox is a simple and naı̈ve post-processor compared
to CHAC and BubbleFinder, where it accepts any contiguous
region of white pixels as a dislocation. Models with lower
self-confidence, away from λ=1e-4, have noisier predictions,
causing Bbox to detects many additional small (<5 nm),
erroneous dislocations.

This dataset differs from both the grain boundary and
bubble dataset because it has the lowest signal to noise ratio.
In many cases it is difficult to differentiate a dislocation from
precipitates or noise, leading to an ill-defined objective func-
tion. Despite this, notable improvements are still prevalent
in models using optimal L2-regularization and EfficientNet.
Together, the results for all three datasets (Figs. 4, B.1, and
B.3) show that our methodology can generalize to other
dataset, but the improvements are most significant when the
objective function is not too ill-defined or well-defined.
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Code and Data Availability

The code developed for this work can be found on GitHub
at https://github.com/psu-rdmap/unet-compare. All data, ex-
cept for the dislocation TEM images, training results, and the
accompanying analysis code can be found on ScholarSphere
at https://scholarsphere.psu.edu/resources/b80356d7-6485-
40aa-841d-8f598c4ee9e2.
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