
EVA-Gaussian: 3D Gaussian-based Real-time Human Novel View Synthesis
under Diverse Multi-view Camera Settings

A. More Implementation Details

Network architectures. Our Gaussian position estimation
network DP

θ1
utilizes a U-Net as the backbone. The ar-

chitecture incorporates four stages of 2× down-sampling
using average pooling to extract essential feature details.
Symmetrically, the network features four stages of 2× up-
sampling, achieved through transpose convolutional neu-
ral networks. The EVA module is incorporated before
the 4×, 8×, 16× down-sampling and up-sampling blocks.
The channel dimension starts at 64 prior to the first down-
sampling block, doubling after each down-sampling block
and halving after each up-sampling block, which is facil-
itated by two residual blocks [2]. The Gaussian attribute
estimation network DA

θ2
also employs a U-Net backbone,

but it does not include the EVA modules and performs only
two stages of 2× down-sampling. The architecture of the
feature refiner, DR

θ3
, mirrors that of DA

θ2
, but operates in a

recurrent manner.
More training details. The training hyper-parameters are
set as follows: λ1 = 1,λ2 = 1,λ3 = 103,λopacity =
1,λopacity = 1,λrender = 0.25, and t = 0.05. The num-
ber of recurrent loops L for the feature refinement module
is empirically set to L = 1 to enhance temporal efficiency.
Each training batch contains 2 to 4 source view images, de-
pending on the specific reconstruction task. For instance,
the stereo reconstruction task in the experiment part utilizes
2 source view images. For novel view image supervision,
3 randomly selected views are chosen between each adja-
cent pair of source views to compute Lrefine and Lrender. The
learning rate for deep supervised pre-training and overall
network training is initialized to 0.0002 and decreases lin-
early with the number of training epochs.

B. Real-world Data Assessment

We evaluate our model on HuMMan [1], a real-world
dataset captured with RGB cameras at a resolution of 1024.
Using images from the front two cameras (ID: 1 and ID: 9)
as inputs, we infer the 3D Gaussians through EVA-Gaussian
and render novel views from the viewpoint of ID: 0. The
visualization results, as illustrated in Fig. 1, demonstrate
that EVA-Gaussian produces high-quality novel view im-
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Figure 1. Visualization results on real-world data. Minor artifacts
on the human boundary mainly arise from the noisy human mask.
Notably, GPS-Gaussian cannot generate reasonable outcome.

ages in real-world settings. Notably, GPS-Gaussian fails to
produce reasonable results due to the sparse input view an-
gles of only 90◦, which further underscores the robustness
of our approach.

C. More Visualization Results
In this section, we present additional visualization results
in Fig. 2 to compare our method with SOTA approaches
GPS-Gaussian and ENeRF on the Thuman2.0 [5] and Thu-
mansit [6] datasets at a resolution of 1024×1024. The re-
sults demonstrate that EVA-Gaussian achieves the highest
novel view fidelity across various camera viewpoint set-
tings. In contrast, GPS-Gaussian struggles to handle the
artifacts produced by errors in geometric predictions, while
ENeRF generates much more blurry and low-fidelity results
compared to both GPS-Gaussian and EVA-Gaussian. No-
tably, under settings of large viewpoint discrepancy, e.g.,
∆ = 90◦, EVA-Gaussian maintains robust performance,
while GPS-Gaussian fails to function effectively in these
scenarios.

D. Proof of Depth Equality
In this section, we prove that for each pixel on the 3D Gaus-
sian maps {Mi}ni=1, the rendered depth equals to the pre-
dicted 3D Gaussian depth.

We begin by defining the collection for opacity parame-
ters as o := [o1, · · · , oi, · · · , oN ] ∈ RN of all considered
3D Gaussians and the collection of all 3D Gaussian scaling
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Figure 2. Qualitative comparison on THuman2.0 and THumansit. EVA-Gaussian demonstrates superior novel view rendering quality under
diverse camera settings.

factors as:

S̃ =
�
s1, s2, s3

�T
=



s11 s12 · · · s1N
s21 s22 · · · s2N
s31 s32 · · · s3N


 , (1)

where s1 := [s11, s
1
2, · · · , s1N ] ∈ RN , s2 :=

[s21, s
2
2, · · · , s2N ] ∈ RN and s3 := [s31, s

3
2, · · · , s3N ] ∈ RN .

For the 3D Gaussian with the i-th greatest depth, the asso-
ciated scaling matrix is constructed from the corresponding
scaling factors as:

Si =



s1i 0 0
0 s2i 0
0 0 s3i


 , (2)

and its z-value is denoted by zi. The rendered depth map is
expressed as:

D(x) =

NX

i=1

zioiG
′
i(x)

i−1Y

j=1

(1− ojG
′
j(x))), (3)

where x ∈ R2 is a variable on the coordinate system of
the image plane and G

′
i(x) is the 2D Gaussian that corre-

sponds to the 3D Gaussian with the i-th greatest depth after
splatting.

In the camera’s coordinate system, we define a 3D Gaus-
sian as on the reprojected ray of a pixel x′, in condition that
the center of this 3D Gaussian lies along the ray originat-
ing from the camera center and pointing toward the point
[x′, 1]. We use Z(x′) to denote the z-value of the first 3D
Gaussian that appears on this reprojected ray.

Based on the above definitions, we have the following
theorem:

Theorem D.1. When the opacity o approaches 1 and each
value in S̃ is sufficiently small, it holds for each pixel x′ on
the image plane that:

lim
o→1
Ŝ→0+

D(x′) = Z(x′). (4)

Theorem D.1 implies that the z-value of the 3D Gaussian



at pixel x is equal to the corresponding value on the depth
map when the scale of Gaussian is sufficiently small and the
opacity approaches 1. To prove Theorem D.1, we introduce
the following lemma from the well-known Moore-Osgood
Theorem in [3]:

Lemma D.1. (Moore-Osgood Theorem) Let (Γ, dΓ) be
a metric space and (γk,p)k,p∈N be a sequence such
that γ∞,p := limk→∞ γk,p exists for every p ∈ N
and γk,∞ := limp→∞ γk,p exists for every k ∈ N.
If (i) limp→∞ supk∈N dΓ (γk,p, γk,∞) = 0 and (ii)
limk→∞ dΓ (γk,p, γ∞,p) = 0, ∀p ∈ N, then the joint
limit limk,p→∞ γn,k exists. In particular, it holds that
limk,p→∞ γk,p = limp→∞ γ∞,p = limk→∞ γk,∞.

Lemma D.1 can be regarded as a special case of Theorem1

7.11 from [4]. This lemma states that for a doubly-indexed2

sequence, if the sequence converges uniformly with respect3

to one index while converging pointwise with respect to the4

other index, then the limit of the sequence exists. Moreover,5

this limit is equivalent to the individual limits obtained by6

separately considering each index, regardless of the order in7

which the limiting processes are performed. This result can8

be extended to continuous multi-variable functions.9

Specifically, if a continuous function demonstrates uni-10

form convergence with respect to one variable and point-11

wise convergence with respect to another variable, then the12

joint limit of the function with respect to both variables can13

be decomposed into the separate limits with respect to each14

variable considered independently.15

Based on this theoretical foundation, we are now ready16

to proceed with the proof of Theorem D.1.17

Proof. When the opacity value oi ∈ R approaches 1 and the scale factor si = [s1i , s
2
i , s

3
i ] ∈ R3 is sufficiently small for each

Gaussian, the depth value is given by:

lim
o→1
Ŝ→0+

D(x′) = lim
o→1
Ŝ→0+

NX

i=1

(zioiG
′
i(x

′)
i−1Y

j=1

(1− ojG
′
j(x

′))) (5)

= lim
o→1
Ŝ→0+

NX

i=1

(zioie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1Y

j=1

(1− oje
− 1

2 (x
′−µj)

T (JWRjSjS
T
j RT

j WTJT )−1(x′−µj))) (6)

(a)
= lim

Ŝ→0+
lim
o→1

NX

i=1

(zioie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1Y

j=1

(1− oje
− 1

2 (x
′−µj)

T (JWRjSjS
T
j RT

j WTJT )−1(x′−µj))), (7)

where (a) is from Lemma D.1. Specifically, the function
PN

i=1(zioiG
′
i(x)

Qi−1
j=1(1 − ojG

′
j(x))) is continuous with respect

to the two variables o and s. Besides, it converges uniformly as Ŝ → 0+ and as o → 1. This implies that the joint limit of o



and s can be decomposed into the separate limits of o and s. Thus, we have:

lim
Ŝ→0+

lim
o→1

NX

i=1

(zioie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1Y

j=1

(1− oje
− 1

2 (x
′−µj)

T (JWRjSjS
T
j RT

j WTJT )−1(x′−µj)))

= lim
Ŝ→0+

NX

i=1

( lim
oi→1

zioie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

lim
(oj ,··· ,oi−1)→1

i−1Y

j=1

(1− oje
− 1

2 (x
′−µj)

T (JWRjSjS
T
j RT

j WTJT )−1(x′−µj))) (8)

= lim
Ŝ→0+

NX

i=1

(zie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1Y

j=1

(1− e−
1
2 (x

′−µj)
T (JWRjSjS

T
j RT

j WTJT )−1(x′−µj))). (9)

The 3D Gaussians typically assume an ellipsoidal geometric shape. However, when the scaling factors are sufficiently small,
the ellipsoid can be approximated as a sphere, such that s1 = s2 = s3. As a result, the scaling matrix for the 3D Gaussian
with the i-th greatest depth becomes:

S
′
i :=



s1i 0 0
0 s1i 0
0 0 s1i


 . (10)

Consequently, we have:

lim
Ŝ→0+

NX

i=1

(zie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1Y

j=1

(1− e−
1
2 (x

′−µj)
T (JWRjSjS

T
j RT

j WTJT )−1(x′−µj)))

= lim
Ŝ→0+

s1=s2=s3

NX

i=1

(zie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1Y

j=1

(1− e−
1
2 (x

′−µj)
T (JWRjSjS

T
j RT

j WTJT )−1(x′−µj))) (11)

= lim
s1→0+

NX

i=1

(zie
− 1

2 (x
′−µi)

T (JWRiS
′
iS

′T
i RT

i WTJT )−1(x′−µi)

i−1Y

j=1

(1− e−
1
2 (x

′−µj)
T (JWRjS

′
jS

′T
j RT

j WTJT )−1(x′−µj))). (12)

From (12), we see that when x′ = µi, it gives

e−
1
2 (x

′−µi)
T (JWRiS

′
iS

′T
i RT

i WTJT )−1(x′−µi) = 1. (13)



Otherwise, if x′ ̸= µi, we have

lim
s1i→0+

e−
1
2 (x

′−µi)
T (JWRiS

′
iS

′T
i RT

i WTJT )−1(x′−µi)

= lim
s1i→0+

e
− 1

2(s1
i
)2

(x′−µi)
T (JWRiR

T
i WTJT )−1(x′−µi)

= 0. (14)

By combining Eq. 5 – Eq. 14, we have

lim
o→1
Ŝ→0+

D(x′) =
NX

i=1

( lim
s1i→0+

zie
− 1

2 (x
′−µi)

T (JWRiS
′
iS

′T
i RT

i WTJT )−1(x′−µi)

i−1Y

j=1

lim
s1j→0+

(1− e−
1
2 (x

′−µj)
T (JWRjS

′
jS

′T
j RT

j WTJT )−1(x′−µj))) (15)

=Z(x′), (16)

which completes the proof.
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