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A. Extended related work section
In this section, we provide a more comprehensive overview
of the related literature, expanding upon the works briefly
mentioned in the main text.

Vision Transformers (ViTs) (ViTs) [7] divide each input
image into fixed-size patches (e.g., 16 × 16), flatten them
into tokens, add positional embeddings, and process the re-
sulting sequence with a Transformer encoder. When pre-
trained on large-scale datasets such as ImageNet-21k [6] or
LVD-142M [22], ViTs achieve performance on par with or
surpassing that of convolutional neural networks (CNNs) on
standard image classification benchmarks.

Despite these advances, ViTs face several limitations:
1. quadratic computational complexity O(N2) with respect

to the number of input patches (N , where typically N ≈
196 for a 224× 224 image).

2. Absence of built-in locality and translation equivariance,
in contrast to CNNs, which makes ViTs more dependent
on large training datasets.

3. High computational and memory demands—for in-
stance, ViT-Large/16 contains roughly 300 million
parameters and requires thousands of GPU-hours to
train [7].

These drawbacks have spurred the development of more ef-
ficient ViT variants.

A.1. Efficient Vision Transformer Variants
Several efficient alternatives to the standard attention have
been proposed in the literature to address the limitations
of Vision Transformers. While they differ in methodology,
they have collectively inspired this work.

Linear-Attention Transformers: Linformer [29]
projects keys and values into a low-dimensional subspace
(k ≪ N ), reducing per-head complexity from O(N2)
to O(Nk) while retaining competitive accuracy. Per-
former [5] uses a randomized feature map to approximate
softmax(QK⊤) ≈ Φ(Q)Φ(K)⊤, achieving true O(N)

time and memory with bounded error. When applied to ViT
backbones, these methods handle larger images with much
lower memory cost.

All-MLP Architectures: MLP-Mixer [25] differs from
both CNNs and ViTs by alternating token-mixing MLPs
(mixing across N spatial tokens) and channel-mixing MLPs
(mixing across C channels). This yields per-layer complex-
ity O(NC) instead of O(N2), and achieves 84% top-1
on ImageNet-1K (with ImageNet-21k pretraining), demon-
strating that dense MLPs can approximate spatial interac-
tions effectively.

Pyramid/Hierarchical ViTs: Pyramid Vision Trans-
former (PVT) [31] builds a multi-scale pyramid by pro-
gressively downsampling tokens: early stages operate on
high-resolution grids (H4 × W

4 ), and deeper stages use
“patch merging” to halve spatial dimensions at each level.
Within each stage, Spatial-Reduction Attention (SRA) pools
keys/values by a factor r, reducing sequence length from
N to N/r2 and complexity to O(N ·N/r2). PVT matches
CNN backbones in detection and segmentation.

Swin Transformer [16, 17] introduces window-based
MSA over non-overlapping M×M patches (e.g., 7×7), re-
ducing complexity to O

(
N
M2 ×M4

)
. Each stage ends with

a patch merging layer that concatenates 2 × 2 tokens and
projects them, halving resolution and doubling channels.
Crucially, Swin alternates “standard” and “shifted” window
partitions: shifted windows (offset by ⌊M/2⌋) overlap adja-
cent regions, enabling cross-window context without global
attention. Swin-B attains 87.3% top-1 on ImageNet-1K,
with near-linear inference latency.

Distilled and Compact ViTs: TinyViT [32] uses
pretraining-stage distillation from a large teacher (e.g.,
Swin-B/L trained on ImageNet-21k). By caching
teacher logits and applying neural architecture search
under FLOPs/parameter constraints, TinyViT produces
11M–21M parameter models that achieve 84.8–86.5%
top-1 on ImageNet-1K—close to much larger ViTs.



Data-Efficient Image Transformers (DeiT) [26] add a
learnable distillation token that learns from a CNN teacher’s
soft logits (e.g., ResNet-50) while training on ImageNet-1K
alone. Combined with aggressive augmentation (RandAug-
ment, Mixup, CutMix) and regularization (Label Smooth-
ing, Stochastic Depth), DeiT-Small (22M) reaches 83.1%
top-1 (vs. 77.9% for vanilla ViT), and DeiT-Base (86M)
hits 85.2% in under three GPU-days, matching ResNet-152.
Later work [27] adds self-supervised distillation and token
pruning for further efficiency.

Collectively, these efforts—linear-attention, MLP-only
designs, hierarchical token pyramids, window-based local
attention, and distillation—have greatly extended ViT ap-
plicability across resource-constrained tasks. However, the
inherent hierarchical structure of images remains only par-
tially integrated into existing attention mechanisms, poten-
tially hindering the overall performance.

Multiscale neural architectures. Several transformer ar-
chitectures have been proposed in the one-dimensional set-
ting of Natural Language Processing (NLP) that are closely
related to the multiscale principles underlying our method.

H-Transformer-1D [35] introduces a hierarchical atten-
tion scheme that restricts full attention to local windows
while allowing global information to flow through a tree-
like structure.

MRA-Attention [33] leverages a multiresolution de-
composition of attention weights using wavelet transforms
to capture both coarse and fine-scale dependencies.

FMMformer [21] builds on the Fast Multipole Method
(FMM) to hierarchically group tokens and reduce attention
complexity by summarizing distant interactions.

Fast Multipole Attention (FMA) [9] similarly applies
FMM-inspired grouping but in a more generalizable atten-
tion framework.

ERWIN [34] proposes a multilevel window-based trans-
former with recursive interpolation between coarse and fine
spatial scales in the setting of graph attention.

A.2. Neural Operators
The challenge in solving PDEs is the computational bur-
den of conventional numerical methods. To improve the
tractability, a recent line of research investigates how ma-
chine learning and especially artificial neural networks can
provide efficient surrogate models. A first kind of ap-
proache assumes the knowledge of the underlying PDE, like
PINNs [10, 19, 23]. With this knowledge, the neural net-
work is optimized by solving the PDE, which can be consid-
ered as a kind of unsupervised learning. However, the diffi-
cult optimization process requires tailored training schemes
with many iterations [12, 24]. In a ”semi-supervised” way,
the recent approach of Boudec et al. [2] recasts the prob-
lem as a learning to learn task, leveraging either, the PDE

and simulations or observations data. While this method
obtained promising results, its memory footprint may limit
its large scale usage. In this work, we focus neural oper-
ators, which learn directly the solution operator from data
[14, 18]. In this line of work, the challenge lies in the model
architecture rather than in the optimization process and dif-
ferent kind of models were recently proposed.

Transformer neural operators In [4] the classical trans-
former was adapted for the first time to operator learning
problems related to PDEs. The paper explores two variants,
based on Fourier transform and Galerkin method. The latter
one uses a simplified attention based operator, without soft-
max normalization. This solutions shares the linear com-
plexity with our work but not the same expressivity. Still
in the simplfyiing trend, LOCA (Learning Operators with
Coupled Attention) [15] maps the input functions to a finite
set of features and attends to them by output query location.

Based on kernel theory, Li et al. [15] introduces an effi-
cient transformer for the operator learning setting was pro-
posed based on kernel theory. Recently in [3] was proposed
an interesting way to see attention in the continuos setting
and in particular the continuum patched attention. In Uni-
versal Physics Transformer [1] framework for efficient scal-
ing was proposed based on a coarsoning of the input mesh.
In [30] the Continuous vision transformer was proposed as
a operator-learning version of the more classical ViT.

In the context of operator learning and graph-
structured data, the Multipole Graph Neural Operator
(MGNO) [13] extends multipole ideas to irregular do-
mains via message-passing on graph hierarchies. Finally,
V-MGNO, F-MGNO, and W-MGNO [20] propose varia-
tions of MGNO to improve stability.

These works highlight the growing interest in multiscale
and hierarchical schemes to improve efficiency and gener-
alization, both in sequence modeling and operator learning.
Our work builds on this line by proposing a spatially struc-
tured multipole attention mechanism adapted to vision and
physical simulation tasks.

Our model is explicitly designed to function as a neural
operator [11]. To qualify as a neural operator, a model must
satisfy the following key properties. First, it should be ca-
pable of handling inputs and outputs across arbitrary spatial
resolutions. Second, it should exhibit discretization conver-
gence — that is, as the discretization of the input becomes
finer, the model’s predictions should converge to the true
underlying operator governing the physical system. This
pose a new challenge to the computer vision community,
namely not just learn an image to image function but the un-
derlying operator independently of the resolution. This field
saw its first proof of concept with Lu et al. [18], who lever-
aged a universal approximation theorem for nonlinear oper-
ators and paved the way for numerous extensions. Fourier



Neural operators [14] rely on a translation-equivariant ker-
nel and discretize the problem via a global convolution per-
formed computed by a discrete Fourier transform. Building
on this foundation, the Wavelet Neural Operator (WNO)
[28] introduces wavelet-based multiscale localization, en-
abling kernels that simultaneously capture global structures
and fine-grained details. The Multiwavelet Neural Opera-
tor (MWNO) [8] further extends this approach by incorpo-
rating multiple resolution components, leading to improved
convergence with respect to discretization.

B. Detailed hyperparameters

B.1. Architecture Hyperparameters for Image clas-
sification

Table 1 summarizes the architectural and training hyperpa-
rameters used in our model. Below, we provide brief com-
ments on each of them. he first block in Table 1 corresponds
to the standard configuration of the pretrained SwinV2-Tiny
model, which we adopt as our backbone.

• Patch size: Size of non-overlapping image patches. A
value of 4 corresponds to 4× 4 patches.

• Input channels: Number of input channels, set to 3 for
RGB images.

• Embedding dimension (embed dim): Dimensionality
of the token embeddings, controlling model capacity.

• Global pooling: Global average pooling is used instead
of a [CLS] token at the output.

• Depths (layers per stage): Number of transformer
blocks in each of the four hierarchical stages, e.g.,
[2, 2, 6, 2].

• Number of heads (per stage): Number of attention
heads per stage; increases with depth to maintain repre-
sentation power.

• Window size: Local attention is applied in windows of
size 8× 8.

• MLP ratio: Ratio between the hidden dimension in the
feed-forward MLP and the embedding dimension (e.g.,
4.0× 96 = 384).

• QKV bias: Whether learnable biases are used in the
query/key/value projections (set to True).

• Dropout rates (drop rate, proj drop rate,
attn.drop rate): All standard dropout components
are disabled (set to 0).

• Drop-path rate (drop path rate): Stochastic depth
with rate 0.2 applied to residual connections for regular-
ization.

• Activation layer: GELU is used as the non-linearity in
MLP layers.

• Normalization layer: Layer normalization is applied
throughout the network.

• Pretrained window sizes: Set to [0, 0, 0, 0] as no pre-
trained relative position biases are used.

• Attention sampling rate: The input to the attention
mechanism is downsampled by a factor of 2, allowing for
increased expressivity without a relevant additional com-
putational cost.

• Attention down-sampling: A convolutional layer with
kernel size 2 and stride 2 is used to downsample features
between the levels of the multipole attention.

• Attention up-sampling: Transposed convolution (kernel
size 2, stride 2) is used to upsample the features after the
windowed attention at each hierarchical level.

• Number of levels: Specifies the number of multipole at-
tention levels used at each stage. We found it beneficial
to use the maximum number of levels permitted by the
spatial resolution.

Hyperparameter Value

Patch size 4
Input channels 3
Embedding dimension (embed dim) 96
Global pooling avg
Depths (layers per stage) [2, 2, 6, 2]
Number of heads (per stage) [3, 6, 12, 24]
Window size 8
MLP ratio 4.0
qkv bias (boolean) True
Dropout rate (drop rate) 0.0
Projection-drop rate (proj drop rate) 0.0
Attention-drop rate (attn drop rate) 0.0
Drop-path rate (drop path rate) 0.2
Activation layer gelu
Normalization layer (flag) True
Pretrained window sizes [0, 0, 0, 0]

Attention sampling rate 2
Attention down-sampling conv
kernel size 2
stride 2
Attention up-sampling conv transpose
kernel size 2
stride 2
number of levels [3, 2, 1, 1]

Table 1. MANO Hyperparameters for image classification

B.2. Architecture Hyperparameters for Darcy Flow
Table 2 reports the main architectural hyperparameters used
in our MANO model for solving the Darcy flow problem.
Below, we provide a brief description of each.
• channels: Number of input channels; set to 3 because

we concatenate the two spatial coordinate with the per-
meability coefficient.

• patch size: Patch size used to partition the input grid;
set to 1 to retain full spatial resolution, ideal for dense
prediction tasks.

• domain dim: Dimensionality of the input domain; set to
2 for 2D PDEs like Darcy flow.

• stack regular grid: Indicates whether the input dis-
cretization is regular and should be stacked; set to true.



• dim: Embedding dimension of the token representations.
• dim head: Dimensionality of each individual attention

head.
• mlp dim: Hidden dimension of the MLP layers following

attention.
• depth: Total number of transformer blocks.
• heads: Number of self-attention heads in each attention

block.
• emb dropout: Dropout rate applied to the input embed-

dings.
• Attention sampling rate: The input to the attention

mechanism is downsampled by a factor of 2, allowing for
increased expressivity without a relevant additional com-
putational cost.

• Attention down-sampling: A convolutional layer with
kernel size 2 and stride 1 is used to downsample features
between the levels of the multipole attention.

• Attention up-sampling: Transposed convolution (kernel
size 2, stride 1) is used to upsample the features after the
windowed attention at each hierarchical level.

• att dropout: Dropout rate applied within the attention
block.

• Window size: Local attention is applied in windows of
size 2× 2.

• local attention stride: Stride with which local windows
are applied; controls overlap in attention.

• positional encoding: Whether explicit positional encod-
ings are added; set to false in our setting.

• learnable pe: Whether the positional encoding is learn-
able; also disabled here.

• pos enc coeff: Scaling coefficient for positional encod-
ings, if used; null since not applicable.

C. Implementation details
All our experiments are implemented in PyTorch.

C.1. Model checkpoints
Our experiments in image classification use the following
pre-trained models from HuggingFace on ImageNet[6]:
• ViT-base available at https://huggingface.co/
google/vit-base-patch16-224

• DeiT-small available at https://huggingface.
co/facebook/deit-small-patch16-224

• SwinV2 available at https://huggingface.co/
timm/swinv2_tiny_window8_256.ms_in1k

We initialize our MANO model by loading the full weights
of the pretrained SwinV2-Tiny.

D. Data Augmentation
During training, in the case of image classification, we ap-
ply standard data augmentations to improve generalization.
Specifically, the training pipeline includes:

Hyperparameter Value

channels 3
patch size 1
domain dim 2
stack regular grid true
dim 128
dim head 32
mlp dim 128
depth 8
heads 4
emb dropout 0.1
Attention sampling rate 2
Attention down-sampling conv
kernel size 2
stride 1
Attention up-sampling conv transpose
kernel size 2
stride 1
att dropout 0.1
window size 2
local attention stride 1
positional encoding false
learnable pe false
pos enc coeff null

Table 2. MANO Hyperparameters for Darcy flow

• Resize to a fixed resolution, matching the input size ex-
pected by the pretrained models;

• RandomCrop with a crop size equal to the resized reso-
lution, using a padding of 4 pixels;

• RandomHorizontalFlip;
• ToTensor conversion;
• Normalize using dataset-specific mean and standard

deviation statistics.
At test time, images are resized (if necessary), converted

to tensors, and normalized using the same statistics as in
training.

For numerical simulations, we do not apply any data aug-
mentation.
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