
Figure 3. Top: Overlay of TP53 gene counts as observed in indi-
vidual cells in Xenium Ovarian Cancer tissue. Bottom: Overlay of
TP53 gene on simulated pseudo-bulk spot used to form the HES-
CAPE dataset

7. Datasets
This section summarizes the spatial transcriptomics datasets
used in this study. The datasets are organized by gene panel
type. A summary table is provided in main Tab. 1. All tissues
sections were imaged at 40x magnification and preserved
using FFPE method (except where noted).

Since we use 10x Xenium samples with sub-cellular tran-
script detection, we need to simulate a 10x Visium patch of
size 55µm, called pseudo-spot, for patch-based image-gene
pairs. We achieve this by sum pooling the transcripts of
cells within the simulated spot. The aggregated gene expres-
sions in the simulated spots follow similar distributions to
the xenium gene expressions. This is additionally validated
visually by plotting expression of several biomarker genes
like TP53 on the spatial samples as seen in Fig. 3.

To enable efficient benchmarking, for each dataset above,
we have also created an image patch–spatial expression
dataset in the Hugging Face Arrow format, comprising a
total of 7229962 image-gene expression pairs combined.
Each pair is accompanied by patient-specific metadata and
is available on the Hugging Face Hub. For the final bench-
mark, we filter out replicates with different gene panels and
single gene panel datasets resulting in ⇠ 620k image-gene
expression pairs.

Patient-based stratification was employed for each dataset
to create training, validation, and test splits-ensuring that
each patient’s samples are confined to a single split. Since a
lot of 10x Xenium samples are part of the HEST-benchmark
test set, for fair evaluation we design our own testing splits

and test all image models from HEST-benchmark on these
new splits. All reported results are based on the provided
test split to clearly expose the impact of batch effects.

All dataset preprocessing and creation was done using
SpatialData and Huggingface Datasets library

7.1. Detailed Description of Dataset Groups
7.1.1. Human 5K Panel
This panel contains 6 datasets spanning multiple organs in-
cluding Skin, Prostate, Lymphoid, Lung, Breast, Cervix, and
Ovary. All samples are from cancer or diseased tissue pre-
served with FFPE, except one Fresh Frozen ovarian cancer
sample. The datasets have uniform pixel size around 0.274
µm.

7.1.2. Human Colon Panel
This panel includes 5 datasets exclusively focused on bowel
tissue, with both cancerous and healthy samples. All samples
are FFPE-preserved with pixel sizes ranging from 0.137 µm
to 0.274 µm. Three datasets come from the same study on
immune cell populations in colorectal cancer, all from the
same patient.

7.1.3. Human Lung Healthy Panel
The most extensive group with 19 datasets, all focused on
lung tissue. Samples include both healthy (6 datasets) and
diseased (13 datasets) states from 19 different patients with
pulmonary fibrosis. All datasets are from the study Vannan
et al. [47]. All images have consistent pixel size of 0.213
µm.

7.1.4. Human Immuno-Oncology Panel
This panel contains 5 datasets from 5 different organs (Ovary,
Lung, Pancreas, Bowel, Brain), all studying cancerous tissue.
Three datasets include identified patient information. All
samples have consistent pixel size around 0.274 µm and
include custom add-ons to the base panel.

7.1.5. Human Multi-Tissue Panel
A diverse group of 14 datasets covering 8 different organs
(Lymphoid, Bone, Pancreas, Skin, Liver, Heart, Lung, Kid-
ney). Includes all three disease states (Cancer, Healthy, Dis-
eased) with pixel sizes ranging from 0.137 µm to 0.274
µm. Most datasets are organ-specific paired samples (can-
cer/healthy or diseased/healthy).

7.1.6. Human Breast Panel
Includes 5 datasets all focused on breast cancer tissue. Two
datasets are from a study using the entire sample area from
one patient, while three are from a high-resolution mapping
study of tumor microenvironment. Pixel sizes range from
0.213 µm to 0.364 µm.



Table 7. Complete Test Recall@1 Results for both Image-to-Gene (I2G) and Gene-to-Image (G2I) tasks across different tissue panels.
Experiments with "—" indicate out of memory issues during training

5K Multi ImmOnc Colon Breast Lung
Model I2G G2I I2G G2I I2G G2I I2G G2I I2G G2I I2G G2I

MLP-CTransPath 0.022(0.002) 0.023(0.004) 0.029(0.004) 0.020(0.003) 0.023(0.002) 0.019(0.003) 0.020(0.004) 0.026(0.008) 0.026(0.005) 0.025(0.002) 0.022(0.004) 0.028(0.004)
MLP-CONCH 0.058(0.007) 0.058(0.006) 0.056(0.005) 0.041(0.005) 0.044(0.004) 0.028(0.002) 0.074(0.009) 0.062(0.005) 0.106(0.019) 0.067(0.011) 0.134(0.007) 0.127(0.013)
MLP-Gigapath 0.069(0.006) 0.067(0.002) 0.074(0.006) 0.051(0.005) 0.042(0.002) 0.028(0.002) 0.077(0.012) 0.073(0.010) 0.109(0.015) 0.079(0.007) 0.173(0.001) 0.165(0.005)
MLP-H0mini 0.059(0.002) 0.060(0.001) 0.048(0.009) 0.033(0.004) 0.041(0.005) 0.027(0.001) 0.071(0.006) 0.072(0.012) 0.086(0.005) 0.060(0.004) 0.099(0.005) 0.093(0.006)
MLP-UNI 0.065(0.011) 0.064(0.009) 0.061(0.006) 0.039(0.006) 0.060(0.009) 0.029(0.006) 0.079(0.001) 0.080(0.007) 0.091(0.015) 0.065(0.014) 0.164(0.016) 0.164(0.019)

scFoundation-CTransPath — — — — 0.024(0.002) 0.028(0.003) 0.022(0.002) 0.019(0.005) 0.028(0.002) 0.026(0.004) 0.029(0.002) 0.028(0.002)
scFoundation-CONCH — — — — 0.055(0.006) 0.043(0.003) 0.077(0.008) 0.068(0.011) 0.085(0.012) 0.082(0.016) 0.166(0.005) 0.147(0.014)
scFoundation-Gigapath — — — — 0.065(0.007) 0.052(0.009) 0.079(0.013) 0.064(0.004) 0.090(0.005) 0.102(0.015) 0.225(0.022) 0.195(0.027)
scFoundation-H0mini — — — — 0.050(0.003) 0.042(0.005) 0.080(0.007) 0.067(0.005) 0.112(0.006) 0.104(0.011) 0.131(0.011) 0.094(0.005)
scFoundation-UNI — — — — 0.058(0.005) 0.040(0.004) 0.079(0.008) 0.060(0.021) 0.094(0.008) 0.094(0.015) 0.191(0.011) 0.158(0.011)

Nicheformer-CTransPath 0.023(0.001) 0.024(0.001) 0.027(0.003) 0.024(0.002) 0.027(0.001) 0.027(0.001) 0.018(0.003) 0.021(0.004) 0.025(0.004) 0.027(0.003) 0.027(0.004) 0.031(0.003)
Nicheformer-CONCH 0.061(0.001) 0.076(0.006) 0.067(0.005) 0.077(0.003) 0.056(0.003) 0.063(0.004) 0.069(0.006) 0.068(0.003) 0.101(0.008) 0.123(0.004) 0.125(0.002) 0.164(0.003)
Nicheformer-Gigapath 0.062(0.002) 0.067(0.001) 0.075(0.007) 0.079(0.005) 0.063(0.004) 0.072(0.005) 0.067(0.005) 0.073(0.006) 0.121(0.008) 0.139(0.016) 0.155(0.006) 0.203(0.005)
Nicheformer-H0mini 0.065(0.004) 0.076(0.001) 0.069(0.006) 0.077(0.008) 0.053(0.002) 0.054(0.002) 0.076(0.007) 0.075(0.009) 0.125(0.011) 0.142(0.003) 0.129(0.007) 0.168(0.013)
Nicheformer-UNI 0.071(0.006) 0.082(0.003) 0.073(0.002) 0.079(0.002) 0.060(0.008) 0.067(0.007) 0.063(0.002) 0.066(0.004) 0.122(0.013) 0.136(0.004) 0.144(0.003) 0.188(0.006)

DRVI-CTransPath 0.023(0.000) 0.025(0.001) 0.026(0.001) 0.033(0.002) 0.031(0.003) 0.028(0.003) 0.022(0.004) 0.026(0.004) 0.036(0.004) 0.032(0.006) 0.032(0.004) 0.037(0.003)
DRVI-CONCH 0.073(0.005) 0.093(0.002) 0.084(0.000) 0.110(0.004) 0.083(0.005) 0.081(0.002) 0.098(0.010) 0.108(0.010) 0.117(0.022) 0.124(0.011) 0.195(0.004) 0.240(0.002)
DRVI-Gigapath 0.097(0.011) 0.115(0.003) 0.097(0.005) 0.134(0.007) 0.103(0.004) 0.101(0.005) 0.111(0.008) 0.121(0.010) 0.146(0.010) 0.142(0.008) 0.283(0.002) 0.329(0.006)
DRVI-H0mini 0.085(0.005) 0.096(0.003) 0.077(0.008) 0.100(0.009) 0.079(0.006) 0.072(0.004) 0.123(0.001) 0.126(0.004) 0.147(0.010) 0.152(0.009) 0.208(0.001) 0.249(0.002)
DRVI-UNI 0.097(0.002) 0.106(0.007) 0.092(0.007) 0.126(0.005) 0.094(0.007) 0.090(0.003) 0.122(0.004) 0.124(0.004) 0.142(0.023) 0.145(0.021) 0.242(0.009) 0.301(0.014)

Table 8. Complete Test Recall@10 Results for both Image-to-Gene (I2G) and Gene-to-Image (G2I) tasks across different tissue panels.
Experiments with "—" indicate out of memory issues during training

5K Multi ImmOnc Colon Breast Lung
Model I2G G2I I2G G2I I2G G2I I2G G2I I2G G2I I2G G2I

MLP-CTransPath 0.194(0.008) 0.203(0.017) 0.265(0.015) 0.191(0.011) 0.215(0.015) 0.183(0.008) 0.197(0.028) 0.235(0.081) 0.220(0.033) 0.220(0.016) 0.196(0.014) 0.234(0.039)
MLP-CONCH 0.388(0.050) 0.387(0.041) 0.414(0.027) 0.314(0.021) 0.333(0.013) 0.241(0.009) 0.501(0.040) 0.440(0.010) 0.586(0.060) 0.421(0.038) 0.642(0.024) 0.605(0.036)
MLP-Gigapath 0.420(0.021) 0.425(0.015) 0.495(0.024) 0.371(0.019) 0.321(0.015) 0.244(0.008) 0.528(0.036) 0.500(0.028) 0.595(0.049) 0.441(0.036) 0.693(0.020) 0.675(0.016)
MLP-H0mini 0.401(0.009) 0.399(0.008) 0.371(0.047) 0.279(0.029) 0.313(0.020) 0.224(0.013) 0.502(0.047) 0.492(0.058) 0.486(0.018) 0.384(0.017) 0.552(0.006) 0.523(0.003)
MLP-UNI 0.409(0.036) 0.409(0.036) 0.435(0.028) 0.306(0.032) 0.412(0.034) 0.243(0.031) 0.532(0.008) 0.524(0.035) 0.545(0.027) 0.403(0.047) 0.684(0.040) 0.677(0.061)

scFoundation-CTransPath — — — — 0.224(0.013) 0.232(0.017) 0.204(0.036) 0.192(0.037) 0.254(0.011) 0.236(0.020) 0.230(0.008) 0.225(0.017)
scFoundation-CONCH — — — — 0.373(0.021) 0.314(0.015) 0.473(0.049) 0.439(0.039) 0.517(0.035) 0.497(0.051) 0.691(0.010) 0.656(0.024)
scFoundation-Gigapath — — — — 0.416(0.028) 0.352(0.029) 0.473(0.075) 0.422(0.014) 0.554(0.004) 0.567(0.030) 0.768(0.024) 0.733(0.043)
scFoundation-H0mini — — — — 0.358(0.013) 0.304(0.033) 0.513(0.004) 0.455(0.037) 0.581(0.021) 0.578(0.036) 0.616(0.019) 0.536(0.015)
scFoundation-UNI — — — — 0.398(0.023) 0.312(0.014) 0.482(0.029) 0.413(0.095) 0.557(0.018) 0.552(0.051) 0.726(0.009) 0.670(0.029)

Nicheformer-CTransPath 0.202(0.007) 0.218(0.005) 0.237(0.021) 0.224(0.030) 0.241(0.010) 0.233(0.011) 0.179(0.022) 0.212(0.026) 0.207(0.023) 0.242(0.018) 0.228(0.027) 0.256(0.030)
Nicheformer-CONCH 0.395(0.008) 0.443(0.023) 0.422(0.010) 0.459(0.006) 0.375(0.009) 0.410(0.013) 0.444(0.029) 0.409(0.022) 0.569(0.016) 0.612(0.010) 0.609(0.001) 0.692(0.011)
Nicheformer-Gigapath 0.395(0.011) 0.417(0.011) 0.441(0.021) 0.458(0.017) 0.405(0.021) 0.434(0.006) 0.433(0.016) 0.439(0.038) 0.621(0.019) 0.648(0.027) 0.667(0.011) 0.742(0.006)
Nicheformer-H0mini 0.396(0.014) 0.439(0.009) 0.430(0.023) 0.448(0.023) 0.355(0.009) 0.356(0.007) 0.470(0.038) 0.450(0.042) 0.620(0.018) 0.649(0.018) 0.617(0.013) 0.696(0.022)
Nicheformer-UNI 0.422(0.020) 0.466(0.009) 0.436(0.006) 0.462(0.005) 0.406(0.033) 0.427(0.033) 0.423(0.021) 0.402(0.019) 0.623(0.033) 0.639(0.003) 0.644(0.004) 0.726(0.005)

DRVI-CTransPath 0.204(0.006) 0.215(0.008) 0.222(0.013) 0.272(0.012) 0.258(0.015) 0.246(0.014) 0.212(0.025) 0.226(0.033) 0.289(0.015) 0.273(0.030) 0.264(0.017) 0.292(0.018)
DRVI-CONCH 0.431(0.020) 0.488(0.011) 0.471(0.004) 0.549(0.013) 0.471(0.011) 0.463(0.020) 0.561(0.034) 0.556(0.040) 0.591(0.050) 0.591(0.031) 0.714(0.011) 0.764(0.003)
DRVI-Gigapath 0.479(0.041) 0.534(0.013) 0.499(0.018) 0.607(0.015) 0.519(0.019) 0.508(0.014) 0.594(0.011) 0.597(0.028) 0.660(0.024) 0.626(0.027) 0.800(0.001) 0.849(0.003)
DRVI-H0mini 0.468(0.012) 0.495(0.010) 0.434(0.022) 0.523(0.018) 0.450(0.014) 0.431(0.015) 0.617(0.012) 0.590(0.019) 0.664(0.023) 0.661(0.023) 0.739(0.001) 0.778(0.004)
DRVI-UNI 0.496(0.011) 0.521(0.023) 0.486(0.023) 0.579(0.026) 0.503(0.022) 0.500(0.008) 0.611(0.021) 0.600(0.013) 0.648(0.050) 0.629(0.045) 0.772(0.002) 0.826(0.008)

7.2. Additional datasets

We also include 4 datasets studying breast cancer tissue from
two patients in the HESCAPE dataset. These datasets were
not used for any experiments above, but are can be useful
for further downstream tasks. Each patient has two datasets:
one with a custom add-on panel and one with a pre-designed
panel, allowing for direct comparison. All datasets have
consistent pixel size of 0.213 µm.

7.2.1. Preservation Methods
Only one dataset, Xenium_Prime_Human_Ovary_FF, uses
Fresh Frozen preservation for ovarian cancer tissue.

7.2.2. Imaging Parameters
All datasets were imaged at 40x magnification. Pixel sizes
range from 0.137 µm to 0.364 µm, with most datasets having
pixel sizes around 0.213 µm or 0.274 µm.

8. Pretraining

8.1. Implementation details

For consistency, both encoders output embeddings of di-
mension d = 128. The training is performed with gradient
clipping set to 5.0, a batch size of 256 distributed across 4
GPUs for 20, 000 steps, and an initial warmup phase of 780
steps. We use an AdamW optimizer � : (0.9, 0.95) with a
learning rate starting at 1 ⇥ 10�5 reduced over iterations
via a cosine scheduler, and a weight decay of 0.01. The
full contrastive pretraining is performed with a finetuning
image-tuning and locked gene encoding objective, allowing
the image encoders to learn robust, gene-biomarker specific
features. All experiments are conducted on a Slurm GPU
cluster equipped with A100 GPUs. We use PyTorch and
Hydra for all our experiments.



Table 9. Projection head ablation study: Experiments performed
with CLIP loss and frozen encoders. Best results are in bold,
second-best are underlined.

5K Colon
Model projection I2G G2I I2G G2I

DRVI-Gigapath linear 0.170 0.180 0.295 0.274
DRVI-UNI linear 0.172 0.180 0.243 0.251

DRVI-Gigapath mlp 0.201 0.210 0.317 0.328
DRVI-UNI mlp 0.201 0.201 0.289 0.231

DRVI-Gigapath transformer 0.114 0.130 0.250 0.277
DRVI-UNI transformer 0.135 0.166 0.179 0.245

Table 10. Loss function ablation study: Experiments performed
with same configuration as the benchmark. Best results are in bold,
second-best are underlined.

5K Colon
Model loss I2G G2I I2G G2I

DRVI-Gigapath CLIP 0.315 0.359 0.388 0.394
DRVI-UNI CLIP 0.322 0.341 0.404 0.401
DRVI-Gigapath SIGLIP 0.322 0.352 0.377 0.345
DRVI-UNI SIGLIP 0.292 0.293 0.359 0.359

Table 11. Encoder Finetuning ablation study: Experiments per-
formed with CLIP loss and MLP projection head. Experiments
with "—" indicate out of memory issues during training. Best re-
sults are in bold, second-best are underlined.

finetune 5K Colon
Model img gene I2G G2I I2G G2I

Nicheformer-UNI 7 7 0.153 0.174 0.201 0.221
Nicheformer-Gigapath 7 7 0.149 0.169 0.195 0.221
DRVI-UNI 7 7 0.172 0.180 0.243 0.251
DRVI-Gigapath 7 7 0.170 0.180 0.295 0.274
Nicheformer-UNI 7 X 0.187 0.205 0.261 0.266
Nicheformer-Gigapath 7 X 0.188 0.197 0.282 0.292
DRVI-UNI 7 X 0.204 0.225 0.318 0.319
DRVI-Gigapath 7 X 0.198 0.208 0.311 0.343
Nicheformer-UNI X 7 0.262 0.282 0.238 0.244
Nicheformer-Gigapath X 7 0.277 0.296 0.249 0.266
DRVI-UNI X 7 0.289 0.293 0.326 0.284
DRVI-Gigapath X 7 0.269 0.335 0.333 0.362
Nicheformer-UNI X X 0.308 0.317 0.323 0.326
Nicheformer-Gigapath X X — — — —
DRVI-UNI X X 0.358 0.342 0.335 0.336
DRVI-Gigapath X X 0.299 0.370 0.334 0.376

8.2. Ablation study
To measure the contributing factors of different hyperparame-
ters and architectural changes towards contrastive alignment
performance, we performed 3 independent ablation studies.
The ablations were performed on the pan-organ 5K gene
panel and the Colon panel.

8.2.1. Image Projection head
The ablation was to see which of the 3 heads, the basic linear
projection, MLP or a transformer based projection helps
improve the image encodings during contrastive pretraining.
The results in Tab. 9 show, that MLP as an image projection
head performs consistently well across both datasets.

8.2.2. Loss function
Here, we test both CLIP and SigLip losses across the 5K
and Colon pretraining experiments to understand their per-
formance in our data and batch size configurations. Our
ablations in Tab. 10 suggests, there was no substantial im-
provement from using SigLip as the loss function.

The SigLip loss for the image-gene expression pair v2g
is:

LSIGLIPv2g = � 1

|B|

|B|X

i=1

|B|X

j=1

log
1

1 + exp[zij(�⌧hvi,gji+ b)]

(3)
s with an additional learnable bias b. Unlike CLIP loss,
SIGLIP avoids computing a global normalization and instead
formalizes the objective as a logistic regression task, where
the label zij is 1 for the positive pair and is -1 for all the
other pairs.

8.2.3. Encoder Finetuning
In the contrastive pretraining stage, HESCAPE is capable
of performing both full fine-tuning for small models and
parameter-efficient fine tuning (PEFT) for large transformer-
based models. These approaches help to align the pretrained
models to the other modality, while potentially helping the
encoders to adapt to specific tasks and potentially mitigating
problems arising from batch effects.

To evaluate whether frozen pretrained encoders alone are
sufficient for multimodal image-gene alignment, we con-
ducted ablation experiments using various combinations of
image-gene finetuning. We fine-tune the self-attention query-
key-value embeddings and projection layers of the image
encoder using LoRA [16]. In our ablation study, we find that
both unlocked image and gene models enable better image-
gene alignment when possible Tab. 11. However, we can
often be restricted by the compute resources for large mul-
timodal Foundation Model finetuning. Additionally, since
the gene modality is deeply affected by batch effects, we
decided to keep the gene models frozen for the HESCAPE
benchmark.

8.3. Batch effects on gene expression modality
During dataset curation and preprocessing, we observed
strong batch effects across samples of the same tissue type
in all datasets under consideration. To systematically investi-
gate how these batch effects impact contrastive pretraining
performance, we employed the silhouette-batch metric from
the single-cell integration benchmark scib [31].



We computed this metric for all datasets using Leiden
clustering results after standard scanpy preprocessing [54] as
the label key, and the train-validation-test split as the batch
key. By treating the dataset split as batch information, we
quantified how well integrated the gene expression profiles
are across different data splits, a measure that reflects the
presence of technical artifacts in the gene expression modal-
ity.

Fig. 2 shows the relationship between silhouette-batch
values and average Recall@5 performance for the Gigapath-
DRVI model across all datasets. Notably, we observe a clear
linear relationship between retrieval performance and the
batch integration metric, directly supporting our hypothesis
that batch effects significantly impact contrastive pretrain-
ing effectiveness. Specifically, our analysis confirms that
cancer tissues exhibit significant heterogeneity in cellular
composition and transcriptomic profiles relative to healthy
or non-cancerous diseased samples. Our findings reveal
pronounced batch effects in cancer samples as seen in the
organ specific datasets, especially in breast and colon tissues,
whereas lung samples with homogeneous disease conditions,
in particular, patients with pulmonary fibrosis, show minimal
batch variation. Technical variability can further exacerbat-
ing these differences - 10x Visium samples, for instance, are
particularly prone to batch effects compared to Xenium.

8.4. Downstream task: gene mutation prediction
For the evaluation of gene mutation prediction, we use a
weakly-supervised learning approach for predicting the slide-
level mutation targets from frozen patch-level embeddings
of the pretrained models.

For feature extraction, we use the pipeline TRIDENT1

with default parameters, extracting embeddings from patches
of size 256⇥256 pixels at 20⇥ magnification. The pretrained
HESCAPE models have a latent dimension of 128.

For slide-level mutation prediction, we follow the Histo-
Bistro pipeline2. Concretely, we employ Transformer-based
feature aggregation using a two-layer Transformer architec-
ture with eight heads of dimension 64 and latent dimension
512 [49]. We split the TCGA cohorts into five site-preserving
folds for five-fold cross validation, using three folds for train-
ing, one for validation, and one for testing. We train the mod-
els for 10 epochs using the optimizer AdamW with learning
rate of 2⇥ 10�5, weight decay of 2⇥ 10�5, and batch size
1. The best model is chosen based on the validation loss,
evaluated every 500 iterations.

1https://github.com/mahmoodlab/TRIDENT
2https://github.com/peng-lab/HistoBistro
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