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Supplementary Material

This is the supplementary document of our paper, en-
titled: “Comparison of Digital Histology Al Models with
Low-Dimensional Genomic and Clinical Models in Sur-
vival Modeling for Prostate Cancer”. It provides detailed
information on the DPAI algorithms, hyperparameter set-
tings, and additional supporting tables and figures.

S1. DPAI Methods Details

In this section, we briefly describe the technical details of
the MIL models implemented in the paper, as they are ap-
plied to the encoded patch tokens of patient P’s WSI, Hy,,,
in order to generate the discrete hazard estimates, which we
will denote ¢4, ...,¢,4. For simplicity, we assume we are
training on only one WSI per patient, Wp, with K patches.

S1.1. Global Average
WSI tokens are first fully averaged together:
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Before the predictor arm, two densely connected layers
with node sizes of 128 and 64 with dropout are included
to give this network more expressiveness, and because the
other MIL methods typically compress the patch embed-
dings from their original dimension of 1,024.

S1.2. CLAM

CLAM [2] learns a separate attention-aggregated WSI rep-
resentation for each of the four time bins. First, the patch
tokens, hy, are compressed from dimension 1024 to 512 via
linear mapping:

h("” = Wih, )

Four parallel attention branches are trained with shared
query and key matrices V,,U, € R2?56%512 and time-bin
specific value matrix: W, ; € R1*256
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Finally, a separate feed-forward predictor for each time
bin, f;, generates the conditional hazard logit:

t; = fi(hpy) )
S1.3. Patch-GCN

Patch-GCN [1] leverages graph convolutional network
(GCN) layers to share information between neighboring
patch representations before aggregating to a patient-level
representation. Specifically, The (z, y)-coordinates of each
patch in Euclidean space are fed into fast approximate k-
NN (k = 8) to build an adjacency matrix for the patient’s
WSI: Ap. Then we can denote the patient’s subgraph as
Gp = (HP,AP).

Each GCN layer, ]-'é% - implements the following mes-
sage passing functions to update the current representation
of the patch nodes, Hg) = {hgl)7 h;l), ce h(]?}, where for
each patch v, information is shared from neighboring patch
vertices, u € N'(v):

mld = 0 ({60 (B0, 60) > w s w e Vo) })
(6)
hfj”l) —¢® (hgl)7mgl)) %

W calculates each neighbor’s message, p(") aggregates
the messages, and ¢(!) updates the current node feature
based on its aggregated message. Details of these func-
tions are provided in the original Patch-GCN paper [1].
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Figure S1. (A-C) Scatter plots of test set predicted risk scores on TCGA PRAD cohort for DPAI-only architectures with UNI patch encoder
(A: CLAM vs Global Averaging, B: CLAM vs Patch-GCN, C: CLAM vs HVTSurv).

Four GCN layers (with residual mapping) are applied se-
quentially, and these four hidden layer representations are
concatenated, passed through a densely connected layer to
generate the final patch representations. The patch repre-
sentations are aggregated with global attention-pooling to
produce the patient representation hp.

S1.4. HVTSurv

HVTSurv [4] uses transformers at multiple hierarchical
fields of view to share information between the patches.
First, the patch token collection, Hyy,, is rearranged in
chunks of length w, where the chunk includes the w nearest
neighbors to the first patch in that chunk. In m different sets,
a portion, (mT_l) of these windows are randomly masked,
generating m subsets (called sub-WSIs) of unmasked, rear-
ranged patches for the WSI.

Each sub-WSI is processed one window at a time
through the “Local Window Block.” This is a transformer
block where the self attention (SA) in each head is biased
using a learnable matrix, B that maps segmented Manhattan
distance between patches to a relative position bias:

Vd

Next, the sub-WSI patches are randomly shuffled and,
one window at a time, passed through a standard self-
attention transformer module. Finally, all the processed
patches are concatenated and fed through a global attention
pooling layer to produce the patient-level representation:
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where U € R4V € R %4 and d,, is the hidden
dimension. This patient-level representation can be passed
to the feed-forward predictor head.

S1.5. CMTA

CMTA [5] uses encoder-decoder transformers in con-
junction with cross-modal attention to fuse pathology
and genomics tokens. The pathology tokens, P =
{p1,p2,...,pK} are first passed through a fully connected
layer to reduce their dimension and then encoded using a
PPEG (Pyramid Position Encoding Generator) [3] module
sandwiched between two self-attention layers:

PM = MSA(LN(P©)) + PO, (10)
P® = pPPEG(PW), (11)
P®) = MSA(LN(P®)) + p® (12)

Note P(©) is P but with a learnable class token ap-
pended.

The bulk RNAseq values are collected into pathway-
based subsets and each is passed through a fully connected
layer to generate genomics tokens that match the dimension
of the patch tokens, denoted: G = {g1,92,-..,9m - The
genomics encoder is simply two self attention modules:

G = MSA(LN(G)) + GO, (13)
G = MSA(LN(GW)) + G (14)

As with PO G is G with a learnable class token
appended. The class token at the output of the last en-
coder layer is the intra-modal representation: p for pathol-
ogy and g for genomics. Let P denote the instance to-
kens of the pathology encoder, {pg?’), pg’), . ,pg)} and
¢ denote the instance tokens of the genomics encoder,

{g§2), 952), .. ,g](\?}. Cross-modal attention is applied to



Method Acens Asim N (LR)  Epochs Batch Size Weight Decay  Dropout
Global Avg. 0.4 0.001 100 48 0.00001 0.1
CLAM 0.4 0.0001 20 16 0.00001 0.25
Patch-GCN 0.4 0.0005 20 16 0.00001 0.25
HVTSurv 04 0.0002 20 16 0.00001 0.1
CMTA 0.4 1.0  0.00005 20 16 0.01 0.1
CMTA (Gleason) 0.4 1.0 0.00005 20 16 0.01 0.1

Table S1. Hyperparameter settings for the DPAI methods.

P and & to learn interactions between the modality rep-
resentations. Specifically, attention maps are computed as
follows:

T
H,, = softmax (m\(/ivp)) e REXM — (15)

(GU,)(PV,)"
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where U, V,,,U,, V, € R4 are learnable projec-
tions. The learnable value matrices, W, ¢ R*d and
W, € R™? pair with the attention matrices to generate
fused pathology and genomic token sets, P and G, respec-
tively:

Hg4 = softmax ( ) e RMXK — (16)

P =H, x (GW,) € RF*, (17)
G=H, x (PW,) € RM*d (18)

Note that some re-notating from the original paper [5]
has occurred in the cross-attention definitions to ease nota-
tion for the Gleason-fusion extension.

Finally, mirrored decoders are applied to P and G to
learn fused class tokens for each modality. Specifically, the
pathology encoder architecture is used for P’s decoder ar-
chitecture to output genomics-fused pathology representa-
tion, p € R4, Similarly, the genomics encoder architec-
ture is used for G’s genomics decoder architecture to output
pathology-fused genomics representation, § € R?. The fi-
nal feature representation is given as:

p+p _9+9
hp=|—6—— 19
P ( 5 &5 ) (19)
where @ denotes concatenation. Note that this model
also applies a regularization term to enforce similarity be-
tween the intra-modal and cross-modal representations:

1
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where p and g are detached from the computational
graph for this loss component. The full loss is given by:

Etotal = Esurv + )\simﬁsim (21)

S$1.6. CMTA with Gleason Fusion

We extend the CMTA model to allow for early fusion of
Gleason Group with the patch and genomics tokens, rather
than as a single-dimensional feature concatenation to hp,
given that it is a highly important feature in the clinical Cox
model. We treat Gleason Group as a categorical clinical
variable, ¢ € C := {1,2,3,4,5}. Each Gleason Group is
mapped to a learnable embedding, ¢ € R<.

Given that c is categorical and this clinical modality is a
single token, we ignore any encoder or decoder architecture
for ¢. Instead, we immediately apply cross-modal attention
to generate Gleason-fused pathology and Gleason-fused ge-
nomics token sets:

A T
H(?) = softmax ((‘PU”)(CVp)> e REXL  (22)

Vd
- T
H(e) = softmax ((GVQ)\EU”)) eRMX1  (23)
Pl =1 x (eW,) € RE*4 (24)
G =1 x (eW,) € RM*? (25)

For model parsimony, these operations share cross-
attention matrix weights (U, U, etc.) from the pathology
and genomics fusions in Sec. S1.5. The pathology and ge-
nomics decoders from Sec. S1.5 are also reused to extract
Gleason-fused pathology representation, 5(°), and Gleason-
fused genomics representation, g(CX Now, the final feature
representation is given as:

+p+p _g+g+5°
hP<ppp@ggg)

3 3 (26)

Additionally, the representation similarity penalty is up-
dated as follows:
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Figure S2. Calibration plots of CLAM with UNI and its multimodal counterparts. Calibration plots are computed separately for each of
the four discrete time bins in which survival probabilities are predicted by the networks. The predicted survival probabilities from test sets
are binned into deciles, and the Kaplan-Meier estimate from patients in each decile risk bin constitutes observed survival for that decile.
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with p and g detached from the computational graph.

S2. Implementation Details

All models are implemented in PyTorch, with code for
the models available at https://github . com/
aidantmcloughlin/prad_dpai_survival. Each
DPAI model uses a 2-layer predictor head 16 and 8 nodes.
Adam optimizer is used. Validation set is 20% of the
training set size, and the test set model corresponds to the
epoch with minimal validation loss. Tab. S| provides tuned
model-specific hyperparameter settings.
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