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Abstract

3D Gaussian Splatting (GS) has emerged as a method
that achieves high-quality 3D scene representation and
fast rendering, with applications in various fields. How-
ever, the substantial storage requirements of com-
plex scenes limit its practical deployment on resource-
constrained platforms. In this paper, we propose a
novel method, namely learnable graph-based GS com-
pression (L-GGSC). L-GGSC introduces a parameter-
ized graph shift operator and a systematic parameter re-
duction strategy to optimize the hyperparameter search
space. Evaluations on three 3D GS datasets using the
typical parameter of the graph shift operators demon-
strate that the parameterized graph shift operator of the
proposed L-GGSC has the potential to simultaneously
improve data size and rendering quality against the reg-
ular graph Laplacian matrix.

1. Introduction
3D Gaussian Splatting (GS) [8] has attracted significant
attention for its effective representation and rendering of
3D scenes. It is used in various applications such as 3D
reconstruction and simultaneous localization and map-
ping (SLAM) [1, 5, 13, 21]. Unlike Neural Radiance
Fields (NeRF) [14] with implicit representations, 3D GS
explicitly reconstructs 3D scenes using a collection of
3D Gaussians. Each Gaussian consists of geometric and
appearance components, including a 3D center position,
a scale vector, a rotation, spherical harmonic (SH) coef-
ficients for view-dependent color and an opacity. These
attributes enable 3D GS to reconstruct scenes with high
visual fidelity.

However, despite its capabilities, 3D GS has sub-
stantial storage and computational requirements. Stor-
ing all primitive attributes with full precision often re-

sults in files that are several gigabytes in size for com-
plex scenes. This limits its applicability to resource-
constrained platforms, such as mobile devices. There-
fore, compression techniques are essential for reduc-
ing data redundancy and enabling effective storage and
transmission.

3D GS compression approaches can be broadly cat-
egorized into two distinct classes: generative and tra-
ditional compression methods. Generative methods are
designed to construct more compact scene representa-
tions by optimizing 3D GS parameters under specific
constraints or by learning a compact parameter repre-
sentation. To obtain the compact representation, some
studies consider that many Gaussian primitives share
similar attributes, and thus they use codebooks based on
K-means for quantization [4, 11, 15–17]. Other studies
aim to use lightweight multi-layer perceptrons (MLPs)
for generating Gaussian attributes such as color and
shape from inputs including embeddings or structural
features [2, 6, 12, 19].

On the other hand, traditional compression methods
convert the learned 3D Gaussians into a bitstream suit-
able for storage and transmission by applying signal-
processing-based compression techniques. A pioneering
work is Graph-based Gaussian Splatting Compression
(GGSC) [22], which utilizes Graph Signal Processing
(GSP). They regard the Gaussian primitives as a graph
signal and define a graph Fourier transform (GFT) based
on the graph. Since GFT realizes frequency conversion
in the graph domain, the subsequent quantization and
coding operations yield a compact representation of the
3D GS. However, GGSC still has two key issues. The
first issue is that GGSC only uses the standard graph
shift operator for GFT. It is well-known that the decorre-
lation performance of GFT depends heavily on the graph
shift operator used. The second issue is the large search
space required to find an optimal graph shift operator for
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Figure 1. Overview of the proposed scheme.

each 3D GS compression. Some studies have designed
a seven-parameter graph shift operator [3, 9]. However,
this approach requires significant computational over-
head.

This paper proposes a novel graph-based GS com-
pression method, namely, Learnable-GGSC (L-GGSC).
In contrast to the pioneering GGSC work, the main con-
tributions of the proposed L-GGSC are two-fold. The
first contribution is to introduce the parameterized graph
shift operator to realize learnable graph-based GS com-
pression. To the best of our knowledge, this is the first
study to make the graph shift operator learnable for 3D
GS compression. The second contribution is a novel
parameter reduction strategy that quickly optimizes the
graph shift operator for the desired 3D GS. The origi-
nal graph shift operator has seven parameters, but we re-
duced it to four by analyzing the effect of the parameters
on the GFT basis.

Evaluations on three 3D GS datasets using the typ-
ical parameter of the graph shift operators demonstrate
that the proposed L-GGSC scheme achieves better re-
construction quality than GGSC at low bit rates, thereby
realizing more efficient data compression for 3D scenes.
In addition, through comprehensive experiments with
varying clipping ratios and quantization precisions, we
reveal that the optimal graph shift operator varies de-
pending on the specific attribute and compression level.

2. Proposed scheme
2.1. Overview
Fig. 1 shows the overview of the proposed scheme. We
consider that the encoder operates on a 3D GS sam-
ple comprising N primitives, each characterized by at-
tributes such as spherical harmonics (SH) coefficients,
opacity, scale, and rotation. The proposed scheme
performs sequential compression of geometry and at-
tributes. For geometry compression, an octree-based
method is employed to reduce the number of primitives
and encode their positions into a compact bitstream.

Based on the positions of the remaining primitives, the
encoder constructs a graph structure and derives graph
basis functions using adjacency and degree matrices.
Each attribute is then projected into the frequency do-
main by computing the corresponding GFT coefficients
using the derived basis functions. These GFT coeffi-
cients are subsequently clipped, quantized, and entropy-
coded for efficient compression. At the decoder side, the
positions of the primitives are first reconstructed from
the geometry bitstream. Using the decoded positions,
the graph basis matrix is reconstructed, and the GFT co-
efficients are inverse-transformed to decode the attribute
vectors of the SH coefficients, opacity, scale, and rota-
tion. Finally, the decoder renders the 3D scene using the
reconstructed geometry and attribute information.

2.2. Sub-GS division
An original GS sample may have tens of thousands to
millions of primitives. Since the computational cost
of graph signal processing increases significantly with
the number of primitives, we first partition the origi-
nal graph signal into smaller subsets. To achieve bal-
anced partitioning, the proposed scheme utilizes a kd-
tree-based strategy, which tends to distribute a similar
number of primitives across sub-GS compared to octree-
based partitioning. Specifically, the full set of Gaussian
primitives G is divided into n subgroups based on the
spatial locations of their centers:

G = G(m1)
1 ⊕ G(m2)

2 ⊕ · · · ⊕ G(mn)
n , (1)

where G(mi)
i denotes the i-th sub-GS containing mi

primitives. In our implementation, we set an upper
bound of mi ≤ 200 to ensure that each subgraph re-
mains computationally tractable for GFT-based attribute
compression.

2.3. Graph construction and GFT
The encoder compresses each attribute vector using a
GFT derived from the compressed positions of the prim-
itives. To this end, 3D GS is modeled as a weighted,
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undirected graph signal G = (V , E ,W ), where V and
E denote the sets of vertices (primitives) and edges, re-
spectively, and W is the adjacency matrix with positive
weights. The element Wi,j of W represents the weight
of the edge connecting vertex i and vertex j. Each el-
ement Wi,j of the adjacency matrix is defined by the
following equation:

Wi,j = exp

(
−||pi − pj ||22

κp

)
, (2)

where κp is a parameter representing the variance of the
distance between two primitives. The degree matrix D
is derived from the adjacency matrix W as follows:

D = diag(D1, D2, · · · , DN ), Di =

N̂∑
n=1

Wi,n, (3)

where N̂ is the number of primitives after geometry
compression. The GFT basis functions are derived from
the graph shift operator L, which is parameterized by
the adjacency matrix W and the degree matrix D. L is
formulated using seven hyperparameters as follows [3]:

L = m1D
e1
a +m2D

e2
a WaD

e3
a +m3I, (4)

where Wa = W + aI is the adjusted adjacency ma-
trix, Da is the corresponding degree matrix, and I is
the N̂ × N̂ identity matrix. The hyperparameter set
m = (m1,m2,m3, e1, e2, e3, a) ∈ R7 controls the con-
struction of the graph shift operator.

The graph shift operator L is generally real and sym-
metric, and therefore admits an orthogonal set of eigen-
vectors with real, non-negative eigenvalues. The eigen-
value decomposition of L is given by:

L = Φ∆Φ−1, (5)

where Φ is the matrix of eigenvectors, and ∆ is a di-
agonal matrix of the corresponding eigenvalues. The
GFT coefficients f , which represent the frequency com-
ponents of an attribute vector s, are computed by pro-
jecting s onto the eigenbasis:

f = sΦ. (6)

Most of the resulting coefficients f are small and close
to zero, especially on the high-frequency components.
Here, the eigenvectors corresponding to the large eigen-
values represent the high-frequency components in the
graph domain. Before quantization, the high-frequency
components of the GFT coefficients are clipped to re-
alize compression without introducing noticeable dis-
tortion. We define a clipping ratio ra ∈ (0, 1] where

(1 − ra) · N̂ higher-frequency coefficients in f for at-
tribute a are set to 0 for clipping. The clipped GFT co-
efficients are then quantized and entropy-coded to gen-
erate the compressed bitstream.

At the decoder side, entropy decoding and dequanti-
zation are performed to obtain an estimate of the GFT
coefficients, denoted as f̂ . The inverse GFT (IGFT) is
then applied to reconstruct the attribute vector ŝ using
the decoded GFT coefficients and the eigenvectors:

ŝ = f̂Φ−1. (7)

2.4. Compression
The proposed scheme adopts a uniform quantization to
convert the floating-point values of the GFT coefficients
f in each attribute vector into integer values as sug-
gested by [18]. Specifically, let f

(a)
i represents i-th

floating-point value of attribute vector a and f̂
(a)
i rep-

resents the corresponding integer value.

f̂
(a)
i =

⌊
(f

(a)
i − f

(a)
min) ∗ (2qa − 1)

max(f
(a)
max − f

(a)
min)

+
1

2

⌋
, (8)

where qa is a bit depth for attribute a’s quantization,
f
(a)
min and f

(a)
max are minimum and maximum floating-

point value of attribute a, max(·) is the maximum value
across all the attributes, and ⌊x⌋ is the floor function
and gives the greatest integer less than or equal x. After
quantization, we use adaptive arithmetic coding to com-
press the integer value of the attributes.

2.5. Parameter reduction
To effectively minimize traffic while preserving the
quality of 3D GS-based scene reconstruction, it is
essential to optimize the hyperparameter set m =
(m1,m2,m3, e1, e2, e3, a) of graph shift operator and
quantization parameter q, under the given bandwidth
constraint. Assuming M candidate values per param-
eter, an exhaustive search would require evaluating M8

combinations, which is computationally expensive and
inefficient.

To mitigate this complexity, the proposed method re-
duces the parameter space by identifying and retain-
ing only those parameters that significantly impact rate-
distortion performance in the context of 3D GS com-
pression. An important insight arises from the spec-
tral properties of the graph shift operator: the eigenvec-
tors—used as the basis for the GFT—are invariant to the
scalar term m3I . We simplify the formulation by setting
m3 = 0, resulting in a six-parameter formulation:

L6params = m1D
e1
a +m2D

e2
a WaD

e3
a . (9)
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Table 1. Quantitative comparison between GGSC and L-GGSC for various datasets.

Tanks & Temples [10]: train DeepBlending [7]: playroom Synthetic-NeRF [14]: lego

Bitrate Method Size (MB) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Size (MB) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Size (MB) ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Low
GGSC (Lreg) 25.86 16.05 0.492 0.489 34.21 19.46 0.747 0.434 7.47 24.03 0.830 0.154
L-GGSC (Lrw) 15.88 16.15 0.492 0.480 27.83 21.85 0.769 0.416 6.96 24.50 0.845 0.146
L-GGSC (Lcomb) 15.72 16.12 0.491 0.480 28.41 22.18 0.768 0.411 6.98 24.23 0.835 0.160

High
GGSC (Lreg) 90.58 21.06 0.768 0.246 122.51 29.00 0.884 0.269 30.26 27.81 0.947 0.050
L-GGSC (Lrw) 81.10 20.40 0.759 0.255 131.46 28.45 0.879 0.274 33.24 27.71 0.947 0.050
L-GGSC (Lcomb) 84.09 20.37 0.757 0.256 137.63 28.29 0.879 0.274 33.08 27.69 0.947 0.050

We further reduce dimensionality by normalizing m1

with respect to m2 as m′
1 = m1

m2
, yielding a five-

parameter operator:

L5params =
L6params

m2
= m′

1D
e1
a +De2

a WaD
e3
a .

(10)

To ensure that L remains a real symmetric ma-
trix—required for defining a GFT with orthogonal
eigenvectors—we ensure the condition e2 = e3. We de-
fine a consolidated exponent e+ = e2+e3

2 , which leads
to the final four-parameter formulation:

L4params = m′
1D

e1
a +De+

a WaD
e+
a . (11)

In summary, the proposed scheme reduces the search
space for finding an effective graph basis Φ—that yields
favorable rate-distortion trade-offs in 3D GS compres-
sion—to four hyperparameters m′ = (m′

1, e1, e+, a)
and one quantization parameter q.

3. Experiments
3.1. Settings
Datasets and metrics: For a comprehensive com-
parison against GGSC [22], we select three scenes
from different datasets: “train” from Tanks & Tem-
ples [10], “playroom” from Deep Blending [7] as real-
world datasets, and “lego” from Synthetic NeRF [14]
as a synthetic dataset. We used the Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) [20], Learned Perceptual Image Patch Similar-
ity (LPIPS) [23], and compressed data size in megabytes
(MB) as performance metrics.
Baseline and graph shift operators: We consider
GGSC as the baseline for the graph-based 3D GS com-
pression. GGSC and the proposed L-GGSC utilize a
graph shift operator to derive the basis functions for
the GFT. In this paper, we use the seven-parameter L-
GGSC for comparison. Here, the graph shift operator
L in L-GGSC is formulated using the adjacency ma-
trix W , the degree matrix D, and seven hyperparameters

(a) Ground Truth (b) GGSC (Lreg)
PSNR:17.46 dB/ Size:25.86 MB

(c) L-GGSC (Lrw)
PSNR:17.71 dB/ Size:15.88 MB

(d) L-GGSC (Lcomb)
PSNR:17.61 dB/ Size:15.72 MB

Figure 2. Visual snapshots of baseline GGSC and the proposed
L-GGSC for the “train” scene.

m = (m1,m2,m3, e1, e2, e3, a), as defined in Eq. (4).
In this paper, we specifically investigate the following
three types of graph shift operators by using different
combinations of hyperparameters:
• Regular Lreg: This operator corresponds to the hy-

perparameter setting of m = (1,−1, 0, 1, 0, 0, 0) and
is described as D − W . This operator is used as the
graph shift operator in GGSC.

• Random walk Lrw: This operator corresponds to the
hyperparameter setting of m = (0,−1, 1, 0,−1, 0, 0)
and is described as In −D−1W .

• Combination Lcomb: It corresponds to the hyperpa-
rameter setting of m = (0,−1, 1, 0,− 1

2 ,−
1
2 , 0) and is

described as In −D− 1
2WD− 1

2 .
We note that the proposed L-GGSC, using the four hy-
perparameters L4params defined in Eq (11), can be used
by optimizing the hyperparameters based on an objec-
tive function. Further analysis of the rate-distortion per-
formance and optimization speed reduction based on the
proposed reduced hyperparameters is left as future work.
Compression settings: The clipping ratio ra and bit
depth for each attribute qa are parameters used to evalu-
ate rate-distortion performance. To ensure a fair com-
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parison, the specific parameter settings for low bit
rate and high bit rate environments were aligned with
those utilized in the GGSC implementation. Specifi-
cally, the frequency clipping ratios for SH coefficients,
opacity, scale, and rotation attributes were defined as
rC , rO, rS , rR, respectively, and these were set within
the range of 0.4 to 1.0. The bit depth for these at-
tributes was also defined as qC , qO, qS , qR, respectively,
and these were set within the range of 4 to 8.
Implementation detail: All the evaluations exhibited in
this paper are performed with an Intel(R) Xeon(R) Sil-
ver4108 CPU@ 1.80 GHz, an NVIDIA Quadro GV100
GPU, and PyTorch 2.1.2 with Python 3.10.

3.2. Rate-distortion performance
We evaluate the rate-distortion performance of the pro-
posed scheme under low bit rate and high bit rate set-
tings. Table 1 shows the compressed data size and recon-
struction quality of the desired 3D GS for GGSC and the
proposed L-GGSC. At a low bit rate, L-GGSC outper-
forms GGSC by simultaneously achieving reduced data
sizes and better reconstruction quality on the “train”,
“playroom”, and “lego” scenes. This demonstrates the
effectiveness of parameterizing the graph shift operator,
especially at low bit rates.

Fig. 2 shows the visual snapshots of the rendered 3D
GS for GGSC and the proposed L-GGSC. Here, we use
the “train” scene from the Tanks & Temples dataset.
The GGSC method exhibits noticeable blurring, partic-
ularly on the “WESTERN PACIFIC” text and the “713”
number on the train. In contrast, the proposed L-GGSC
can reduce the blur effect and render these details more
clearly with up to a 39% reduction in data size.

3.3. Effect of graph shift operators on attributes
This section evaluates the impact of different graph shift
operators on the compression performance of individual
3D GS attributes, considering varying frequency clip-
ping ratios and quantization precisions. Figs. 3 and 4
illustrate the PSNR of the rendered 3D GS as a func-
tion of the clipping ratio and bit depth for each attribute,
respectively. It can be seen that the performance degra-
dation due to compression of the opacity and rotation
attributes is smaller than that due to the SH coefficients
and scale attributes. Furthermore, it is demonstrated that
for SH and scale attributes, the optimal graph shift op-
erator varies significantly with the compression level.
These findings suggest that no single graph shift oper-
ator is universally optimal. Thus, the graph-based GS
compression should find the most effective hyperparam-
eters for the graph shift operator, depending on the spe-
cific attribute and desired compression level.

(a) SH (rC) (b) Opacity (rO)

(c) Scale (rS) (d) Rotation (rR)

Figure 3. PSNR as a function of the frequency clipping ratio
for different attributes.

(a) SH (qC) (b) Opacity (qO)

(c) Scale (qS) (d) Rotation (qR)

Figure 4. PSNR as a function of the quantization bit depth for
different attributes.

4. Conclusion and future work
This paper proposes a novel graph-based GS compres-
sion method, L-GGSC. The proposed L-GGSC intro-
duces a parameterized graph shift operator and a system-
atic parameter reduction strategy. Experiments on three
datasets demonstrate that L-GGSC efficiently reduces
storage cost while maintaining high rendering quality.
In future work, we will investigate learning the four hy-
perparameters to achieve better rate-distortion and opti-
mization convergence.
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Westermann. Compressed 3d gaussian splatting for ac-
celerated novel view synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10349–10358, 2024.

[17] Panagiotis Papantonakis, Georgios Kopanas, Bernhard
Kerbl, Alexandre Lanvin, and George Drettakis. Reduc-
ing the memory footprint of 3d gaussian splatting. Pro-
ceedings of the ACM on Computer Graphics and Inter-
active Techniques, 7(1):1–17, 2024. 1

[18] VVM. Call for proposals on static polygonal mesh cod-
ing, Alliance for Open Media. document: VVM-2023-
004o-v2 (2023). 3

[19] Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang,
Alex Kot, and Bihan Wen. Contextgs: Compact 3d
gaussian splatting with anchor level context model. Ad-
vances in neural information processing systems, 37:
51532–51551, 2024. 1

[20] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Pro-
cessing, 13(4):600–612, 2004. 4

[21] Tong Wu, Yu-Jie Yuan, Ling-Xiao Zhang, Jie Yang, Yan-
Pei Cao, Ling-Qi Yan, and Lin Gao. Recent advances in
3d gaussian splatting. Computational Visual Media, 10
(4):613–642, 2024. 1

[22] Qi Yang, Kaifa Yang, Yuke Xing, Yiling Xu, and Zhu
Li. A benchmark for gaussian splatting compression and
quality assessment study. In Proceedings of the 6th ACM
International Conference on Multimedia in Asia, pages
1–8, 2024. 1, 4

[23] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O.
Wang. The unreasonable effectiveness of deep features

3062



as a perceptual metric. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 586–595, 2018. 4

3063


