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Abstract

We present an end-to-end framework for generating artist-
style meshes from noisy or incomplete point clouds, such
as those captured by real-world sensors like LiDAR or mo-
bile RGB-D cameras. Artist-created meshes are crucial for
commercial graphics pipelines due to their compatibility
with animation and texturing tools and their efficiency in
rendering. However, existing approaches often assume clean,
complete inputs or rely on complex multi-stage pipelines, lim-
iting their applicability in real-world scenarios. To address
this, we propose an end-to-end method that refines the input
point cloud and directly produces high-quality, artist-style
meshes. At the core of our approach is a novel reformula-
tion of 3D point cloud refinement as a 2D inpainting task,
enabling the use of powerful generative models. Preliminary
results on the ShapeNet dataset demonstrate the promise of
our framework in producing clean, complete meshes.

1. Introduction
Artist-created meshes (AMs) play a central role in 3D appli-

cations due to their compatibility with commercial graphics

pipelines. These meshes offer high-quality topology using

relatively few vertices, making them ideal for efficient ren-

dering and editing. However, generating artist-style meshes

from real-world sensor data remains a significant challenge.

Existing mesh generation pipelines [5, 6, 11, 20, 35] of-

ten assume access to clean and complete 3D inputs, such

as dense point clouds or high-fidelity scans. In practice,

however, point clouds captured by real-world sensors—like

LiDAR or mobile RGB-D cameras—are frequently sparse,

noisy, or incomplete. Moreover, conventional approaches

rely on complex, multi-stage processing pipelines, which are

difficult to scale and prone to cascading errors.

To address these limitations, we propose an end-to-end

framework that generates high-quality artist-style meshes

directly from raw point cloud inputs, even when the input

data is noisy or partial. At the core of our method is a novel

formulation of 3D point cloud refinement as a 2D inpainting

problem, enabling the use of powerful 2D generative models

(i.e., Stable Diffusion [19]).

Specifically, we first project the input 3D point cloud onto

a spherical atlas using sphere offsetting followed by equirect-

angular projection. This produces a 2D point cloud atlas

that retains geometric and structural information in image

space. We then apply a denoising U-Net to inpaint the atlas,

filling in missing regions and reducing noise. The refined at-

las is subsequently mapped back to 3D and converted into a

clean, complete point cloud. Finally, we pass this point cloud

through a frozen feed-forward transformer [6] to generate

the final artist-style mesh.

Our contribution can be summarized as follows:

• An end-to-end framework for generating artist-style

meshes directly from raw point cloud inputs.

• A novel formulation of 3D point cloud refinement as a 2D

inpainting problem.

• Promising results on the ShapeNet dataset [3], showing

the potential of our approach for real-world applications.

2. Related Work
2.1. Point Cloud Refinement
The point cloud refinement task aims to recover missing ge-

ometry from partial or noisy point clouds. Early deep learn-

ing approaches [9, 10, 22, 23] leveraged 3D convolutional

networks on voxelized inputs, but these were constrained by

high computational and memory costs. PointNet [17, 18] in-

troduced a paradigm shift by directly operating on unordered

point sets, enabling more scalable processing. Building

on this, PCN [32] and subsequent works [14, 24, 26, 29]

adopted a coarse-to-fine folding-based architecture to gener-

ate dense point clouds in an end-to-end fashion, conditioned

on partial input. Transformer-based methods have since

improved completion quality. However, they often suffer

from limited contextual understanding, especially when re-

lying solely on 3D input. To address this, recent methods

incorporate image guidance. For instance, MBVN [13] em-

ploys a conditional GAN to complete missing regions in

2D space and reconstructs 3D point clouds from the com-

pleted images. ViPC [34] and Cross-PCC [28] use both

the partial point cloud and a single-view image for comple-

tion. SVDFormer [36] and PCDreamer [25] take a further

step by synthesizing novel views and using them to guide

point cloud generation. In particular, PCDreamer utilizes a

diffusion-based prior to generate realistic multi-view images.
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Figure 1. Overview of Our Pipeline. Top: Representing 3D Point Cloud as 2D Atlas. For each fitting, the point cloud is first translated to

the surface of a standard sphere S via optimal transport, where points with the same color indicate a 1-to-1 mapping. Then, the surface

points are flattened onto the 2D plane via equirectangular projection with reusable indices. We obtain Atlas by reorganizing the flattened

coordinates to pixels of a dense 2D square of size
√
N ×√

N . Bottom: Training And Inference Pipeline. We fine-tune a latent diffusion

model to inpaint incomplete atlases. The completed atlas is then used to reconstruct the full point cloud through inverse mapping of optimal

transport. The point cloud is subsequently passed to an off-the-shelf mesh generation model to produce the final artist-created mesh.

However, due to the lack of strong multi-view consistency

in diffusion models, the resulting 3D reconstructions often

remain noisy. Importantly, most prior works focus solely

on completing the missing points without regard for mesh

topology. As a result, meshing these outputs often leads to

overly complex and unstructured surfaces. Our approach

not only refubes the point cloud but also explicitly aims to

produce artist-created meshes with clean topology, suitable

for downstream use in commercial graphics pipelines.

2.2. Artist-created Mesh Generation
Recent works on artist-created mesh generation focus on

producing meshes that efficiently and faithfully capture the

underlying topology. A prominent line of research [1, 4,

5, 16, 21, 27] formulates mesh generation as a sequence

modeling task, where the mesh is represented as an ordered

sequence of faces or vertices. PolyGen [16] employs two

autoregressive transformer models to generate vertex coor-

dinates and face indices separately. MeshXL [4] directly

autoregresses over sequences of explicit vertex coordinates

to generate raw meshes. MeshGPT [20] tokenizes geomet-

ric structures into a learned vocabulary and decodes these

tokens into faces using an autoregressive model. Polydiff [1]

represents the mesh as a quantized triangle soup and applies

a diffusion model to denoise it into a clean, coherent mesh.

To improve structure and quality, PivotMesh [27] introduces

pivot vertices as coarse anchors to guide mesh token genera-

tion. MeshAnything [6] leverages a VQ-VAE to learn a com-

pact mesh vocabulary and generates meshes conditioned on

input shapes using an autoregressive transformer. Its succes-

sor, MeshAnythingV2 [7], improves tokenization efficiency

by encoding each face with a single vertex. Meshtron [12]

proposes a scalable solution using an hourglass-style trans-

former architecture for mesh sequence generation. These

approaches aim to bridge the gap between raw geometric

reconstructions and structured, artist-quality outputs suitable

for commercial use. In our work, we align with this goal by

generating artist-created meshes from incomplete or noisy

point clouds, while also ensuring topological consistency

and mesh simplicity through a 2D inpainting-driven design.

3. Method

We formalize the task of generating a high-fidelity artist-

created mesh from an incomplete and noisy point cloud. Let

Pgt ⊂ R
3 denote the ground truth point cloud and Pi ⊂ Pgt

denote a subset of the ground truth. Our input is a noisy
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corrupted version of P̂ , defined as:

P̂ =
{
p+ np | p ∈ Ci(Pgt), np ∼ N (0, σ2I)

}
. (1)

where Ci : R3 → R
3 is a corruption operator on a point

cloud, selecting a subset of Pgt and Ni represents the noise

applied to the points. The resulting point cloud captures real-

world scanning artifacts such as sparsity, occlusions, and

sensor noise. Our desired output is a mesh M adopting the

form of ordered sequence of faces, vertices and coordinates

as described in [11]. We adopt this representation to align

with the standard sequence generation formulation for mesh

generation. However, due to the noisy and corrupted nature

of the input point cloud, additional steps are necessary to

address these challenges.

We aim to learning the distribution P (M | Ŝ) where M
represents the AM and Ŝ represents the 3D shape condition

from the incomplete point cloud P̂ . In contrast, prior work [5,

6, 11, 35] focuses on learning the distribution P (M | S)
where S is the 3D shape condition from the complete and

noise-free point clouds. A straightforward approach is to

fine-tune these models so that they adapt from P (M | S) to

P (M | Ŝ) . However, as pointed out in [11], these methods

often fail to produce meaningful results when conditioned

on incomplete or noisy 3D data. To address this challenge,

we instead factorize the distribution as:

P (M | Ŝ) = P (M | S)P (S | Ŝ) (2)

This factorization suggests a two-stage approach: first, re-

cover the complete shape condition from its corrupted coun-

terpart by modeling P (S | Ŝ), then, generate the AM using

the standard pipeline based on P (M | S). An overview of

our method is demonstrated in Fig. 1.

3.1. Recovering Complete Shapes
Our key intuition is to leverage the powerful distribution

modeling capabilities of diffusion models to recover the

complete shape condition S from the corrupted version Ŝ,

i.e., learning P (S | Ŝ). While diffusion models have demon-

strated strong generative performance in the 2D domain,

3D diffusion model has been limited by the scarcity of

high-quality 3D data, resulting in performance gaps rela-

tive to their 2D counterparts. To overcome this limitation,

we adopt recent approaches that re-purpose pre-trained 2D

diffusion models for 3D object generation through atlasing

[30, 31, 33]. Our pipeline for representing 3D point clouds

as 2D atlas is shown on top of Fig. 1.

Specifically, this re-purposing process begins by hypoth-

esizing a unit sphere centered around the object, populated

with N 3D points s = {si|si ∈ R
3} uniformly distributed

on its surface. Each point in the input point cloud is then

mapped onto the sphere surface via Optimal Transport (O.

T.) [2]. Once positioned, an equirectangular projection is

applied to convert the spherical coordinates to flattened 2D

coordinates mi ∈ R
2. A second O. T. step maps these pro-

jected coordinates mi onto the vertices ni ∈ R
2 of a regular√

N ×√
N 2D grid. While prior methods apply Gaussian

atlases to encode features such as 3D location, color, opacity,

scale, and rotation, our point cloud setting includes only 3D

locations and normals. Therefore, the final output is an atlas

X ∈ R

√
N×√

N×(||x−s||+||n||) where x − s and n denote

the offset 3D coordinates and normals, respectively.

Upon obtaining the atlas map, we fine-tune the pre-trained

Latent Diffusion (i.e., Stable Diffusion [19]) to inpaint miss-

ing areas of the given incomplete atlas. Following [30], our

inpaint U-Net U directly operates on the atlas without in-

volving VAE. At each diffusion step t, the inpaint network U
predicts the noise ε added to the ground-truth atlas X, con-

ditioned on the input incomplete atlas X̂. Specifically, we

condition the generation on the incomplete atlas by adding

it to the noisy image (i.e., Xt + X̂). Although we used the

simple conditioning for the initial exploration, in the future

work, more sophisticated conditioning (e.g., self-attention)

can be employed. The training objective minimizes the dif-

ference between the predicted and the ground-truth noise:

L = E

[
‖ε− U(Xt + X̂, i)‖2

]
, where Xt = αtX + σtε.

Here, X is the ground-truth latent, ε ∼ N (0, I) represents

Gaussian noise, and αi and σi are diffusion parameters that

define the noise level at diffusion timestep i.
During inference time, we use T = 20 denoising steps

to inpaint the corrupted atlas. The completed atlas is then

transformed back into a 3D point cloud representation from

the bijective O. T. mapping, thereby closing the loop for

learning the distribution P (S | Ŝ).
3.2. Recovering Meshes
Given an estimate of P (S | Ŝ), we can approximate

P (M | Ŝ) by first computing P (M | S) as described in

Eq. 2. At this stage, the availability of a complete point

cloud allows us to employ an off-the-shelf mesh genera-

tion model. Specifically, we use MeshAnything V2 [5] to

estimate P (M | S). It formulates mesh generation as an

auto-regressive token prediction problem on a learned mesh

vocabulary. Given a fully completed shape S condition, i.e.,

the encoded point cloud, it infers the conditional distribution

P (M | S) =
T∏

t=1

P
(
mt | m1:t−1, S

)
(3)

where each token mt represents either a vertex coordinate

quantized to a fixed grid or a face index triplet.

4. Experiments
In this section, we benchmark and evaluate the effectiveness

of our proposed method on the test set from our dataset de-

scribed above. MeshAnything V2 [5] serves as our primary
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Figure 2. Qualitative Results. We compare the meshes generated by our method and MeshAnything V2. The figure also includes the

ground-truth mesh, point cloud sampled from the ground-truth meshes, corrupted input point cloud, ground-truth Atlas maps, and their

generated counterparts. The results demonstrate that our approach can reconstruct key geometric features where MeshAnything V2 fails,

while also highlighting several limitations of our model.

Table 1. Comparison of our method and MeshAnything V2 on the noisy and cropped ShapeNet dataset.

Method CD↓ (×10−2) ECD↓ (×10−2) NC↑ #V↓ #F↓ V Ratio↓ F Ratio↓
Ours 0.913 1.283 0.344 381.2 635.0 3.505 1.599
MeshAnything V2 0.909 1.422 0.393 527.4 998.1 4.705 2.398

baseline. To quantitatively assess mesh quality, we adopt

the following standard metrics setting as in [8]: Chamfer

Distance (CD), Edge Chamfer Distance (ECD), Normal

Consistency (NC), Vertex and Face Counts (#V , #F ), Ver-

tex/Face Ratios (V Ratio, F Ratio).

4.1. Results & Discussion
We present the evaluation results of our method and Me-

shAnything V2 in Table 1. Fig. 2 shows qualitative exam-

ples of the generated meshes.

Overall, the evaluation results in Table 1 show that our

approach achieves performance comparable to, and in some

cases surpassing, baseline, demonstrating its effectiveness

under noisy point cloud input conditions. In particular, our

method achieves a similar CD, and a better ECD, suggest-

ing comparable mesh quality. However, it performs worse

in NC, indicating challenges in accurately reconstructing

surface normals. This may be attributed to the standard diffu-

sion process not enforcing unit-length constraints, leading to

noisier outputs. This insight suggests a future improvement

in the training pipeline.

We observe that our method achieves lower values in

the metrics #V , #F , V Ratio, F Ratio compared to Me-

shAnything V2. While lower values in these metrics typi-

cally indicate higher ability to represent complex topology

using fewer vertices and faces, this does not apply in our

case. A sanity check of the generated results reveals that

many generated meshes exhibit missing parts. Thus, the

reduced values more likely reflect a deficiency in preserving

geometric completeness. We provide further hypotheses for

this behavior in the supplementary materials.

5. Conclusions

We presented an end-to-end framework for generating artist-

style meshes from noisy or incomplete point clouds, address-

ing key limitations of existing methods that assume clean

inputs or rely on multi-stage pipelines. By reformulating the

3D point cloud refinement problem as 2D inpainting, our ap-

proach leverages powerful 2D generative models to recover

clean and complete geometry. Preliminary results demon-

strate the potential of our method to produce high-quality

meshes from real-world-like inputs.
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