
A. Experimental Details

A.1. Methods Compared
We benchmark our model against Fastron with Forward
Kinematics Kernel (Fastron FK), which is known to be
state-of-the-art in learning-based collision detection [3, 10].
We note that Fastron and Fastron FK were already bench-
marked against the previous state-of-the-art approaches:
SSVM [43], ISVM [13], and GJK [4]. In the extensive ex-
periments presented by the authors, Fastron and Fastron FK
were shown to be superior to or on-par with all the afore-
mentioned methods, as it relates to the speed-error trade-
off (albeit at ≤ 7 DoF, with only a few thousand training
samples) [3, 10]. Furthermore, they found that Fastron FK
is superior to vanilla Fastron, in terms of both speed and
time [10]. Due to these reasons, the theoretical analysis de-
scribed in Section 4, and the apparent lack of open-source
code for other learning-based methods, we only benchmark
against Fastron FK.
Hyperparameters: In order to fairly compare the methods,
we test multiple hyperparameter settings. We made sure to
include the hyperparameter settings included by the authors
of Fastron, as those were previously determined to be near-
optimal [3]. Then, out of the tested settings, we only con-
sider the best hyperparameter settings for each model: it
would be unfair to consider other hyperparameter settings,
since every model has hyperparameters that could make it
useless. See Tables 1 and 2.
Train-Test Split: For almost all of the experiments, we
use 30, 000 training points and 5, 000 testing points. All
points are uniformly randomly sampled from the configura-
tion space.

There are, however, two exceptions. The first is when
we investigate the impact of training dataset size on model
performance – here we vary the number of training samples
between 102 and 105, but still use 5, 000 testing samples.
The second is when we investigate the impact of sampling
strategy on model performance, as uniform sampling may
be problematic in the physical world – here we try rejec-
tion sampling (as it relates to points inside obstacles), but
continue to use 30, 000 training and 5, 000 testing points.

A.2. Environments
In designing the experimental environments, our goals are
as follows:
1. To quantify how DeepCollide performs in the speed vs.

error trade-off, as compared to the state-of-the-art ap-
proach.

2. To validate DeepCollide’s ability to express a wide vari-
ety of scene geometries.

3. To investigate the scalability of DeepCollide, as it relates
to DoF.

4. To investigate the scalability of DeepCollide, as it relates

to training dataset size.
5. To validate the architectural design choices for DeepCol-

lide.
6. To understand how sampling strategy affects DeepCol-

lide’s performance.
In all environments, we use the Kuka LBR iiwa 7 R800

robot arm, which has seven DoF [55] .
Towards the first goal of quantifying how DeepCollide

performs in the speed vs. error trade-off, we place three
Kuka robots (21 DoF) in an environment with 25 obstacles
(13 cubes, 12 spheres). We set the Kuka robots at random
positions, and we set the obstacles at random positions and
orientations. We create three such environments using dif-
ferent random seeds. See Figure 6.

Towards the second goal of validating DeepCollide’s
ability to express a wide variety of scene geometries, we
generate environments containing 10, 20, 30, 40, 50, and 60
randomly placed obstacles. All of these environments have
three robots, which are randomly placed. For each number
of obstacles, we test arrangements where the robots are far
away from each other (to minimize robot-robot collisions)
and close to each other (such that robot-robot collisions are
frequent). We use three random seeds, making for a total of
6×2×3 = 36 environments in this experiment. See Figure
7.

Towards the third goal of investigating DeepCollide’s
scalability with DoF, we generate environments containing
between one (7 DoF) and four (28 DoF) robots, and 25 ob-
stacles. In a sense, this setting is similar to that of Kuffner
et al. [27] and Okada et al. [34], in that there are mul-
tiple limbs that must avoid collision with each other in a
high-DoF setting. Again, both the obstacles and robots are
randomly placed, and we use three random seeds, making
for 4 × 3 = 12 total environments in this experiment.See
Figure 5.

Towards the fourth goal of investigating DeepCollide’s
scalability with training data, we generate environments as
we did in the first experiment, the difference being that we
sample more points from these environments.

Towards the fifth goal of validating DeepCollide’s ar-
chitectural choices, we use the same environment as in the
speed vs. error experiments, and remove core parts of Deep-
Collide’s architecture (details later).

Towards the sixth goal of understanding how sampling
strategy affects DeepCollide’s performance, we want to see
if our method can still perform well if we are not allowed to
take samples within obstacles, since that is usually not fea-
sible in a real-world setup. In order to do this, we decided
to create environments where approximately half of all con-

The last DoF (the end-effector) actually does not affect collision sta-
tus, since it just rotates a half-sphere. However, we still include it in our
model input, because we think it is important to demonstrate that the model
can learn when some DoFs are inconsequential.

(a) 71.3% of the c-
space is occupied.

(b) 47.6% of the c-
space is occupied.

(c) 66.3% of the c-
space is occupied.

Environments for Speed vs. Error Analysis. Each environ-
ment has three randomly placed Kuka LBR iiwa 7 R800 robots
(21 DoF), and 25 randomly placed obstacles.

(d) 71.4% of the c-
space is occupied.

(e) 41.7% of the c-
space is occupied.

(f) 39.9% of the c-
space is occupied.

Environments for Sampling Strategy Analysis. Each environ-
ment has three randomly placed Kuka LBR iiwa 7 R800 robots
(21 DoF), and 25 randomly placed obstacles.

Figure 6. Comparison of environments used in two experimental
setups.

figurations result in collision, such that there is enough free
space to sample in, but also a proportion of collisions that is
high enough to make it non-trivial to avoid sampling within
obstacles. So, we generated environments with three robots
(21 DoF) far away from each other (to minimize robot-robot
collisions) and 25 obstacles (such that there are sufficient
objects to collide with). We use three random seeds, mak-
ing for 3 total environments. See Figure 6.

A.3. Ground Truth Collision Detection
We use PyBullet for ground-truth collision detection [31].
Based on our understanding of the source code on GitHub,
PyBullet internally uses the standard GJK [4] algorithm for
collision detection (along with axis-aligned bounding boxes
and EPA [35]).

We benchmark our method’s speed against PyBullet.
However, we note that PyBullet contains some computa-
tional overhead time, due to other calculations besides GJK
in the physics simulation. While in principle, the over-
head could be disentangled from GJK by editing PyBullet’s
source code, we leave the code as is, because in practice,
roboticists would just use the default PyBullet collision de-
tection functions. So, we consider this to be a fair baseline,
albeit with the caveat that it could be faster.

(a) 10 obstacles. (b) 20 obstacles.

(c) 30 obstacles. (d) 40 obstacles.

(e) 50 obstacles. (f) 60 obstacles.

Figure 7. Environments for Determining Impact of Collision
Density on Performance. Each environment has three randomly
placed Kuka LBR iiwa 7 R800 robots (21 DoF). Number of ob-
stacles varies from 10 to 60. In the collision density experiments,
there are a total of 36 environments like these, generated with a
variety of random seeds.

A.4. Metrics

In creating a model for collision detection, we wish to opti-
mize on two fronts: speed and correctness.

As it relates to speed, we measure (following [3]):
• Training Time: This is the time it takes to fit our model

to the given data on the workspace.
• Time per Inference: This measures the average time it

takes the model to tell us whether a singular configuration
will collide. We measure this separately from training
time because the training time is a one-time cost, but after

we have the trained model, we can make as many queries
as we want.

We leave out the forward kinematics kernel computation
[10] from our speed calculations, because all the meth-
ods (i.e., DeepCollide, Fastron FK) we compare use it.
So, whether or not we include it, the conclusion of which
method is fastest remains the same. Furthermore, since we
want to find out which method is the fastest, we believe it is
more illuminative to isolate and base our comparison on the
parts of the methods that are different.

As it relates to correctness, we measure (again, after [3]):
• Accuracy: This is defined as TP+TN

TP+TN+FP+FN , where
TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and
FN is the number of false negatives, from the model’s
predictions. This is the standard metric used in machine
learning applications.

• TPR: This is defined as TP
TP+FN . Intuitively, it quantifies

the percent of actual collisions that our model catches. A
high value for this metric indicates that our model will be
able to show the robot where to avoid obstacles.

• TNR: This is defined as TN
TN+FP . We can think of this

as the percent of the free space that our model correctly
identifies. This metric is important because it shows how
good the collision detection function will be at showing
the robot collision-free paths to its destination.
The TPR and TNR only make sense when reported to-

gether (i.e., in a Pareto analysis), because they have an in-
verse relationship, such that one could artifically set the bias
hyperparameter to make one of them always 100% at the
cost of the other always being 0%. Thus, we only analyze
TPR and TNR in the context of Pareto frontiers, where we
can see them side by side. It would not make sense to an-
alyze them in the other experiments, such as DoF vs. per-
formance, since the independent variables are already fixed
(e.g., to DoF), making it tricky to analyze both TPR and
TNR on a two-dimensional diagram. For these experiments,
we only report accuracy.

A.5. Implementation Details
Libraries: We conduct all experiments in Python 3.9.16.
For robot simulation and ground truth collision detection,
we use PyBullet 3.2.5 [31]. For general computation, we
use Numpy 1.24.3 [56]. For our deep learning models, we
use PyTorch 1.10.2 [54]. For Fastron, we use the official
implementation created by the authors [3].
Hardware: We run most experiments on an AMD Ryzen
Threadripper 3960X 24-Core Processor as the CPU. Addi-
tionally, we utilize a singular NVIDIA GeForce RTX 3090
to train DeepCollide, because GPUs are widely known to
accelerate training of deep learning models.

We do not use a GPU to test Fastron, because the official
implementation does not support that. In contrast, we test

DeepCollide both on CPU, and on GPU. We conduct CPU
testing to create a close-as-possible comparison to Fastron.
We also conduct GPU testing because we want to realize the
full potential of DeepCollide, and one of the advantages of
deep learning is that it is massively parallelizable on GPUs
[57].

Hyperparameter Possible Values
Smax (max # supp. pts) 3000, 10000, 30000
Imax (max # updates) 5000, 30000
γ (kernel width) 1,5, 10
β (positive bias) 1,500, 1000

Table 1. Fastron Hyperparameter Sweep: We use the recom-
mended hyperparameters (bolded) from [3], and also test more to
give it a fair chance (3× 2× 3× 3 = 54 combinations).

Hyperparameter Possible Values
|L| (# positional freq.) 4, 8, 12
β (positive bias) 1, 2, 5
σ (positional freq. increment) 1

2 , 1, 2

Table 2. DeepCollide Hyperparameter Sweep: The 3× 3× 3 =
27 combinations of hyperparameters tried for our method.

A.6. Hyperparameter Recommendations for Deep-
Collide

A hyperparameter setting for DeepCollide that was on the
Pareto-optimal frontier for all charts (i.e., accuracy vs. in-
ference time, accuracy vs. train time, TPR vs. TNR) in
Figure 3 was |L| = 12, β = 1, σ = 1. This corresponds to
87.6%± 1.3% accuracy, (4.5± 0.4) ∗ 10−5 seconds per in-
ference on CPU ((0.2±0.1)∗10−5 seconds per inference on
GPU), 14.1± 0.2 seconds to train, 89.9%± 2.0% TPR, and
81.9%±7.9% TNR, where the mean and standard deviation
are calculated across all three environments (i.e., n = 3).

B. Impact of Sampling Strategy
B.1. Rationale
In real-world scenarios where workspace geometry is not
known, collision data must be gathered by physically setting
the robot to multiple configurations and checking if they
collide. A result of this setup is that it is often infeasible to
obtain datapoints that are embedded deep within obstacles
(for instance, we cannot move a robot arm into the center of
a solid rock).

Thus, in this experiment, we adopt our sampling strat-
egy to better understand the limits of our method in such
a scenario. Particularly, we conduct a rejection sampling
strategy, in which we start by sampling points uniformly,
but reject them and resample if they fall too far within an
obstacle. We allow configurations that collide with an ob-
stacle, provided the collision depth is less than 7.5% of the

Rejection Combo Uniform
Sampling Scheme (Train)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy 0.51 0.51 0.51

0.76

0.87 0.90

0.76 0.79 0.81

Impact of Sampling Scheme on Model Performance:
21 DoF, 30000 Train, 5000 Test

Distribution-Aware Guess DeepCollide Parallel Fastron FK

Figure 8. Impact of Sampling Strategy on Correctness. The
points on the graph show the average accuracy over three en-
vironments. We compare DeepCollide on GPU to Fastron FK.
The horizontal axis label is the sampling strategy that was used
to generate the training data; all testing data was sampled uni-
formly. “Rejection” indicates that we used rejection sampling to
only sample points that were either in free space, or not more than
7.5% indented into an obstacle; “Uniform” indicates that we sam-
pled points uniformly across the configuration space, regardless
of whether they were within obstacles or not; “Combo” indicates
that half the points came from the “Rejection” strategy and the
other half came from the “Uniform” strategy.

obstacle’s diameter (in the case of a sphere) or side length
(in the case of a cube). This is reasonable because many
obstacles in real life are slightly deformable or displacable.

We have three separate training data sampling schemes
that we compare: rejection, uniform, and combo. Combo
sampling is when we sample half the training points with
uniform sampling and half the training points with rejection
sampling. We then test on uniformly sampled configuration
space points.

In this experiment, we only study the impact on accuracy,
because the time it takes to pass data through a machine
learning model is independent of the label. We also use the
parallelized GPU version of DeepCollide at test time, since
the accuracy, in principle, should be the same as the non-
parallelized version.

B.2. Outcome
Figure 8 leads us to a few conclusions. Firstly, when we
conduct rejection sampling for the train points, the perfor-
mance is worse than uniformly sampling training points.
This shows the importance of sampling a training distribu-
tion that reflects the testing distribution for machine learn-
ing models. Secondly, machine learning methods are bet-
ter than the distribution-aware guess baseline, even if there
is a disconnect between the training and testing distribu-

tions. Finally, the advantage of DeepCollide over Fastron
is most apparent when the training and testing distributions
were both sampled with the same uniform strategy. The ad-
vantage disappears when rejection sampling generates the
training distribution, although they are still roughly equal,
and both better than the distribution-aware guessing base-
line.

C. Impact of Sample Size
In measuring the impact of sample size, we set Imax to
50, 000 and Smax to 50, 000 for Fastron FK, so that it is
equipped to process the large number of training points (up
to 100, 000).

C.1. Impact on Correctness
Figure 9a shows the impact of train sample size on accuracy.
Obviously, model performance gets better as we add more
training points for both models. Furthermore, DeepCollide
clearly outperforms Fastron FK, regardless of sample size.

We also note that the support point and iteration limits
(Smax = Imax = 50, 000) on Fastron may theoretically
diminish the accuracy benefits of more training data. How-
ever, as we see in the next subsection, Fastron already has
a time scalability problem with respect to training data, and
increasing those limits could only serve to exacerbate this.

C.2. Impact on Speed
Figures 9b and 9c show the impact of train sample size on
model speed. It is in line with Section 4’s theoretical expec-
tations of time complexity. The implication of this is that
DeepCollide scales much better than Fastron, with respect
to training sample size. Notably, as the number of train
samples gets high, Fastron’s inference time (Figure 9c) is
slower than even the PyBullet baseline (which has consid-
erable overhead besides GJK). In contrast, DeepCollide is
consistently faster than PyBullet, and the GPU-parallelized
version of DeepCollide is over an order of magnitude better
than any of the other methods.

D. Impact of Collision Density
D.1. Impact on Correctness
From Figure 10a, we see that DeepCollide consistently
outperforms Fastron FK on accuracy. We also see that
when the collision density is close to 50%, the benefit of
machine learning methods is most clear over distribution-
aware guessing, albeit with a slight drop in the performance
of both models.

D.2. Impact on Speed
Figures 10b and 10c show the impact of collision density on
model speed. Firstly, we notice that overall, collision den-
sity does not significantly impact machine learning model

0 20000 40000 60000 80000 100000
Number of Train Samples

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Number Train Samples vs Accuracy:
21 DoF, 5000 Test Samples

DeepCollide Seq: Best
Fastron FK: Best
Majority Rule

(a) Sample Size vs. Accuracy

0 20000 40000 60000 80000 100000
Number of Train Samples

0

100

200

300

400

Tr
ai

n
Ti

m
e

(s
)

Number Train Samples vs Train_time:
21 DoF, 5000 Test Samples

DeepCollide Seq: Best
Fastron FK: Best

(b) Sample Size vs. Train Time

0 20000 40000 60000 80000 100000
Number of Train Samples

10 6

10 5

10 4

10 3

Ti
m

e
pe

r I
nf

er
en

ce
 (s

)

Number Train Samples vs Test_time:
21 DoF, 5000 Test Samples

DeepCollide Seq: Best
DeepCollide Parallel: Best
Fastron FK: Best
PyBullet (GJK)

(c) Sample Size vs. Test Time

Figure 9. Impact of Sample Size on correctness. The points on the graph show the average performance over three environments.
Interpretation is the same as Figure 4.

0.2 0.4 0.6 0.8
Collision Density

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Collision Density vs Accuracy:
21 DoF, 30000 train, 5000 test

DeepCollide Seq: Best
Fastron FK: Best
Majority Rule

(a) Collision Density vs. Accuracy

0.2 0.4 0.6 0.8
Collision Density

5

10

15

20

25

30

35

Tr
ai

n
Ti

m
e

(s
)

Collision Density vs Train_time:
21 DoF, 30000 train, 5000 test

DeepCollide Seq: Best
Fastron FK: Best

(b) Collision Density vs. Train Time

0.2 0.4 0.6 0.8
Collision Density

10 6

10 5

10 4

Ti
m

e
pe

r I
nf

er
en

ce
 (s

)

Collision Density vs Test_time:
21 DoF, 30000 train, 5000 test

DeepCollide Seq: Best
DeepCollide Parallel: Best
Fastron FK: Best
PyBullet (GJK)

(c) Collision Density vs. Test Time

Figure 10. Impact of Collision Density on correctness. Interpretation is the same as Figure 4, except that we are measuring collision
density on the x-axis, and these graphs correspond to environments in Figure 7, with only one environment per collision density.

speed in training or testing. The only exception is Fastron’s
slight speedup at the highest collision density shown. This
may be due to Fastron’s redundant support point removal
mechanism, where it automatically removes points from the
support set that would have a positive margin if they were
excluded from the support set (more details in [3]). In the
high collision density case, fewer points may be needed to
construct the support set, since most of the points have the
collision label – leading to quicker computations. However,
PyBullet’s collision checker does slow down as collision
density increases, since there are more pairs of objects to
check collisions between.

Finally, in line with what we have seen so far, DeepCol-
lide generally has quicker test time but slower train time
than Fastron. We also see that at test time (Figure 10c),
even the CPU version of DeepCollide is always faster than
PyBullet, while the GPU-parallelized version is almost two
orders of magnitude faster. This highlights the benefit of
GPU-based parallelization in speeding up collision detec-
tion.

E. Model Ablation

We test the impact of removing the crucial design compo-
nents of DeepCollide, particularly: the ending BatchNorm,
the skip connections, and the Fourier positional encoding.
Figure 11 validates these design choices, as DeepCollide
with all of these components has the highest accuracy (av-
eraged over three environments). The positional encoding
has the biggest impact on the accuracy, in line with previous
work [20]. The ending BatchNorm and skip connections
also have an impact, albeit of less than a percentage point.
We also tried removing BatchNorm from all layers (rather
than just the output node), but we found that this led to di-
verging NaN loss, and therefore did not include it in Figure
11.

F. Trade-offs

F.1. Speed vs. Correctness Trade-off

We choose inference time vs. error as defined by accu-
racy for Figure 3a’s Pareto frontier, because the goal of this

Full DeepCollide Remove
BatchNorm

Remove
Skip Connect

Remove
Position Encoding

Model

0.80

0.82

0.84

0.86

0.88

0.90

Ac
cu

ra
cy

 (B
es

t H
yp

er
pa

ra
m

et
er

s)

0.8755
0.8676 0.8681

0.8395

DeepCollide Ablation Study:
21 DoF, 30K Train, 5K Test

Figure 11. Ablation Results: We remove components of Deep-
Collide, and compare the accuracy of each of these model ver-
sions. In line with previous experiments, only the hyperparameter
choices yielding the best results are shown.

work is to provide the optimal balance between speed and
correctness. As for why we specifically choose inference
time as our speed metric in this Pareto frontier, asymptot-
ically, speed can be expressed as a function of inference
time alone. We choose accuracy as our correctness metric
because because it accounts for all of the categories in the
confusion matrix (true positives, true negatives, false posi-
tives, false negatives); while other metrics (like TPR) do not
account for some of the categories.

We see that DeepCollide (with exception of the one Py-
Bullet point) makes up all of the points on the Pareto-
optimal frontier, so we can conclude that DeepCollide out-
performs Fastron FK in regards to the speed-correctness
trade-off. We can be confident in this conclusion, be-
cause we did it over a variety of hyperparameters, in-
cluding the hyperparameters that the authors of Fastron
deemed to be (near-)optimal for their model [3]. Further-
more, we conducted these evaluations over multiple random
environments with varying collision densities, so we are
fairly confident that the result is not environment-specific.
Furthermore, we see that using GPU parallelization in-
creases DeepCollide’s speed by about an order of magni-
tude, greatly outpeforming all the baselines.

Furthermore, while training time does not matter in the
asymptotic case (predicting n → ∞, where n is the number
of points predicted), it still is important for practical ap-
plications. Thus, we also investigate the trade-off between
train time and accuracy in Figure 3b. Here, both DeepCol-
lide and Fastron FK have instances on the Pareto-optimal
frontier. We observe that Fastron FK has the fastest overall
model, at the cost of accuracy, while DeepCollide has the
most accurate overall models, at the cost of speed. This is

emblematic of the general differences between neural net-
works and traditional machine learning methods – neural
networks are typically more accurate, but often require ex-
tra training time to achieve their high accuracy.

A natural question that may arise is how we are able
to achieve faster inference times than and comparable train
times to Fastron, when our DeepCollide neural network has
hundreds of thousands of parameters. Actually, this is in
line with our theoretical analysis from Section 4. In high-
DoF settings, we need tens of thousands of training samples
to get an accurate collision detection function, due to the
curse of dimensionality. Given that Fastron’s time per infer-
ence is linear with respect to both training set size and DoF,
while its training time is nearly quadratic with respect to
training set size and linear with respect to DoF; this quickly
becomes computationally prohibitive, and essentially limits
Fastron to low-DoF and low-data cases. In contrast, even
though DeepCollide also has (nominally, as will be shown
in Section 6) linear time complexity with respect to DoF,
its time per inference has no dependency on training dataset
size, and its training time is only linear with respect to train-
ing dataset size. Thus, in even a moderate-data case like this
evaluation, we see DeepCollide’s benefits.

Furthermore, the use of GPUs in training DeepCollide
(which the official implementation of Fastron does not sup-
port) boosts DeepCollide’s training speed.

F.2. Error Modality Trade-off
We choose error as defined by TPR vs. error as defined by
TNR for Figure 3c’s Pareto frontier, because while accuracy
is a good “catch-all” correctness metric, it misses the fine-
grained detail of what kinds of errors are made. In particu-
lar, we care about two kinds of errors: (1) failing to detect a
collision (which can be expressed by 1− TPR); (2) failing
to find a part of the free path (which can be expressed by
1 − TNR). Thus, this Pareto chart of TPR error vs. TNR
error dives deeper into the error modalities of the methods.

Here, the Pareto-optimal frontier is made up of a com-
bination of DeepCollide and Fastron FK instances, but it is
still mostly DeepCollide. Thus, we can say that both mod-
els have comparable ability in balancing collision and free
path detections, although DeepCollide appears to be slightly
better.

	Experimental Details
	Methods Compared
	Environments
	Ground Truth Collision Detection
	Metrics
	Implementation Details
	Hyperparameter Recommendations for DeepCollide

	Impact of Sampling Strategy
	Rationale
	Outcome

	Impact of Sample Size
	Impact on Correctness
	Impact on Speed

	Impact of Collision Density
	Impact on Correctness
	Impact on Speed

	Model Ablation
	Trade-offs
	Speed vs. Correctness Trade-off
	Error Modality Trade-off

