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1. Datasets

The Multi-domain Mobile Video Physiology Dataset
(MMPD) [12] comprises 660 one-minute videos from
33 subjects, totaling 11 hours of recordings from mobile
phones. Each subject contains twenty trials to capture vari-
ations in body motion, and lighting conditions. These trials
included stationary, rotation, talking, and walking tasks per-
formed under four different lighting conditions. The videos
were recorded at 30 FPS with a resolution of 1280x720 pix-
els, while PPG signals were simultaneously recorded us-
ing an HKG-07C+ oximeter at 200Hz and downsampled to
30Hz. Additionally, each subject was provided with eight
descriptive labels, including the Fitzpatrick scale for skin
color.

The UBFC-rPPG dataset [1] includes 42 RGB videos from
42 subjects. The subjects were asked to play a time-
sensitive mathematical game, emulating a standard human-
computer interaction scenario, to obtain varied HR during
the experiment. The recorded facial videos were acquired
indoors with varying sunlight and indoor illumination at 30
FPS with a webcam (Logitech C920 HD Pro) at a resolution
of 640x480 in uncompressed 8-bit RGB format. The bio-
signals ground truth was acquired using a CMSS50E trans-
missive pulse oximeter to record the PPG signal and heart
rate.

The Pulse Rate Detection (PURE) dataset [10] contains
60 videos from 10 subjects performing six different head
motion tasks: steady, talking, slow translation, fast transla-
tion, small rotation, and medium rotation. The facial videos
were recorded using an ECO274CVGE camera with a reso-
lution of 640 x 480 pixels and 30 FPS. Each video is about 1
minute long and stored in uncompressed PNG format. The
gold-standard measures of BVP and SpO2 were collected
using a finger pulse oximeter.

2. Additional experiments

In this section, we provide relevant experiments done to
evaluate the BeatFormer performance, but not included in
the main paper due to space constraints. These experiments
include an intra-dataset evaluation on PURE and UBFC-
rPPG datasets, an extended comparison between supervised
and unsupervised BeatFormer training and additional abla-
tion studies regarding the BeatFormer configuration.

2.1. Intra-dataset evaluation

For intra-dataset experiments, we follow the protocols of
[5, 9] for PURE and [5] for UBFC-rPPG. Table | compares
the proposed BeatFormer with state-of-the-art methods, in-
cluding three handcrafted approaches, five supervised, and
three unsupervised data-driven models. The results show
that supervised methods outperform both handcrafted and
unsupervised approaches, likely due to the similar condi-
tions between training and testing, highlighting the advan-
tage of data-driven models in this setting. Additionally,
since PURE and UBFC-rPPG are uncompressed datasets
recorded under controlled conditions, rPPG extraction is
facilitated. Notably, BeatFormer achieves state-of-the-art

Table 1. Pulse rate intra-dataset results on PURE and UBFC-rPPG
datasets (in BPMs).

PURE UBFC

Method
MAE| RMSE| pt |MAE] RMSE| p1
ICA [7] 3.76 12.60 0.85 5.17 11.76 0.65
CHROM (2] 0.75 2.23 1.00 2.36 9.23 0.87
POS [13] 0.80 4.11 0.98 2.11 9.11 0.87
HR-CNN [9] 1.84 2.37 0.98 4.90 5.89 0.64
Dual-GAN [5] 0.82 1.31 0.99 0.44 0.67 0.99
ETA-rPPGNet [4] 0.34 0.77 0.99 1.46 3.97 0.93
PhysMamba [6] 0.25 0.40 0.99 0.54 0.76 0.99
RhythmFormer [14] 0.27 0.47 0.99 0.50 0.78 0.99
BeatFormer-SL (ours) 0.17 0.36 1.00 0.15 0.37 1.00
Gideon2021 [3] 2.30 2.90 0.99 1.85 4.28 0.93
Contrast-Phys [11] 1.00 1.40 0.99 0.64 1.00 0.99
SiNC [8] 0.61 1.84 1.00 0.59 1.83 0.99
BeatFormer-SCL (ours) 0.29 0.60 1.00 0.44 1.29 0.99




Table 2. Comparison between supervised (SL) and spectral contrastive learning (SCL) in MMPD cross dataset evaluation (in BPMs).

Scenario Training MAE | RMSE | MAPE | pT
Stationary SL 623 £0.88 11.87 +£31.18 9.08 £147 0.51 +£0.08
SCL 6.03 +0.85 1147 +27.67 8.71+137 0.54 +0.07
Stationary SL 1199+ 1.26 1879 +61.13 12,15+ 1.13 0.29 +0.08
(after exercise) SCL 11.66 +1.22 18.26 + 56.74 12.02 +1.14 0.31 £ 0.08
Rotation SL 6.07+£089 11.89+38.66 897+151 045+0.08
SCL 5.88+0.76 1047 +24.79 819 +1.23 0.53 £0.07
Talking SL 6.25+0.83 11.40+-29.00 8.04 +1.16 0.47 + 0.08
SCL 7.14+0.89 1247 +31.01 921+125 0.36+0.08
Walking SL 13.66 +1.16 19.09 + 52.22 14.41 +1.19 0.06 £+ 0.09
SCL 1497 £1.19 2030 £56.41 1571 +1.17 0.07 + 0.09
All SL 8.85+ 047 15.04 £20.24 10.54 +0.59 0.39 £0.04
SCL 9.14+ 047 15.134+19.32 10.78 £ 0.56  0.40 £+ 0.04

performance on both PURE and UBFC-rPPG, surpassing
PhysMamba and RhythmFormer, which obtain similar per-
formance. Regarding unsupervised learning, BeatFormer
achieves the best results for both datasets and all the per-
formance metrics, except the RMSE in UBFC-rPPG, where
Contrast-Phys yields 1 BPM of error, the best performance.
Despite the superiority of supervised methods, we highlight
that recent unsupervised methods are obtaining close per-
formance without requiring PPG or HR labels.

2.2. Comparison supervised against SCL training

Table 2 provides a detailed comparison between the super-
vised and unsupervised versions of BeatFormer in MMPD
cross-dataset scenarios, including both stationary splits.
The results show that SCL training outperforms the super-
vised version in stationary, stationary after exercise, and ro-
tation scenarios, while the supervised model performs better
in talking and walking.

Although SCL achieves superior results in three scenar-
ios compared to two, the overall performance slightly fa-
vors the supervised version, primarily due to a major dif-
ference in the last two splits, approximately around 1 BPM
error. Nonetheless, both versions deliver strong results, with
the unsupervised model achieving competitive performance
without requiring any labeled data, neither in terms of PPG
or HR information.
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Figure 1. Example of tested video processings for the same sub-
ject.

2.3. Additional ablation studies

This subsection incorporate additional ablations studies re-
garding the impact of the video preprocessing, window size
influence and BeatFormer configuration. In addition, we
include Tables 5 and 6 which show the complete results dis-
cussed in the main paper during the ablation studies in the
ZOCA and CZT impact, as well as, the impact of video
transformations in SCL training.

Impact of video processing framework. Table 3 high-
lights the impact of video preprocessing on BeatFormer’s
performance. This experiment evaluates four different pre-
processing pipelines, illustrated in Fig. 1. The first two (ID
1 and ID 2) use static facial detection with a 1.5-box spac-
ing, while the latter two (ID 3 and ID 4) employ tracking-
based facial detection with a 1.2-box spacing. Additionally,
we assess the effect of skin masking in the dynamic and
tracking-based versions (ID 2 and ID 4).

The results show that tracking-based facial detection im-
proves HR estimation by 1-3 BPM. However, the most sig-
nificant enhancement comes from skin masking. Compar-
ing ID 1 with ID 2, or ID 3 with ID 4, reveals an HR er-
ror reduction of approximately 4-5 BPM, demonstrating its
substantial impact on BeatFormer’s performance. While av-
eraging spatially RGB values over frames helps maintain
robustness to local motions, it relies on accurate skin region
detection for optimal performance. As discussed, future
work should focus on reducing BeatFormer’s dependence
on specific preprocessing frameworks.

Impact of blocks and heads configuration. Fig. 2 il-
lustrates the ablation study regarding the number of blocks
and heads. Regarding the ZOCA blocks, while maintaining
fixed the number of heads, we test BeatFormer with 2, 4 and
6 blocks, where the configuration with the best performance
using 4 blocks. On the other hand, for the number of heads,
we test between 1 and 3 heads since our frequential em-
bedding is equal to three which represents the filtered RGB



Table 3. Influence of video processing framework in cross-dataset evaluation on MMPD, trained with PURE dataset (in BPMs).

D Video Processing MAE | RMSE | MAPE | ot
Cropstati(z (>< 1.5-BOX) +
Resize 14.00 £ 0.51 19.16 +=24.23 16.89 +£0.63 0.13 +0.04
Cropssatic (x1.5-Box) +
2 Resize + Skin mask 9.80 £ 0.49 16.04 +=21.00 11.64 +0.61 0.42+0.04
Croprnamic (X 1.2-BOX) +
Resize 11.75 £ 0.51 17.52 +£22.87 14.01 £0.63 0.30 + 0.04
Croprnamic (>< 1.2-BOX) +
8.85+0.47 15.04 +£20.24 10.54+0.59 0.39 £ 0.04

Resize + Skin mask

channels. For this comparison, we use four ZOCA blocks
which are the best configuration found previously. Un-
like the block ablation study, where the performance varies
more, in terms of heads the performance is very similar, be-
ing the configuration with three heads slightly better.

Impact of window size. Table 4 examines the effect of win-
dow size L on performance. We set a minimum window
size of two seconds to ensure at least one detectable heart-
beat, assuming a minimum HR frequency of 0.66 Hz (one
beat every 1.51 seconds). For comparison, we also evaluate
window sizes of 4 and 6 seconds.

Our results show that in the MMPD cross-dataset
evaluation, a 2-second window yields significantly better
performance than larger windows. This may be due to the
high motion variability in MMPD, where shorter windows
are more effective at capturing rapid changes. Future
work should further investigate the impact of window size
across different datasets and explore integrating a temporal
multi-resolution framework.
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Figure 2. BeatFormer blocks and heads configuration ablation
study (in BPMs).

For this study, the final BeatFormer configuration uses a
2-second window size, four blocks, and three heads.

2.4. Qualitative results

Fig. 3 presents two qualitative examples from BeatFormer
using MMPD cross-dataset samples from different scenar-
ios. The models are trained on PURE (top) and UBFC-
rPPG (bottom), with inference results for BeatFormer-SL
(yellow) and BeatFormer-SCL (magenta) shown for each
example. The RGB trace evolution highlights significant
amplitude changes when comparing stationary scenarios to
rotation and walking. Despite these noticeable differences
in the RGB traces, the rPPG prediction and its spectrum,
compared with the ground truth, show significant robustness
on these motion splits such as in the PURE rotation exam-
ple, where horizontal head motions are quite noticeable. As
in the main paper, we can appreciate the temporal offset be-
tween our rPPG prediction and the PPG-finger ground truth
signal. This is because using frequency optimization and
physiological constraints the BeatFormer is able to be in-
variant to the Pulse Transit Time (PTT) between the pulse
information extracted from the face and the finger.

Importantly, despite this temporal offset, the maximum
spectral peaks of both signals align, leading to the same
heart rate estimation. Additionally, as noted in our discus-
sion, some prominent peaks in both the spectral and tempo-
ral domains may result from second harmonics or residual
motion artifacts, particularly in the walking scenarios. For
this reason, future work should focus on the enhancement
of pulsatile frequency filtering.

Table 4. Temporal window size influence in cross-dataset perfor-
mance on MMPD trained on PURE across different motion sce-

narios (in BPMs).
Window size MAE | RMSE | MAPE |, o1
2 sec 885+ 047 15.04 +£20.24 10.54 +0.59 0.39 +0.04
4 sec 10.07 £ 0.47 1575 £20.05 12.02+£0.57 0.30+£0.04
6 sec 10.05 £ 0.47 15.754+20.07 12.13 +£0.60 0.30 + 0.04
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(a) Sample from subject P2 in the MMPD dataset, trained on the PURE dataset.
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(b) Sample from subject P9 in the MMPD dataset, trained on the UBFC-rPPG dataset.

Figure 3. Inference examples for cross-dataset MMPD subjects trained on PURE and UBFC-rPPG. The left column shows RGB trace
evolution across three motion scenarios: stationary, rotation, and walking. The middle column depicts rPPG predictions for BeatFormer-
SL ( ), BeatFormer-SCL ( ), and the PPG ground truth (black). The right column presents the corresponding rPPG spectra
for each signal.

Table 5. Ablation study of ZOCA and CZT influence (in BPMs).
CZT FFT ZOCA MAE | RMSE | MAPE | p T
X v 14.50 £ 0.61 21.40+£32.15 16.07 +0.62 0.06 + 0.04
9.15+£048 1528 +1991 10.85+0.60 0.37+0.04
13.07 £ 0.53 18.88 =24.71 14.85+0.57 0.16 +£0.04
8.85+ 047 15.04 +20.24 10.54 +0.59 0.39+ 0.04
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Table 6. Impact of each SCL video transformation in MMPD cross dataset evaluation across different scenarios, trained on PURE dataset

(in BPMs).
Scenario Transformation MAE | RMSE | MAPE | p T
HSV 7.11+/-091  12.62+/-29.34 10.14 +/- 145 0.45 +/- 0.08
LAB 6.52+/-0.90 1225 +/-29.88  9.63 +/-1.48  0.48 +/- 0.08
Stationary FLIP 6.60 +/-0.89 1220 +/-32.50  9.53 +/-1.46  0.47 +/- 0.08
ocCcC 7.06 +/-0.88 1233 +/-29.14  9.90 +/- 1.38  0.43 +/- 0.08
FUSION 6.03 +/-0.85 11.47 +/-27.67 8.71+/-1.37  0.54 +/- 0.07
HSV 1193 +/-1.21 1831 +/-5532 1242 +/-1.15 0.28 +/- 0.08
Stationary LAB 11.46 +/-1.23  18.23 +/-58.11 11.84 +/-1.15  0.29 +/- 0.08
(after FLIP 12.05 +/-1.25 18.72 +/-58.62 12.31 +/-1.16  0.27 +/- 0.08
exercise) occ 1244 +/- 124 1893 +/-56.78  12.57 +/- 1.11  0.22 +/- 0.09
FUSION 11.66 +/-1.22  18.26 +/-56.74  12.02 +/- 1.14  0.31 +/- 0.08
HSV 6.31 +/-0.81  11.20 +/-25.24  9.01 +/-1.32  0.45 +/- 0.08
LAB 594 +/-0.79  10.77 +/-25.56 834 +/-1.24  0.50 +/- 0.08
Rotation FLIP 591 +4/-0.77  10.63 +/-25.65 8.62+/-1.31  0.52 +/-0.08
OCC 5.894/-0.78  10.66 +/-26.42  8.66 +/- 1.33  0.52 +/- 0.08
FUSION 588 +/-0.76 1047 +/-24.79  8.19 +/-1.23  0.53 +/- 0.07
HSV 8.23+/-0.93  13.43+/-31.69 10.52+/-1.27  0.26 +/- 0.08
LAB 7.134/-0.90 1257 +/-31.54 934 +/-1.27  0.35+/- 0.08
Talking FLIP 6.57 +/-0.89  12.15+/-33.88 8.57 +/-1.31  0.41 +/- 0.08
OCC 7.01 +/-0.84  11.89+/-28.99 9.09+/-1.18  0.43 +/- 0.08
FUSION 7.14 +/-0.89 1247 +/-31.01  9.21 +/-1.25  0.36 +/- 0.08
HSV 1574 +/- 1.15  20.55+/-51.01 16.57 +/- 1.14  0.07 +/- 0.09
LAB 1491 +/-1.18  20.16 +/-53.61 1558 +/-1.16  0.10 +/- 0.09
Walking FLIP 1426 +/-1.22  19.99 +/-55.74 14.80 +/-1.19  0.00 +/- 0.09
occC 13.99 +/-1.25  20.02 +/-59.24  14.83 +/- 1.38  -0.08 +/- 0.09
FUSION 1497 +/- 1.19  20.30 +/- 56.41 1571 +/- 1.17  0.07 +/- 0.09
HSV 9.87 +/-0.47  15.65+/-18.64 11.74 +/-0.58 0.35+/-0.04
LAB 9.20 +/-0.47 1526 +/-19.31 10.95 +/-0.58 0.38 +/- 0.04
All FLIP 9.09 +/-0.48 1524 +/-19.97 10.77 +/-0.59  0.37 +/- 0.04
ocC 9.28 +/-0.47 1528 +/-19.71 11.01 +/-0.58 0.35+/-0.04
FUSION 9.14 +/- 047 1513 +/-19.32 10.78 +/-0.56  0.40 +/- 0.04
References and noise modeling for remote physiological measurement.

In CVPR, pages 12404-12413, 2021. 1

(1]

(2]

(3]

(4]

(5]

Serge Bobbia, Richard Macwan, Yannick Benezeth, Alamin
Mansouri, and Julien Dubois. Unsupervised skin tissue seg-
mentation for remote photoplethysmography. Pattern Recog-
nit. Lett., 124:82-90, 2019. 1

Gerard De Haan and Vincent Jeanne. Robust pulse rate from
chrominance-based rppg. IEEE Trans. Biomed. Eng., 60(10):
2878-2886, 2013. 1

John Gideon and Simon Stent. The way to my heart is
through contrastive learning: Remote photoplethysmogra-
phy from unlabelled video. In ICCV, pages 3995-4004,
2021. 1

Min Hu, Fei Qian, Dong Guo, Xiaohua Wang, Lei He, and
Fuji Ren. Eta-rppgnet: Effective time-domain attention net-
work for remote heart rate measurement. IEEE Trans. In-
strum. Meas., 70:1-12, 2021. 1

Hao Lu, Hu Han, and S Kevin Zhou. Dual-gan: Joint bvp

(6]

(7]

(8]

(9]

(10]

Chaoqi Luo, Yiping Xie, and Zitong Yu. Physmamba: Effi-
cient remote physiological measurement with slowfast tem-
poral difference mamba. arXiv preprint arXiv:2409.12031,
2024. 1

Ming-Zher Poh, Daniel J McDuff, and Rosalind W Picard.
Non-contact, automated cardiac pulse measurements using
video imaging and blind source separation. Optics express,
18(10):10762-10774, 2010. 1

Jeremy Speth, Nathan Vance, Patrick Flynn, and Adam Cza-
jka. Non-contrastive unsupervised learning of physiological
signals from video. In CVPR, 2023. 1

Radim Spetlik, Vojtech Franc, and Jirf Matas. Visual heart
rate estimation with convolutional neural network. In BMVC,
2018. 1

Ronny Stricker, Steffen Miiller, and Horst-Michael Gross.
Non-contact video-based pulse rate measurement on a mo-



(11]

[12]

[13]

[14]

bile service robot. In RO-MAN, pages 1056-1062. IEEE,
2014. 1

Zhaodong Sun and Xiaobai Li. Contrast-phys: Unsuper-
vised video-based remote physiological measurement via
spatiotemporal contrast. In ECCV, pages 492-510. Springer,
2022. 1

Jiankai Tang, Kequan Chen, Yuntao Wang, Yuanchun Shi,
Shwetak Patel, Daniel McDuff, and Xin Liu. Mmpd: Multi-
domain mobile video physiology dataset. arXiv preprint
arXiv:2302.03840, 2023. 1

Wenjin Wang, Albertus C den Brinker, Sander Stuijk, and
Gerard De Haan. Algorithmic principles of remote ppg.
IEEE Trans. Biomed. Eng., 64(7):1479-1491, 2016. 1
Bochao Zou, Zizheng Guo, Jiansheng Chen, and Huimin
Ma. Rhythmformer: Extracting rppg signals based on hi-
erarchical temporal periodic transformer. arXiv preprint
arXiv:2402.12788, 2024. 1



