#### Supplementary Material

# CytoDiff: AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics

Jan Carreras Boada $^{1,4,*},$ Rao Muhammad Umer $^{1,*},$  Carsten  $\operatorname{Marr}^{1,2,3}$ 

 $^{1}$ Institute of AI for Health, Helmholtz Zentrum München - German Research Center

for Environmental Health, Neuherberg 85764, Germany

<sup>2</sup> Department of Medicine III, Ludwig-Maximilian-University Hospital, Munich, Germany

<sup>3</sup> DKTK, German Cancer Consortium, Germany

<sup>4</sup> Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (ESCI-UPF),
Barcelona 08003, Spain

sarcorona cocco, spani

# Supplementary Figures

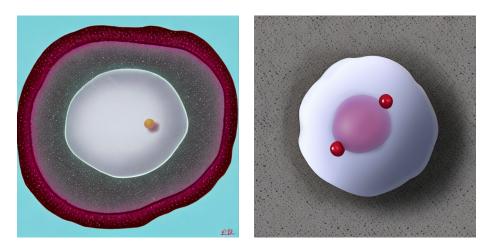



Figure S1: Synthetic eosinophil images generated with stable diffusion 2.1

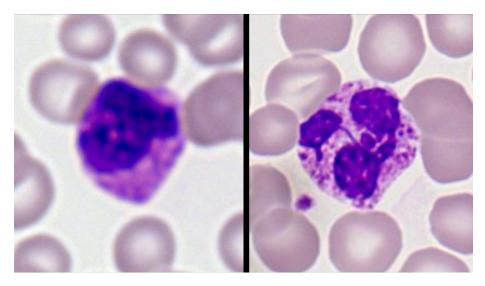



Figure S2: Quality comparison of real images from the Munich AML Morphology Dataset. This figure shows the first two images from the Basophils folder. The images demonstrate a significant quality difference, which reinforces the idea of doing a manual selection.

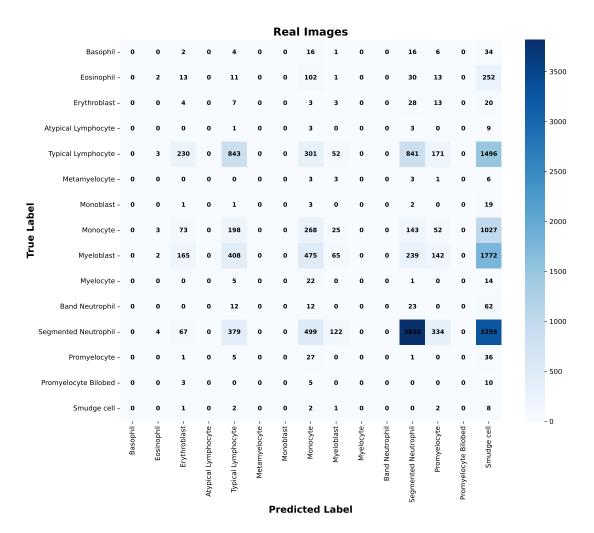



Figure S3: Confusion matrix of ResNet-50 trained on all real images. Results are aggregated over the test sets of all 5 cross-validation folds.

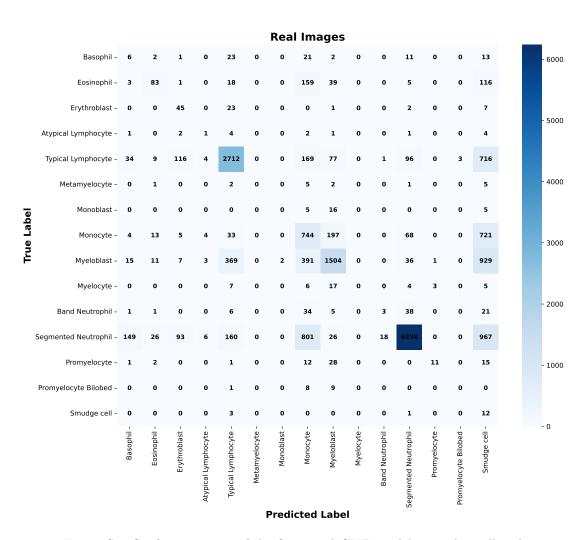



Figure S4: Confusion matrix of the fine-tuned CLIP model trained on all real images. Results are aggregated over the test sets of all 5 cross-validation folds.

# Promyelocyte

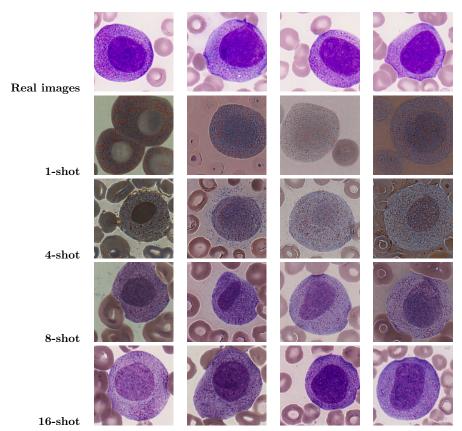



Figure S5: Real and synthetic Promyelocyte images generated using different shot conditions. Prompt used for generation: "Photorealistic promyelocyte in peripheral blood smear, large round nucleus with visible nucleoli, deep blue cytoplasm with prominent azurophilic granules, Wright-Giemsa stain, ultra-detailed, medical cytology, 40x magnification, sharp focus, high-resolution."

#### Segmented Neutrophil

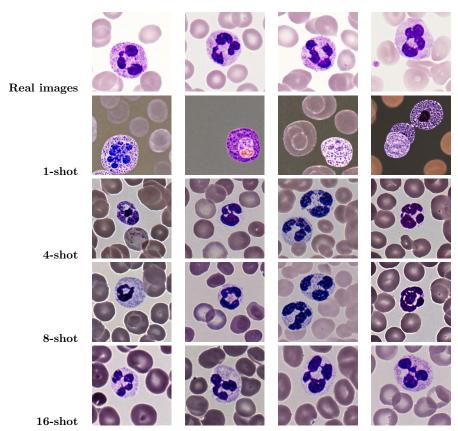



Figure S6: Real and synthetic Segmented Neutrophil images generated using different shot conditions. Prompt used for generation: "Photorealistic segmented neutrophil cell under microscope, peripheral blood smear, multi-lobed nucleus (3/5 lobes) with thin chromatin strands, pale pink cytoplasm with fine granules, surrounded by red blood cells, medical cytology, high detail, clinical pathology, Wright-Giemsa stain, white background, soft lighting, 40x magnification, scientific illustration style, sharp focus, ultra-detailed, macro lens."

### Promyelocyte Bilobed

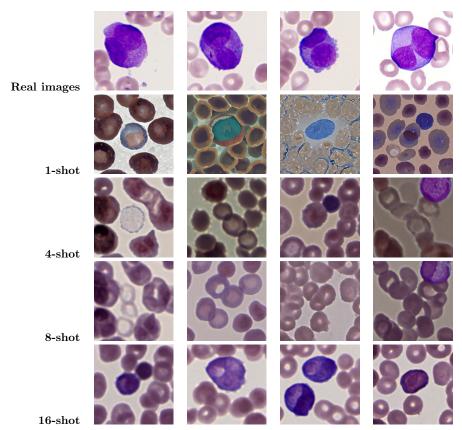



Figure S7: Real and synthetic Promyelocyte Bilobed images generated using different shot conditions. Prompt used for generation: "Detailed microscopic image of a bilobed promyelocyte, peripheral blood smear, two distinct nuclear lobes, cytoplasm filled with azurophilic granules, Wright-Giemsa stain, high-resolution, medical cytology, 40x magnification, sharp focus, realistic texture."

#### Frechet Inception Distance (FID) per cell class

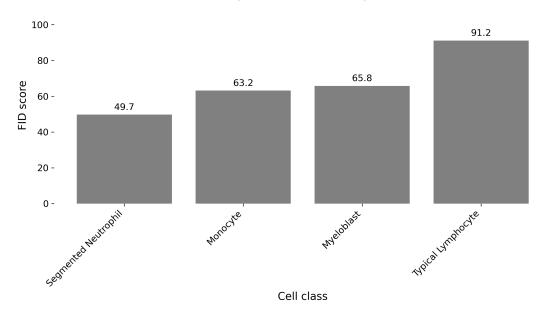



Figure S8: Bar plot showing the Fréchet inception distance (FID) of classes with more than  $1{,}000$  samples.

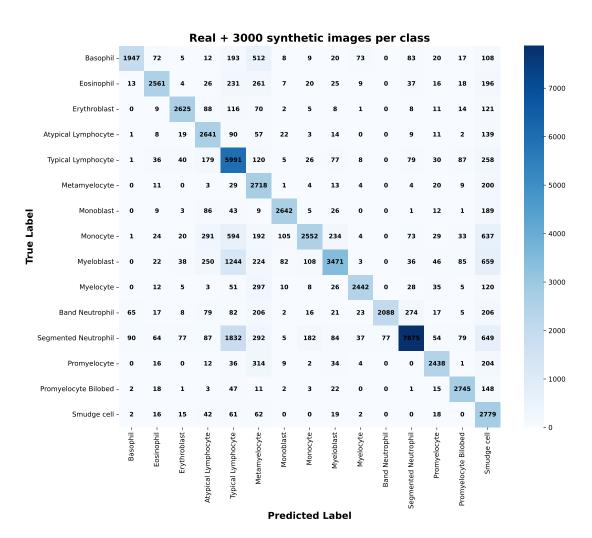



Figure S9: Confusion matrix of ResNet-50 trained on all real images and 3000 additional synthetic images per class. Results are aggregated over the test sets of all 5 cross-validation folds.

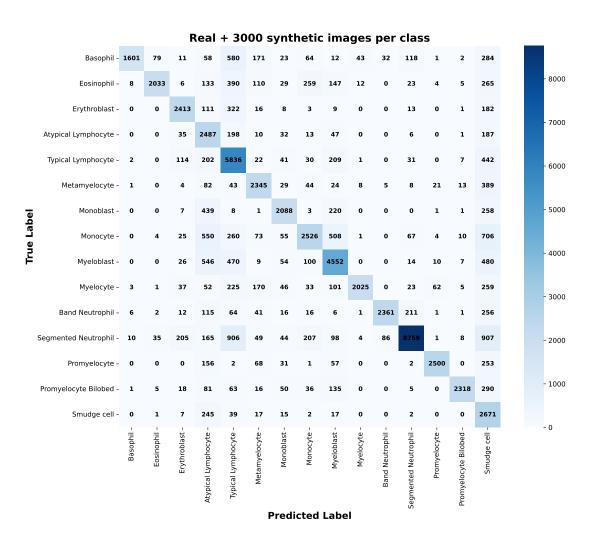



Figure S10: Confusion matrix of the fine-tuned CLIP model trained on all real images and 3000 additional synthetic images per class. Results are aggregated over the test sets of all 5 cross-validation folds.

Table S1: Classification performance of ResNet-50 and CLIP models trained on  $45{,}000$  synthetic images only (3,000 per class generated by CytoDiff) of 15 blood cell classes. The dataset is split into 60% training, 20% validation, and 20% test sets. Results are averaged over 5 cross-validation folds.

| Model (Split)          | Accuracy                       | F1 macro                       | AUC                            |
|------------------------|--------------------------------|--------------------------------|--------------------------------|
| ResNet-50 (Validation) | $0.93{\scriptstyle~\pm 0.01}$  | $0.93 \pm 0.01$                | $0.99 \pm 0.00$                |
| ResNet-50 (Test)       | $0.81{\scriptstyle~ \pm 0.01}$ | $0.82{\scriptstyle~ \pm 0.00}$ | $0.99{\scriptstyle~ \pm 0.00}$ |
| CLIP (Validation)      | $0.87{\scriptstyle~ \pm 0.01}$ | $0.87{\scriptstyle~ \pm 0.01}$ | $0.99{\scriptstyle~ \pm 0.00}$ |
| CLIP (Test)            | $0.77{\scriptstyle~\pm 0.01}$  | $0.78{\scriptstyle~ \pm 0.01}$ | $0.98{\scriptstyle~\pm0.00}$   |

Table S2: Classification performance of ResNet-50 trained with different amounts of synthetic images per class to the real dataset. A random classifier baseline is included for comparison. Results are averaged over 5 cross-validation folds.

| # Images | Accuracy            |                     | F1 Macro            |                     | AUC             |                     |
|----------|---------------------|---------------------|---------------------|---------------------|-----------------|---------------------|
|          | Validation          | Test                | Validation          | Test                | Validation      | Test                |
| Random   | $0.07 \pm 0.00$     | $0.07 \pm 0.00$     | $0.07 \pm 0.00$     | $0.07 \pm 0.00$     | $0.50 \pm 0.00$ | $0.50 \pm 0.00$     |
| 0        | $0.40  \pm \! 0.07$ | $0.27  \pm \! 0.09$ | $0.08 \pm 0.03$     | $0.07  \pm \! 0.01$ | $0.57 \pm 0.07$ | $0.56 \pm 0.03$     |
| 100      | $0.62  \pm \! 0.06$ | $0.49  \pm \! 0.05$ | $0.41  \pm \! 0.02$ | $0.35  \pm \! 0.05$ | $0.90 \pm 0.01$ | $0.82  \pm \! 0.02$ |
| 200      | $0.65  \pm \! 0.02$ | $0.52 \pm 0.03$     | $0.53 \pm 0.02$     | $0.46 \; {\pm}0.02$ | $0.93 \pm 0.01$ | $0.87 \pm 0.01$     |
| 300      | $0.65  \pm \! 0.02$ | $0.53 \pm 0.03$     | $0.59 \pm 0.02$     | $0.50 \pm 0.02$     | $0.94 \pm 0.01$ | $0.89 \pm 0.01$     |
| 400      | $0.67 \pm\! 0.02$   | $0.52  \pm \! 0.01$ | $0.61 \pm 0.04$     | $0.51  \pm \! 0.02$ | $0.95 \pm 0.01$ | $0.89 \pm 0.01$     |
| 500      | $0.69 \pm 0.02$     | $0.55 \pm 0.04$     | $0.66 \pm 0.03$     | $0.56 \pm 0.02$     | $0.96 \pm 0.01$ | $0.91 \pm 0.01$     |
| 600      | $0.71  \pm \! 0.02$ | $0.58  {\pm}0.02$   | $0.69 \pm 0.02$     | $0.58 \pm 0.01$     | $0.97 \pm 0.01$ | $0.92 \pm 0.01$     |
| 700      | $0.71\ \pm0.01$     | $0.60 \pm 0.03$     | $0.70 \pm 0.01$     | $0.61 \pm 0.01$     | $0.97 \pm 0.01$ | $0.93 \pm 0.01$     |
| 800      | $0.73 \pm 0.01$     | $0.62  \pm \! 0.01$ | $0.72  \pm \! 0.02$ | $0.61  \pm \! 0.02$ | $0.97 \pm 0.01$ | $0.94 \pm 0.01$     |
| 900      | $0.75 \pm 0.01$     | $0.66 \pm 0.03$     | $0.76 \pm 0.02$     | $0.66 \pm 0.01$     | $0.98 \pm 0.01$ | $0.94 \pm 0.01$     |
| 1000     | $0.77  \pm \! 0.02$ | $0.64  \pm \! 0.02$ | $0.77\ \pm0.02$     | $0.65  \pm \! 0.02$ | $0.98 \pm 0.01$ | $0.94 \pm 0.01$     |
| 2000     | $0.82  \pm \! 0.02$ | $0.72  \pm \! 0.01$ | $0.84 \pm 0.01$     | $0.74 \pm 0.01$     | $0.99 \pm 0.01$ | $0.96 \pm 0.01$     |
| 3000     | $0.86 \pm 0.01$     | $0.75 \pm 0.01$     | $0.87  {\pm}0.01$   | $0.77 \; {\pm}0.01$ | $0.99 \pm 0.01$ | $0.98 \pm 0.01$     |
| 4000     | $0.87  {\pm}0.01$   | $0.76 \pm 0.01$     | $0.88 \pm 0.01$     | $0.77 \; {\pm}0.01$ | $0.99 \pm 0.01$ | $0.98 \pm 0.01$     |
| 5000     | $0.87  \pm \! 0.01$ | $0.77  \pm \! 0.01$ | $0.89 \pm 0.01$     | $0.78 \pm 0.01$     | $0.99 \pm 0.01$ | $0.98 \pm 0.01$     |

Table S3: Classification performance of the CLIP model trained with different amounts of synthetic images per class to the real dataset. Results are averaged over 5 cross-validation folds.

| # Images | Accuracy            |                     | F1 Macro            |                     | AUC                 |                     |
|----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|          | Validation          | Test                | Validation          | Test                | Validation          | Test                |
| 0        | $0.78 \pm 0.01$     | $0.62 \pm 0.03$     | $0.27 \pm 0.05$     | $0.23 \pm 0.02$     | $0.88 \pm 0.02$     | $0.83 \pm 0.02$     |
| 100      | $0.71  \pm \! 0.03$ | $0.62  {\pm}0.02$   | $0.44  \pm \! 0.03$ | $0.43  \pm \! 0.02$ | $0.92  {\pm}0.01$   | $0.88 \pm 0.01$     |
| 200      | $0.73  \pm \! 0.02$ | $0.65  \pm 0.02$    | $0.59  {\pm} 0.02$  | $0.54  \pm \! 0.02$ | $0.95  \pm \! 0.01$ | $0.91\ \pm0.01$     |
| 300      | $0.73 \pm 0.01$     | $0.65 \pm 0.01$     | $0.62 \pm 0.04$     | $0.58 \pm 0.01$     | $0.95 \pm 0.01$     | $0.92 \pm 0.01$     |
| 400      | $0.73 \pm 0.02$     | $0.67 \pm\! 0.02$   | $0.65 \pm 0.03$     | $0.60 \pm 0.02$     | $0.96 \pm 0.01$     | $0.93 \pm 0.01$     |
| 500      | $0.74\ {\pm}0.02$   | $0.68 \pm 0.01$     | $0.69 \pm 0.03$     | $0.64  \pm \! 0.02$ | $0.96 \pm 0.01$     | $0.94 \pm 0.01$     |
| 600      | $0.75  \pm \! 0.02$ | $0.69  {\pm}0.02$   | $0.71  \pm \! 0.02$ | $0.65  \pm \! 0.01$ | $0.97  {\pm}0.01$   | $0.94 \pm 0.01$     |
| 700      | $0.77 \pm 0.01$     | $0.70\ \pm0.01$     | $0.73 \pm 0.02$     | $0.66 \pm 0.02$     | $0.97\ \pm0.01$     | $0.95 \pm 0.01$     |
| 800      | $0.76  \pm \! 0.02$ | $0.69 \pm 0.01$     | $0.73  \pm \! 0.02$ | $0.67  {\pm}0.01$   | $0.97  {\pm}0.01$   | $0.95 \pm 0.01$     |
| 900      | $0.78 \pm 0.01$     | $0.71\ \pm0.01$     | $0.75 \pm 0.02$     | $0.69 \pm 0.01$     | $0.97\ \pm0.01$     | $0.95 \pm 0.01$     |
| 1000     | $0.77 \pm 0.01$     | $0.71\ \pm0.01$     | $0.75 \pm 0.01$     | $0.69 \pm 0.01$     | $0.97\ \pm0.01$     | $0.95 \pm 0.01$     |
| 2000     | $0.82  \pm \! 0.01$ | $0.72 \pm 0.01$     | $0.81 \pm 0.01$     | $0.72  \pm \! 0.01$ | $0.98 \pm 0.01$     | $0.96 \pm 0.01$     |
| 3000     | $0.83  \pm \! 0.01$ | $0.73  \pm \! 0.01$ | $0.83  {\pm}0.01$   | $0.74  \pm \! 0.01$ | $0.99  {\pm} 0.01$  | $0.97  \pm \! 0.01$ |
| 4000     | $0.85  \pm \! 0.01$ | $0.75 \pm 0.01$     | $0.86 \; {\pm}0.01$ | $0.76 \pm 0.01$     | $0.99 \pm 0.01$     | $0.97  \pm \! 0.01$ |
| 5000     | $0.85 \pm 0.02$     | $0.77 \pm 0.01$     | $0.85 \pm 0.02$     | $0.77 \pm 0.01$     | $0.99 \pm 0.01$     | $0.97 \pm 0.01$     |