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Supplementary Material

A1. Extended Methodology
A1.1. Global Uncertainty Estimation and Eviden-

tial Learning
Our global uncertainty estimator serves two critical func-
tions: producing initial class predictions and generating a
spatial uncertainty map to guide subsequent patch selection.
We formulate this as an evidential learning problem that ex-
plicitly models uncertainty in the classification process.

A1.1.1. Global Model Architecture
Given an input CT image I ∈ RH×W×1, we employ a
ResNet backbone [? ] Fθ with parameters θ to extract fea-
ture maps F ∈ Rh×w×d, where h = H/32, w = W/32,
and d is the feature dimension:

To accommodate grayscale CT images, we modify the
first convolutional layer of the ResNet [? ] to accept single-
channel inputs while preserving the pretrained weights by
averaging across the RGB channels. The feature maps F are
then processed by two parallel heads: a classification head
Cϕ and an evidence head Eψ . The classification head applies
global average pooling followed by a fully connected layer
to produce class logits:

zg = Cϕ(F) = Wϕ · GAP(F) + bϕ (1)

where zg ∈ RC represents the logits for C classes,
Wϕ ∈ RC×d and bϕ ∈ RC are learnable parameters, and
GAP denotes global average pooling.

F = Fθ(I) (2)

A1.1.2. Evidential Uncertainty Estimation
The evidence head Eψ generates pixel-wise Dirichlet con-
centration parameters that quantify uncertainty at each spa-
tial location:

E = Eψ(F) ∈ Rh×w×4C (3)

Here, E encodes four parameters (α, β, γ, ν) for each
class at each spatial location, representing a Dirichlet dis-
tribution. We implement Eψ as a sequence of convolutional
layers that preserve spatial dimensions while expanding the
channel dimension to 4C. Following the principles of sub-
jective logic [? ], we parameterize the Dirichlet distribution
using these four parameters:

αi,j,c = βi,j,c · νi,j,c + 1 (4)

Algorithm 1 Global Uncertainty Estimation

Require: Input image I ∈ RH×W×1

Ensure: Global logits zg , Uncertainty map Û
1: F← Fθ(I) {Extract features using backbone}
2: zg ← Cϕ(F) {Compute global logits}
3: E← Eψ(F) {Generate evidence parameters}
4: for each spatial location (i, j) and class c do
5: βi,j,c ← softplus(Ei,j,c) + ϵ

6: νi,j,c ← eEi,j,c+C∑C
k=1 e

Ei,j,k+C

7: αi,j,c ← βi,j,c · νi,j,c + 1
8: end for
9: for each spatial location (i, j) do

10: Ui,j ← 1
C

∑C
c=1

(
1

αi,j,c
+

βi,j,c

αi,j,c(αi,j,c+1)

)
11: end for
12: Û← U−min(U)

max(U)−min(U)+ϵ {Normalize uncertainty map}
13: return zg , Û

where (i, j) denotes spatial location, c indicates the
class, and αi,j,c > 0 is the concentration parameter for class
c at location (i, j). The parameters βi,j,c > 0 represents the
inverse of uncertainty, νi,j,c represents the mass belief, and
we constrain

∑C
c=1 νi,j,c = 1 to ensure the mass beliefs

form a valid probability distribution.
To ensure numerical stability, we apply a softplus acti-

vation f(x) = log(1 + ex) to compute βi,j,c and a softmax
function across the class dimension to compute νi,j,c:

βi,j,c = f(Ei,j,c) + ϵ (5)

νi,j,c =
eEi,j,c+C∑C
k=1 e

Ei,j,k+C

(6)

where ϵ is a small positive constant for numerical sta-
bility. From these parameters, we compute the pixel-wise
uncertainty map U ∈ Rh×w by aggregating the uncertainty
across all classes:

Ui,j =
1

C

C∑
c=1

(
1

αi,j,c
+

βi,j,c
αi,j,c(αi,j,c + 1)

)
(7)

This formulation captures both aleatoric uncertainty
(first term) and epistemic uncertainty (second term).
The aleatoric component 1

αi,j,c
represents uncertainty due

to inherent data noise, while the epistemic component



βi,j,c

αi,j,c(αi,j,c+1) represents uncertainty due to model knowl-
edge limitations.

We normalize the uncertainty map to the range [0, 1] for
easier interpretation and subsequent processing:

Û =
U−min(U)

max(U)−min(U) + ϵ
(8)

This normalized uncertainty map Û is then used to guide
the patch selection process, focusing attention on regions
where the global model exhibits high uncertainty. Algo-
rithm 1 summarizes the complete process for generating
the global class predictions and uncertainty map. The un-
certainty map Û provides spatial localization of regions
where the global model is uncertain about its predictions.
High values in Û indicate regions that require further anal-
ysis through local patch examination. This uncertainty-
guided approach allows our model to focus computational
resources on diagnostically relevant regions.

A1.2. Uncertainty-Guided Patch Selection and Lo-
cal Refinement

A1.2.1. Progressive Patch Extraction
Given an input image I ∈ RH×W×1 and its corresponding
uncertainty map Û ∈ Rh×w from the global model, we first
upsample the uncertainty map to match the input resolution:

U′ = U(Û, (H,W )) (9)

where U represents bilinear upsampling to dimensions
(H,W ). Our objective is to extract K patches of size P×P
from regions with high uncertainty while ensuring diversity
among the selected patches. We formulate this as a sequen-
tial optimization problem where each patch is selected to
maximize uncertainty while maintaining a minimum dis-
tance from previously selected patches. For the first patch,
we simply select the region with maximum uncertainty:

(x1, y1) = argmax
(x,y)

U′
x:x+P,y:y+P (10)

where (x1, y1) represents the top-left corner of the first
patch, and U′

x:x+P,y:y+P denotes the mean uncertainty
within the patch region. For subsequent patches k =
2, 3, . . . ,K, we introduce a spatial penalty to encourage di-
versity:

(xk, yk) = argmax
(x,y)

[
U′
x:x+P, y:y+P

− λ ·min
i<k

d((x, y), (xi, yi))
]

(11)

where d((x, y), (xi, yi)) computes the Euclidean dis-
tance between patch centers, λ is a weighting parame-
ter controlling diversity, and mini<k finds the minimum

distance to any previously selected patch. To implement
this efficiently while avoiding explicit computation of the
penalty term for all possible locations, we apply a non-
maximum suppression (NMS) approach. After selecting
each patch, we suppress a region around it by applying a
penalty mask to the uncertainty map:

U′
x−M :x+P+M, y−M :y+P+M =U′

x−M :x+P+M, y−M :y+P+M

× (1−G) (12)

where M is a margin parameter and G is a Gaussian
kernel that applies a stronger suppression near the center of
the selected patch and gradually reduces toward the edges.

Our algorithm incorporates several fallback mechanisms
to handle edge cases and ensure reliable operation:
• Uncertainty Threshold Handling: In situations where

no high-uncertainty regions remain (when all uncertainty
values are suppressed below a specified threshold), the
method falls back to random selection to preserve sample
diversity.

• Boundary Checking: Comprehensive boundary check-
ing is applied to prevent selected patches from extending
beyond the image borders, ensuring valid patch extraction
even at image edges.

• Dynamic Size Adjustment: To accommodate extremely
small images or atypical aspect ratios, the algorithm dy-
namically adjusts patch sizes, ensuring consistent and
valid outputs across varying input dimensions.
These mechanisms collectively ensure robust operation

across diverse medical imaging datasets with varying char-
acteristics.

A1.2.2. Local Refinement Network Architecture
After extracting the K patches {P1,P2, . . . ,PK}, we pro-
cess each patch independently using a local refinement net-
work. This network comprises three components: a feature
extractor, a classification head, and a confidence estimation
head.

The feature extractor Lf processes each patch to obtain
local feature vectors:

fk = Lf (Pk) ∈ Rdl (13)

where dl is the feature dimension. We implement Lf as a
sequence of convolutional layers followed by pooling op-
erations to progressively reduce spatial dimensions while
increasing feature depth. Specifically, our implementation
uses four convolutional blocks with increasing channel di-
mensions (64→128→256→256), each followed by batch
normalization, ReLU activation, and max pooling. The fi-
nal features undergo adaptive average pooling to produce a
fixed-dimensional representation regardless of input patch
size.



The classification head Lc maps these features to class
logits:

zl,k = Lc(fk) ∈ RC (14)

This head is implemented as a two-layer MLP with a
hidden dimension of 128 and ReLU activation between lay-
ers. Simultaneously, the confidence estimation head Lconf
produces a scalar confidence score for each patch:

ck = Lconf(fk) ∈ [0, 1] (15)

where ck represents the model’s confidence in its predic-
tion for patch k. We implement Lconf as a small MLP with
a sigmoid activation function on the output to constrain the
confidence score to the range [0, 1]. This two-layer MLP
has a hidden dimension of 64 and uses ReLU activation be-
tween layers.

The confidence score serves two critical purposes: (1)
it allows the model to express uncertainty about individual
patch predictions, and (2) it provides a weight for the subse-
quent fusion of local predictions. Patches with higher con-
fidence scores will contribute more significantly to the final
classification decision. For each patch k, we obtain both
class logits zl,k and a confidence score ck. The combined
local prediction is computed as a confidence-weighted av-
erage of the patch predictions:

zl =

∑K
k=1 ck · zl,k∑K
k=1 ck + ϵ

(16)

where ϵ is a small constant (typically 10−6) for numeri-
cal stability. This formulation naturally handles cases where
some patches have very low confidence, effectively reduc-
ing their contribution to the final prediction.

The local refinement network provides detailed analysis
of suspicious regions identified by the global model, captur-
ing fine-grained features that might be missed in the global
analysis. By assigning confidence scores to each patch, the
network also performs an implicit form of attention, focus-
ing on the most discriminative patches for the final classifi-
cation decision.

A1.3. Adaptive Fusion and Training Objectives
A1.3.1. Adaptive Fusion Module
The adaptive fusion module dynamically determines the
optimal weighting between global and local predictions
for each input image. Given the global logits zg ∈ RC

and uncertainty map Û ∈ Rh×w from the global model,
and local logits zl ∈ RC with patch confidence scores
{c1, c2, . . . , cK} from the local refinement network, we
compute a scalar representation of the global uncertainty by
averaging across the spatial dimensions:

ug =
1

h · w

h∑
i=1

w∑
j=1

Ûi,j (17)

This scalar uncertainty ug ∈ [0, 1] quantifies the over-
all confidence of the global model. The fusion network
Fω takes as input the global logits zg and the global uncer-
tainty score ug , concatenated into a single vector [zg, ug] ∈
RC+1. The network outputs a fusion weight wg ∈ [0, 1]
that determines the relative contribution of global versus lo-
cal predictions:

wg = Fω([zg, ug]) (18)

We implement Fω as a multi-layer perceptron with sig-
moid activation on the output:

Fω([zg, ug]) = σ(W2 ·ReLU(W1 ·[zg, ug]+b1)+b2) (19)

where W1 ∈ Rdf×(C+1), W2 ∈ R1×df , b1 ∈ Rdf , and
b2 ∈ R are learnable parameters, df is the hidden dimen-
sion, and σ is the sigmoid function. The fusion weight wg
represents the contribution of the global prediction, while
wl = 1−wg represents the contribution of the local predic-
tion. The fused logits zf are computed as:

zf = wg · zg + (1− wg) · zl (20)

This adaptive weighting allows the model to rely more
on global features when the global model is confident (low
uncertainty), and more on local features when the global
model is uncertain (high uncertainty).

A1.3.2. Multi-component Loss Function
Our comprehensive loss function addresses multiple objec-
tives simultaneously. The total loss Ltotal is a weighted sum
of several components:

Ltotal = λfLfused + λgLglobal + λlLlocal

+ λuLuncertainty + λcLconsistency + λconfLconfidence

+ λdLdiversity (21)

where λf , λg, λl, λu, λc, λconf, and λd are weighting co-
efficients for each loss component.

Classification Losses. We apply cross-entropy loss to the
predictions from each component of our framework:

Lfused = −
C∑
i=1

yi log(softmax(zf )i) (22)

Lglobal = −
C∑
i=1

yi log(softmax(zg)i) (23)
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(a) Global feature embeddings showing clear class separation with distinct
clusters for each kidney condition (Normal, Cyst, Tumor, Stone). The
global model learns discriminative whole-image representations that estab-
lish strong decision boundaries between classes.
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(b) Local feature embeddings exhibiting significant class mixing without
distinct clusters. The local model focuses on fine-grained details within un-
certain regions, capturing complementary information not directly aligned
with class boundaries.

Figure 1. Comparison of t-SNE visualizations for feature spaces in the kidney dataset. (a) Global features from the full-image CNN form
well-separated clusters by class, demonstrating effective overall classification capability. (b) Local features from patch-based analysis show
substantial mixing across classes, indicating their focus on subtle variations and uncertainty resolution rather than direct class discrimina-
tion. This complementary representation underscores why adaptive fusion of both feature types produces superior performance.

Llocal =
1

K

K∑
k=1

−
C∑
i=1

yi log(softmax(zl,k)i) (24)

where yi is the ground truth label for class i (one-hot
encoded), and softmax(z)i denotes the softmax probability
for class i given logits z.

Uncertainty Calibration Loss. To ensure that the uncer-
tainty map accurately reflects prediction errors, we intro-
duce an uncertainty calibration loss:

Luncertainty = MSE(Û, 1−C) (25)

where C ∈ {0, 1}h×w is a correctness map derived
from the global predictions. For each spatial location (i, j),
Ci,j = 1 if the predicted class at that location matches the
ground truth, and Ci,j = 0 otherwise. This loss encourages
high uncertainty in regions where the global model makes
errors and low uncertainty where predictions are correct.

Consistency Loss. To promote consistency between
global and local predictions, we use a Kullback-Leibler
(KL) divergence loss:

Lconsistency =
1

K

K∑
k=1

KL(softmax(zl,k)∥softmax(zg)) · ck

(26)
where KL(P∥Q) =

∑
i Pi log(Pi/Qi) is the KL diver-

gence, and ck is the confidence score for patch k. This loss
is weighted by the patch confidence, reducing the penalty
for inconsistency in low-confidence patches.

Confidence Regularization Loss. To align patch confi-
dence scores with prediction accuracy, we introduce a con-
fidence regularization loss:

Lconfidence =
1

K

K∑
k=1

MSE(ck, ak) (27)

where ak ∈ {0, 1} indicates whether the prediction for
patch k is correct (ak = 1) or incorrect (ak = 0). This loss
encourages high confidence for correct predictions and low
confidence for incorrect predictions.

Diversity Loss. To encourage diversity among patch pre-
dictions, we include a diversity loss:
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Figure 2. Uncertainty distribution by class for lung cancer de-
tection. Malignant cases (green) exhibit significantly higher aver-
age uncertainty and broader distribution compared to benign cases
(pink), which show a tighter, lower-uncertainty distribution. Nor-
mal cases (blue) display a distinctive bimodal distribution with
peaks at both low and moderate uncertainty levels.

Ldiversity =
1

K(K − 1)/2

K−1∑
i=1

K∑
j=i+1

cos (softmax(zl,i), softmax(zl,j)) (28)

where cos(a, b) = a·b
||a||·||b|| is the cosine similarity be-

tween vectors. This loss penalizes similarity between patch
predictions, encouraging each patch to contribute unique in-
formation.

A2. Implementation Details
All models are trained for 100 epochs with early stopping
based on validation loss with a patience of 7 epochs on a
single NVIDIA RTX 3090 GPU. We employ an Adam op-
timizer [? ] with a learning rate of 1 × 10−4 and weight
decay of 1× 10−4, with a batch size of 96 and a cosine de-
cay learning rate scheduler [? ]. For data augmentation [?
] during training, we apply random horizontal and verti-
cal flips, random rotation (±10°), random affine transfor-
mations (±5% translation), and contrast/brightness adjust-
ments (±10%). Images are normalized to the [0,1] range af-
ter applying appropriate windowing for CT images. We do
not use EMA [? ] since it does not improve performance.

Model configurations are adapted for each dataset as fol-
lows: the Kidney dataset uses a ResNet-18 [? ] backbone
with a patch size of 64 and 3 patches per image, the Lung
dataset uses a ResNet-50 [? ] backbone with a patch size
of 64 and 2 patches per image, and the COVID dataset uses
a ResNet-18 [? ] backbone with a patch size of 64 and 4
patches per image. The multi-component loss function as-
signs weights of 1.0 for the fused loss, 0.5 for global and
local losses, 0.3 for the uncertainty loss, 0.2 for the con-
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Figure 3. Memory usage scaling with input dimensions across
UGPL variants. Lines represent different model configurations
and ablations. Config 2 (brown line) consistently demonstrates
the highest memory requirements due to its ResNet-50 [? ] back-
bone variant. Some configurations show counterintuitive scaling
behavior, particularly at larger input sizes, highlighting complex
interactions between model architecture and GPU memory man-
agement.

sistency loss, and 0.1 for both the confidence and diversity
losses.

A3. Additional Experiments and Results

A3.1. Feature Space Analysis

To better understand how UGPL learns different represen-
tations at global and local scales, we visualize the feature
embeddings from both network components using t-SNE.
Figure 1 demonstrates the contrast between global and lo-
cal feature spaces for the kidney CT dataset [? ].

The global feature embeddings (Figure 1a) display re-
markably clear separation between classes, with distinct
clusters forming for each pathological condition. This in-
dicates that the global network successfully learns discrim-
inative features that establish strong decision boundaries at
the whole-image level. In contrast, the local feature em-
beddings (Figure 1b) exhibit substantial mixing between
classes with no clear cluster formation, suggesting that the
local network captures different characteristics altogether.

The global network provides robust overall classification
by learning class-separable features, while the local net-
work focuses on fine-grained details within uncertain re-
gions that may not align directly with class boundaries but
capture subtle variations critical for resolving ambiguous
cases. When these complementary features are combined
through our adaptive fusion mechanism, the model effec-
tively leverages both the discriminative power of global fea-
tures and the detailed analysis of local features, particularly
in challenging regions where global analysis alone might be
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Figure 4. Evolution of model performance across different configurations. Top: Flow field visualization showing performance trajectories
from simplified to complete model configurations for each dataset. Bottom: F1 score progression across configurations for COVID (left),
Lung (middle), and Kidney (right) datasets, highlighting the dramatic improvement when all components are integrated in the full model.

insufficient.
The dispersed nature of local embeddings also validates

our patch selection approach - these patches represent pre-
cisely those regions where additional analysis is most ben-
eficial, as they contain ambiguous features that the global
model finds difficult to classify confidently. This feature
space analysis provides concrete evidence for why pro-
gressive refinement is more effective than single-pass ap-
proaches for medical image classification.

A3.2. Uncertainty Calibration Analysis
Figure 2 visualizes the distribution of pixel-wise uncertainty
values across diagnostic classes in the lung cancer dataset [?
? ? ]. The distinct separation between uncertainty pro-
files demonstrates the model’s ability to calibrate uncer-
tainty in a clinically meaningful way. Malignant cases con-
sistently show higher uncertainty (mean 0.14, standard de-
viation 0.07) compared to benign cases (mean 0.06, stan-
dard deviation 0.03), reflecting the inherently more com-
plex and variable presentation of malignant lesions. Nor-
mal cases exhibit an intriguing bimodal distribution, sug-
gesting the existence of two distinct subgroups within what
radiologists classify as normal tissue. This aligns with clini-
cal practice, where some normal cases closely resemble be-
nign findings (first mode) while others contain subtle vari-
ations that warrant closer inspection (second mode). The
UGPL framework effectively leverages these uncertainty
patterns to guide computational resource allocation, focus-
ing detailed analysis precisely where diagnostic ambiguity

is highest.

A3.3. Ablation Evolution
Figure 4 visualizes performance evolution across configu-
rations. All datasets show minimal variations among sim-
plified configurations followed by dramatic jumps with the
full model - COVID F1 scores improve 5.3× (0.15 to 0.79),
lung dataset by 2.6× (0.37 to 0.98), and kidney dataset by
1.7× (0.57 to 0.99).

A3.4. Computational Efficiency Analysis
We analyze computational efficiency of UGPL across dif-
ferent configurations and ablations to understand tradeoffs
between model complexity and performance. Figure 5
shows the relationship between computational complexity
(measured in GFLOPs) and inference time. The full UGPL
model requires approximately 3-5 GFLOPs depending on
the dataset and configuration, with inference times between
4.5-6.7ms on an NVIDIA P100 (we use a lightweight GPU
for inference to better reflect real-world deployment set-
tings). The global-only ablation (without patch extraction
and local refinement) reduces inference time by 27-36%
across all datasets, demonstrating the computational cost
of the progressive analysis components. Higher-capacity
backbones (Config 2 with ResNet-50 variant) increase both
GFLOPs and inference time by approximately 45% com-
pared to the standard configurations.

Memory efficiency is another critical factor for medical
imaging applications. Figure 3 illustrates how memory us-
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Figure 5. Computational complexity (GFLOPs) versus inference
time (ms) for UGPL variants. Points are colored by dataset, with
marker style indicating ablation type and size representing input
dimensions.

age scales with input image dimensions. We observe non-
linear scaling patterns that vary significantly across con-
figurations. The ResNet-50 backbone (Config 2) requires
1.4-1.7× more memory than ResNet-18 configurations. In-
terestingly, ablations demonstrate dataset-specific memory
profiles: for the COVID dataset, memory usage increases
linearly with input size, while the Kidney dataset shows
more complex patterns. The global-only ablation demon-
strates inconsistent memory scaling, suggesting that opti-
mizations in GPU memory management affect different ar-
chitectural components differently.

UGPL model requires more computational resources
than simplified variants, and the progressive learning ap-
proach maintains reasonable efficiency for clinical deploy-
ment. The additional cost of uncertainty estimation and lo-
cal refinement is justified by the significant performance im-
provements, particularly for challenging cases.
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