Appendix

A. More on Experimental Results

In this part, we give additional results and details of our
models.

A.1. MedMNIST datasets.

While the main part of our paper focuses on the Breast Ul-
trasound setting to maintain a clear scope, we also demon-
strate the versatility and adaptability of our topological
vectors and their significant contributions to existing deep
learning models by showcasing their performance across
various medical image formats. Utilizing the MedMNIST
dataset [78], we employed three benchmark datasets, RETI-
NAMNIST, PneuMNIST and BloodMNIST(see Table 8),
applying our Betti-CNN model to 128 x 128 images with
predefined splits. Note that the BreastMNIST dataset cor-
responds to the BUSI dataset used in this paper. The per-
formance of our model for BUSI is detailed in the main text
(see Table 2).

Table 8. MedMNIST Dataset Details. * means varying image sizes.

A.3. Additional Performance Metrics

In medical image analysis, Fl-scores is a very common
metric incorporating both precision and recall. Precision
(also called positive predictive value) measures the accu-
racy of positive predictions, while recall (also called sensi-
tivity or true positive rate) measures the proportion of actual
positives that were correctly identified by the model. The
F1-score is the harmonic mean of precision and recall and
precision X recall

precision + recall”

In Table 11, we present the F1-scores of our models. It’s
worth noting that although the improvements may appear
marginal, our findings in Table 13 demonstrate that most of
these enhancements are statistically highly significant.

is calculated as F} = 2 X

Table 11. Comparison of F1-scores between CNN and Topo-CNN
models.

MENDELEY BUS-BRA BUSI 2-Labels BUSI 3-Labels
MODEL  CNN B-CNN P-CNN|CNN B-CNN P-CNN|CNN B-CNN P-CNN|CNN B-CNN P-CNN

DenseNet121 97.72 9833  99.81 |74.65 77.37 7632 |84.32 87.09 8831 [81.29 8347 84.63
EfficientNetB0 96.79 97.51  97.60 |76.88 79.87 7820 |85.86 88.41 87.59 [82.69 84.42 84.49
IncResNetV2  93.18 97.86 99.42 |7525 7435 75.16 |7435 87.59 87.73 |80.25 8277 83.64
InceptionV3  98.79 98.66 100.0 |73.62 73.30 73.07 |84.08 8585 86.22 |79.77 8230 81.16
MobileNetV2 98.66 98.35 99.63 |75.25 76.78 76.51 |8535 86.94 87.28 |82.65 84.01 80.56

ResNet50 99.77 99.24  99.62 |77.80 80.04 78.94 |86.97 8858 88.20 |83.87 85.18 8533
ResNet101 99.73  99.36  98.91 |78.62 80.03 79.91 |88.42 89.86 88.98 |84.96 8598  86.02
VGG16 98.55 99.27 99.23 |72.30 7635 74.68 |86.37 89.28 89.86 |81.63 84.86 84.57

MedMNIST2D Data Modality Image size # Classes  # Samples Train/Valid/Test
PneuMNIST Chest X-ray 1650 x 1420* 2 5,856 4,708 /524 1 624
RetinaMNIST Fundus Camera 1736 x 1824 5 1,600 1,080/ 120 /400
BreastMNIST Breast Ultrasound 500 x 500 2 780 546 /78 /156
BloodMNIST Blood Cell Microscope 200 x 200 8 17,092 11,959/1,712/ 3,421

Table 9. ML Classifiers. Performance of our basic Topo-ML model with
XGBoost, MLP and Transformer classifiers on breast ultrasound datasets.

Accuracy AUC
Dataset Class XGB MLP TF \ XGB MLP TF
BUSI 2 77.78 82.81 68.01 | 81.81 85.33 67.94
BUSI 70.01 66.28 60.38 | 83.12 78.29 73.86

3
MENDELEY 2 94.00 96.00 77.20 | 97.13 97.67 83.72
BUS-BRA 2 68.42 63.10 88.48 | 66.28 57.80 95.14

A.2. Comparison with Other Topo-DL Models

We conducted experiments using PHG-Net [50], and the
performance comparison in terms of AUC and Accuracy is
presented in Table 10.

Table 10. Comparison of Topo-DL Models. AUC and Accuracy com-
parisons for PHG-Net and Topo-Swin.

Accuracy AUC
Dataset PHG-NET Topo-VT | PHG-NET Topo-VT
BUSI-2 86.6 86.9 94.7 95.9
BUSI-3 87.4 91.0 96.7 97.5
BUS-BRA 83.0 95.7 90.1 99.5
MENDELEY 99.6 99.2 99.6 99.9

Table 12. Performance metrics for SwinV2 and Topo-VT models.

SwinV2 Topo-VT
Dataset Acc AUC Prec Recall F1 | Acc AUC Prec Recall F1
BUSI-2 91.34 96.01 91.29 89.14 89.84|86.89 95.87 89.79 81.00 83.10
BUSI-3 90.26 97.35 90.84 88.11 89.01|91.03 97.45 90.05 90.62 90.13

BUS-BRA 85.65 92.98 84.38 83.68 83.42|95.74 99.54 94.83 95.57 95.19
MENDELEY 98.80 100.0 99.09 98.50 98.71]99.20 99.97 99.38 99.00 99.15

A 4. Significance Test.

In Table 2 and Table 11, we outlined the three perfor-
mance metrics for vanilla-CNN and our Topo-CNN mod-
els, highlighting the integration of topological features into
conventional CNN architectures has potential to enhance
the breast cancer screening. To evaluate the statistical sig-
nificance of these enhancements, we utilized two distinct
methods: the t-test and the Wilcoxon signed-rank test. The
results, including all p-values, are documented in Table 13
and Table 14. A significant majority of these p-values fell
below the 0.05 threshold, indicating statistical significance,
and are accordingly highlighted in blue for easy identifica-
tion.

Our analysis showed that the B-CNN model outper-
formed the standard CNN model with a notable margin, as
evidenced by the prevalence of blue in its respective sub-
section. Similarly, the P-CNN model demonstrated a signif-
icant improvement over the conventional CNN, with more



Table 13. Summary of p-values derived from t-tests indicating the performance
disparity between vanilla-CNN and Topo-CNN models (Betti-CNN and Persistence
Image-CNN) through t-test for BUSI, BUS-BRA, and MENDELEY datasets. To con-
dense, we denote e™ as 10™. Outcomes with p < 0.05 are statistically significant
and are highlighted in blue.

BUSI 2-label

Table 14. Summary of p-values derived from Wilcoxon signed-rank test indicating
the performance disparity between vanilla-CNN and Topo-CNN models (Betti-CNN
and Persistence Image-CNN) through t-test for BUSI, BUS-BRA, and MENDELEY
datasets. To condense, we denote €™ as 10™. Outcomes with p < 0.05 are statisti-
cally significant and are highlighted in blue.

BUSI 2-label

CNN vs B-CNN CNN vs P-CNN P-CNN vs B-CNN
MODEL ACC AUC F-1 ‘ ACC AUC F-1 ‘ ACC AUC F-1

CNN vs B-CNN CNN vs P-CNN P-CNN vs B-CNN
MODEL ACC AUC F-1 ‘ ACC AUC F-1 ‘ ACC AUC F-1

DenseNet121  8.5¢7% 1.6e7% 7.6e7%%[2.1e7% 6.4e79% 2.7e704|9.4e701 2.1¢701 §.7¢701
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DenseNet121  9.5¢7%7 9.5¢77 9.5¢797 1.0 6.8¢79% 9.9¢704[9.6e7% 3.0e701 8.9¢70
EfficientNetB0 9.5¢7 9.5¢ ==0716.0e=%% 5.1e701 2.2e702| 55701 1.5¢702 2.4e~ 0!
InceptionV3  1.9¢7%¢ d 01866703 1,2(»3’01 2.7e79218.8¢70 1.6 8.1t
IncResNetV2  9.5¢7 07 9.5¢ 719.5¢707 9.5¢707 9.5¢707 |8.1e7 0 14701 5470
MobileNetV2 1.8¢7% 3.8¢ 513.3¢793 9.2¢701 2.0e702|8.9e7 0 6.2¢702 7.3¢70L
ResNet101 2.9¢06 °18.2e702 6.5¢701 2.6e701|4.9¢70 1.2¢70 2.9¢0!
ResNet50 9.5 9.5¢ 1.9¢7%6|5.3e703 5.9¢701 5.7¢702|6.7e70 5.7¢702 3.9¢0!
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BUSI 3-label

BUSI 3-label

CNN vs B-CNN CNN vs P-CNN P-CNN vs B-CNN
MODEL ACC AUC F-1 ACC AUC F-1 ACC AUC F-1

CNN vs B-CNN CNN vs P-CNN P-CNN vs B-CNN
MODEL ACC AUC F-1 ACC AUC F-1 ACC AUC F-1
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than half of the comparative tests yielding significant re-
sults, also marked in blue. When comparing P-CNN against
B-CNN, our findings suggest a superior performance by B-
CNN, particularly on the BUSI and BUS-BRA datasets.

To conclude, the statistical evidence supports that both
Topo-CNN models, namely P-CNN and B-CNN, signifi-
cantly surpass the baseline CNN model in terms of per-
formance by leveraging topological features. Despite this,
the performance gap between P-CNN and B-CNN, while
present, often does not reach statistical significance, sug-
gesting a nuanced comparison that varies by dataset and
context.

A.5. Persistence Images and PI-CNN model

To explore the effect of vectorization on our models, we also
employed a different vectorization to replace Betti vectors
in our models.

Persistence Images. Persistence Images is one of the
most common vectorization methods in TDA, introduced
by Adams et al. [2]. Unlike most vectorizations, Persis-
tence Images, as the name suggests, produce 2D-arrays
(tensors). The idea is to capture the location of the points
in the PDs with a multivariable function by using the 2D
Gaussian functions centered at these points. For PD(G) =
{(bs,d;)}, let ¢; represent a 2D-Gaussian centered at the
point (b;,d;) € R?. Then, one defines a multivariable func-
tion, Persistence Surface, Ji >, wi$; where w; is the
weight, mostly a function of the life span d; — b;. To repre-
sent this multivariable function as a 2 D-vector, one defines
a k x [ grid (resolution size) on the domain of i, i.e., thresh-
old domain of PD(G). Then, one obtains the Persistence
Image, a 2D-vector (matrix) @ = [uys] of size k x [ such
that

i, y) dedy
A,

Hrs =
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Figure 9. Topo-ML model. In our basic model, we first generate persistence diagrams for any input image. Next, we derive our topological feature vectors,

which are then inputted into an ML classifier to produce classification results.

where A, = pixel with index rs in the k x [ grid.

Note that the resolution size k£ x [ is independent of the
number of thresholds used in the filtering; the choice of k
and [ is completely up to the user. There are two other im-
portant tuning parameters for persistence images, namely
the weight w; and the variance o (the width of the Gaussian
functions). Like Silhouettes, one can choose w; = (d;—b; )P
to emphasize large or small features in the PD. Similarly,
the width parameter o determines the sharpness of Gaus-
sian, where smaller o would make the Gaussian functions
more like Dirac §-function, and larger o would make the
Gaussians flat. Depending on the context, o can be chosen
a constant (e.g. o = 0.1) or depending on the point (b;, d;),
e.g., o; = k(d; — b;) for some constant k > 0.

Hyperparameters for PI-CNN model. For each image
X, we first generated two 50 by 50 persistence images
PZo(X) and PZ1(X) corresponding to homology groups
0 and 1 respectively. These two persistence images were
concatenated to obtain 50 by 100 matrix, which serves as a
topological representation for each 2D image.

Our PI-CNN model (Figure Figure 3) integrates a pre-
trained CNN with inputs of size 224 x224 with additional
frozen layers, enhanced by a 2D Multi-Layer Perceptron
(2D MLP). The augmented CNN includes a convolutional
layer with 64 filters of size (3, 3) and ReLU activation, fol-
lowed by a max-pooling layer with a pool size of (2,2), a
flatten layer, and a dense layer with 64 neurons. Simultane-
ously, the 2D MLP consists of a convolutional layer with 32
filters of size (3, 3), amax pooling layer of size (2, 2), a flat-
ten layer, and a dense layer with 128 neurons using ReLU
activation. The concatenated outputs from both models are
further processed by fully connected layers, including 256,
128, and 128 neurons each with ReLLU activation, culminat-
ing in the model’s final output.

B. Alexander Duality for Cubical Persistence

In this section, we show the duality between sublevel fil-
tration and superlevel filtration for cubical persistence. We
note that in [9], the authors prove a duality result for cu-

bical complexes, however their duality results are com-
pletely unrelated to ours. In their work, the authors study
pixel connectivity in cubical complexes and construct dual
graph filtrations for given cubical complex filtration. In our
case, we relate one cubical complex filtration to another one
(sublevel-superlevel) and show their duality in complemen-
tary dimensions.

First, we recall some earlier results from algebraic topol-
ogy, which is essential for the proof. Next, we give the
setup and introduce the notation which we use in upcoming
sections.

B.1. Preliminaries

In this part, we recall some of the well-known results which
we use in the proof of the duality theorem [33].

Lemma 2 (Alexander Duality) Let X be a compact, lo-
cally contractible subspace of d-sphere S®. Then,

Hy(X) ~ HF1(s? - x)
where H represents reduced (co)homology.

Since we only use field coefficients F in persistence
modules, the Universal Coefficients Theorem [33] comes
in a very simple form as follows.

Lemma 3 (Universal Coefficients Theorem) Let F be a
field. Then, for any k,

H*(X;F) ~ Hom(Hy(X;F),F) ~ H,(X;F)

Next, we will need the following duality result between
persistent homology and persistent cohomology [21].

Lemma 4 (Persistent Cohomology) For a given filtration
{X.,.}, persistent homology (Hy(X;) — Hy(X;)) and per-
sistent cohomology (H*(X;) < H"(X;)) have identical
barcodes:

PD({Hy(X:)}) ~ PD({H"(X;)})

Finally, we quote the celebrated result on the uniqueness
of the barcode decomposition in persistence module [10].



Lemma 5 (Krull-Schmidt Theorem) Any finite-
dimensional persistence module has a unique (up to
isomorphism) decomposition into indecomposable mod-
ules.

In other words, the dimension of the homology groups
{Hy(X;)}, and ranks of the homomorphisms ¢;;
Hy(X;) — Hi(X;), uniquely determines the persistence
barcode. Here, each bar in the persistence barcode corre-
sponds to an indecomposable module in the theorem.

B.2. Notation and Setup

In the following, we will work with 3 different cublcal com-
plexes (CC): The original CC &, the extended CC X and
the extended sphere X.

The image X: Let X be a d-dimensional cubical com-
plex of resolution R = ry X 1y X -+ X rq = I9_r;.
Letn = (11,72, - ..,nn) represent the index of the voxels
in the cubical complex &, i.e., 1 < n; < 7;. By abusing
the notation, we will call the collection of voxels in X as
R ={A,}. Let f : R — R be the filtering function assign-
ing each voxel A, with corresponding (color) value f(n).
Let m = min f and M = max f. Notice that the only
interesting persistence diagrams for d-dimensional cubical
complex are k = 0,1,2,...,d — 1 as for k > d, PDy(X)
is trivial.

The extended (padded) image X First, we induce a
slightly larger complex X of resolution R = H (i +2)
with indices n = (91,72, ...,7N) again where 0< n; <
r; + 1. In other words, we attach a padding of thickness-
1 along the boundary of our 0r1g1na1 cubical complex A
Then, we extend f to f such that f (7]) = f(n) for any
nER, andf( ) = M for any 7 ER-R, e.g., the value
of f M for any voxel in the boundary shell X-—x.

The extended sphere X: Our second extension is to dou-
ble X topologically and obtain a d-sphere &'. In particular,
glueing two d-balls along their boundaries with an identity
map gives a d-sphere [33]. Here, we do the same by taking
an exact copy of A" and glue it to the original one along the
boundary. Hence, we double the number of voxels in X,
and we have a new index set R = 2 - R. Again, we extend
ftoXasbefore ie., f(n 1) = f(n) for any n € R, and
f ( ) = M for any n € R — R. In other words, in the
d-sphere X, f is defined as M for any voxel in X—X.

In the following, we will represent k' persistence dia-
gram for sublevel filtration as PDZ(X , f) and k*" persis-
tence diagram for superlevel filtration as PDt(X )

B.3. Proof of the Theorem

Now, we are ready to prove our main duality result. In the
following theorem, we prove the equivalence of persistence
diagrams of sublevel and superlevel filtrations in comple-
mentary dimensions. In Remark 7, we give the explicit de-
scription of the correspondence between the bars in these
persistence barcodes.

Theorem 6 Let X be a cubical complex of dimension d,
and f be the filtering function on X. Let X be its extended
image with f. Then, the persistence diagrams for the sub-
level and superlevel filtration of X with respect to f in com-
plementary dimensions are equivalent.

ifkfl(‘i: f)

Proof: We prove the theorem in 2 steps. In the first
step, we prove the duality in the sphere setting (X). In this
version, we prove the equivalence between the reduced per-
sistence diagrams which means that for dimension k£ = 0,
the main barcode corresponding to the connected compo-
nent with infinite lifespan is removed. Then, in the second
step, we adapt this result to extended images (X ) setting and
finish the proof.

Step 1: Let X be the extended sphere of X, and fbe the
corresponding extension of f. Then, the following reduced
persistence diagrams are equivalent:

PD! (X, f) ~ PD

PD;(X) f) = PDifkfl(X’ f)
Proof of Step 1:  Letty < t1 = minf < ty3 < --- <
ty—1 < ty = max f be the threshold set for f. Let
R, = {n € R | f(n) < t.}. As before, define the
sublevel filtration for X such that X,, = U77672 A, ie,
@ = Xo C Xl - C XN 1 C XN = X. Similarly, let
R =R — Rnf{n€R|f()>t} Now, the su-
perlevel filtration can be defined as X" = UneR" An, ie.,
f=x¥NcxN-lc...c X2cX'cX'=X. Note
that to avoid crowding the notation, we slightly modify su-
perlevel filtration with strict inequality (f(n) > t,). This
only shifts the indexes by one from the original superlevel
filtration (f( ) > ty) (Sectlon 3.1).

By definition, we have X — X, = X". Recall that X is a
d-sphere. Hence, by Alexander duality (Lemma 2), for any
0<k<d-—1,wehave

H(X,) ~ H*FH(X) (M

Notice that the Alexander duality uses reduced homol-
ogy, hence infinite barcode for £ = 0 is removed in this
correspondence. Now, consider the persistent cohomology
induced by the filtration {x"}, where HF(X7) — H*(X7)

as X' O X fori < j. Notice that by the naturality of



H*(X;F) = Hom(H(X;F),F) (Lemma 3), we have the
following commutative diagram:
2

R

k
l @)

Lp*; Hd k— I(Xj)

1
Hi—k= (X 4
_Now, we claim that k" persistent homology module for
{X,} is equivalent to (d — k — 1)*" persistent cohomol-
ogy module of {X¥"}. By Equation 1, we have the dimen-
sions of the corresponding homologies are same Hy (X,,) ~
H**=1(X™). By Equation 2, we have ranks of the maps
i Hy(X") — Hp(X7) and w5 Hi—k=1(x1) —
H4=*=1(XJ) are the same. Since the persistence bar-
code is uniquely determined by these dimensions and
the ranks (Lemma 5), we have that the corresponding
persistence diagrams are equivalent: PD(Hy({X,})) ~
PD(HI*=1({x"})). ie.,

PD}(X, f) ~ PD(H* 1 ({A"})) 3)
Now, to finish the proof of Step 1, we need
to show equivalence of the persistent cohomology
PD(H*—1({x ”})) with the persistent homology for su-
perlevel filtration PDY_, (X, f). This step directly fol-
lows from the duality of persistent homology and cohomol-
ogy (Lemma 4) as follows: For superlevel filtration, we use
the) = XN c AN-1c...c X2 Cc Xl c X0 =2x.
Similarly, for persistent cohomology, we use the same fil-
tration in reverse order X = X0 > X1 .o XN-1 5
XN = = (. Then, by Lemma 4, their barcodes are identical:

PD(H™ 1 ({X"))) = PD(Ha_r_1({X"})) (&)

Note that to avoid crowded notation, we defined X" with
f(n) > t, condition, while the original superlevel filtration
has X™ with f(n) > t,. Hence, in our setup f(n) > t,
is equivalent condition to f(n) > t,4+1. Therefore, for any
k, PD(H,,({X™})) with our convention shifts each barcode
by one ([b,d) — ([b+1,d+1)) from the original superlevel
PD! (X ). Hence, we have the equivalence:

PD(Hy s-1({X"})) ~ PD}_, (X, f) o)
The proof of Step 1 follows from Equations 3,4,5. (]

Step 2: PD/(X, ) ~PD}_, (X, f)
Proof of Step 2:  After Step 1, all we need to do is to relate
the homology groups in the persistence modules induced by

the extended spheres {Hj(X,,)} and the extended images
(H ()},

Recall that X’ is obtained by doubling X.Hence, ¥ — X
is an open ball, say U. By applying Mayer-Vietoris se-
quence to X,, = X, U T, we see that Hy(X,,) = Hk(X)

forany 0 < k < d—2as X, NU = OU whichisa (d— 1)-
sphere, and U is contractible.

Forn < N, Hy_1(X,) = Hy_1(X,) ® Z as removed
ball U only effects the homology class corresponding to
dU = OX,, which is nontrivial in Hy_ (X)) forn < N,
while it is trivial in Hg_; (X ) for any n. In Alexander du-
ality, this homology class corresponds to the complement
of the main connected component, but it is trivial in ex-
tended sphere setting. Hence, in the extended image setting,
we recover this dual class in PDﬁfl(f , f) as a nontrivial
homology class corresponding to the infinite bar removed
in reduced persistence diagram PDS()? , f) in Step 1. In
other words, [t1,00) € PDg()A( . f) corresponds to the bar
[tn,t1) € PDflfl(é? , ) which does not exist in extended
sphere setting.

Since other dimensions are not affected, and the corre-
spondence in k = 0 is recovered as explained in the previ-
ous paragraph, the correspondence between the (unreduced)
persistence diagrams in the extended image setting follows.

O

With Step 1 and Step 2, the proof of the theorem follows.

O

Remark 7 (Explicit Barcode Correspondence) In  the
theorem above, the explicit barcode correspondence
is as follows: Let the sublevel filtration is defined as
X1 C C Xn_1 C Xy = X with X,, consists
of voxels A, with f(n) < t,. Let the superlevel
filtration  for the same threshold set is defined as
XN Cc . C X2 C X' = X with X, consists of
voxels A, with f(n) > t,. Then, if o represents a
k-dimensional topological feature in the sublevel filtration
{X.} with barcode [b,,d,), then the last time appears in
the sequence at -21(,—1 (f(n) < d, —1). The complement
of -)?da—l is (f(n) > do — 1) which is equvalent to Xdo
(f(n) > d,). Hence, the corresponding (dual) (d—k —1)-

dimensional topological Ieature o* first time appears in
X in the sequence {X”}, ie, by = d,. Similarly,
one can show dy« = bs. Therefore, the isomorphism
P PDT(X - PDd e 1()(' ) can be defined as

-~ ~

f) - PDcllfkfl(je? f)

where ([bg,ds)) = [dy,bs) = [bo+,ds+) Notice that in
superlevel filtration since the nested sequence {)/(\ "} comes
with decreasing thresholds, with our convention, the birth
time (box = ;) is larger than the death time (ds~ = t;)
in superlevel filtration. Recall that for k = 0, the znﬁnlte
barcode [t1,00) € PD} (X f) corresponds to [ty,t1) €
PD$71 (??, f) as explained in Step 2 above.

¢ :PDI(X

Remark 8 (Alternative extension for X ) When defining
f for the extended image X, one can use choose the value



of ]?Ol’l all boundary voxels in X — X as min f instead
of max f. The whole proof would go through by swapping
sublevel and superlevel filtrations with the function — f in-
stead of f. Note that the original extended image condition
f = max f on X — X is automatically satisfied by light
background images while alternative extended image con-
dition f = min f on X — X is automatically satisfied by
dark background images. This observation is important in
applications of our result.



