
A. Cross-Modal Attention over local represen-
tations

The pairwise local interaction for WSIs and RNA-Seq is
defined as:
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where XL∗
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This process is similarly applied for interactions between
other modalities at the local level. After computing the pair-
wise interactions, the final aggregated representations at the
local level are obtained using the same methodology as for
the global level using Eqs. 5-8 in the main paper.

Dataset BRCA NSCLC RCC
Two Modalities

Total Patients IDC: 786 LUAD: 472 KIRC: 510
ILC: 197 LUSC: 476 KIRP: 272

KICH: 66

Total Slides IDC: 838 LUAD: 534 KIRC: 516
ILC: 210 LUSC: 510 KIRP: 296

KICH: 66
Three Modalities

Total Patients IDC: 737 LUAD: 438 KIRC: 498
ILC: 190 LUSC: 440 KIRP: 261

KICH: 65

Total Slides IDC: 788 LUAD: 499 KIRC: 501
ILC: 203 LUSC: 474 KIRP: 283

KICH: 65

Table 1. Data Statistics for BRCA, NSCLC, and RCC Datasets

B. Feature Selection via Mixture of Experts
(MoE) and Top-K Activation

For an input WSI, the local representation is defined as
XL

WSI = {xj | j = 1, . . . , C}. We define a set of expert
networks {EXPk(·)}Kk=1, where each expert EXPk inde-
pendently processes the local representations.Each expert
consists of two connected layers of size 1024 with ReLU
activation. A gating network Gate(·) determines the con-
tribution of each expert by assigning selection weights:

αk = Gatek(xj),

K∑
k=1

αk = 1, αk ≥ 0. (2)

where αk represents the gating score for expert k, computed
using a softmax function over expert logits. To enforce spar-
sity and encourage selective activation, we apply a Top-K
selection mechanism, retaining only the highest-scoring ex-
perts per local representation:

Sj = Top-K(α1, α2, . . . , αK), |Sj | = K ′ (3)

where Sj denotes the selected subset of experts, and K ′ is
the number of active experts, which is set to 5. The final
expert representation is computed as a weighted sum over
the selected experts:

zj =
∑
k∈Sj

αkEXPk(xj) (4)

To further refine local representations, we apply an activa-
tion gating mechanism Act(·) that assigns selection scores
(scorej = Act(zj)). We retain only the k most discrimina-
tive local features:

A = Top-k(score1, score2, . . . , scoreC) (5)

where A denotes the k selected active local representations
out of C (i.e. number of local representations per WSI). We
set k to 3. The final feature set is obtained via:

XL∗

WSI = Z ⊙ 1A = {zWSI
1∗ , zWSI

2∗ , . . . , zWSI
k∗ } (6)

where ⊙ represents element-wise multiplication of the set
of MoE outputs for local representations, denoted as Z =
{zj | j = 1, . . . , C}, with an activation mask 1A. This
Mixture of Experts with Top-K activation adaptively se-
lects the most informative features while suppressing redun-
dancy, enhancing model efficiency and robustness in multi-
modal learning.
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Figure 1. Illustration showing how cross-modal attention can be used for interpretation. Highlighted text and images show local clusters
with highest cross-modal attention values.
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