
Appendix for:

Pruning by Block Benefit

(P3B)

This appendix is organized into several sections, each

providing a focused look at a particular aspect of our re-

search. The discussion begins with the formulations of Intra

Block Importance in Section A and Soft Masking in Sec-

tion B. Section C then details the experimental settings and

training configurations, while Section D outlines the prop-

erties of the datasets used. Next, the inference speedup

reached by P3B is examined in Section E. Descriptions of

further experiments using Knowledge Distillation loss are

found in Section F, and a deeper exploration of the impor-

tance of reordering in pruning is presented in Section G.

Finally, Sections H and I present extended experimental re-

sults related to research questions Q1 and Q2 in the main

paper.

A. Intra Block Importance

This section extends the information about the Intra Block

Formulation, described in Sec. 3.2. Specifically, we further

explain the architecture of the Block Performance Indica-

tor (BPI) module ∆Ψ and define the smoothing function γ

from Eq. 2.

The proposed method Pruniny by Block Benefit (P3B)

assigns a depth dependent parameter budget as keep ratio

κb
i to consecutively aligned Attention and Multi-Layer Per-

ceptron (MLP) blocks. Thereby, P3B conserves the com-

putational capacity of blocks, that mainly increase the class

discriminance and penalizes ones with reduced impact. To

measure this blockwise classification performance (BP), the

Block Performance Indicator (BPI) ∆Ψ is introduced as a

lightweight learnable function for classification token and

patches. In Vision Transformers, the classification token is

used to learn class distinguishable features, while patches

contain semantic information. The architecture of classifi-

cation and patch classifiers is defined as follows:

• Class head is realized as the origin ViT-classification

head using a single linear layer [13].

• Patch head is based on the Resnet architecture [19]. We

apply a single Resnet block and it’s classification head to

determine the logits for loss calculation.

The introduced BPI learns an individual classification

and patch head (Ψc
i , Ψp

i) for each block, by using the fea-

ture map before and after the regarding block as input.

For the classification task, BPI is optimized towards Cross-

Entropy-Loss LCE . Individual heads for each block ensure

that the resulting BP-score is not influenced by the feature

maps of other network depths. Different to other soft clas-

sifier methods such as [53], we do not focus on the classifi-

cation token alone, but also discriminate the patch tokens to

identify beneficial semantic features. As defined in Eq. 1 in

the main paper, P3B uses the relative loss to assign a depth

dependent keep ratio κb
i to block i. Given the measured BP-

score for classification tokens ∆Ψc
i and patches ∆Ψp

i , the

block importance is determined by

 \mathcal {I}^{b,c}_i = \frac {\gamma (\Delta \Psi ^c_i)}{|w_i|+\epsilon }. \tag {2}

 (2)

The number of remaining parameters |wi| is determined

with a mask value M ≥ 0.5, while ϵ is a small value used

for numerical stability. Additionally, a smoothing function

γ is applied to restrain high peak values and those with neg-

ative BP. Therefore we normalize ∆Ψc and ∆Ψp by it’s

max value and apply:

 \gamma (x) = SP(1.4 \cdot s \cdot x) - SP(1.4 \cdot s \cdot x - s). \label {eq:transformationFunctionImpValues} (8)

The input value is scaled by factor s = 10 to adjust the

smoothing amount. SP (x) is the SoftPlus operator that

approaches zero for values x ≤ 0 and scales almost pro-

portional to the input value for x > 0 [50]. While the first

SP -term defines the lower bound to zero, the second SP -

operator limits the upper bound for high values.

According to Eq. 3 in the main paper, we merge clas-

sification and patch importance Ib,c
i and Ib,p

i by a normal-

ized weighted sum to block importance score Ib
i . Following

each block is assigned a keep ratio κb
i proportionally scaled

to Ib
i until the overall model keep ratio κm =

∑N

i=1
|wi|κ

b
i

has reached. During this scaling process individual block

keep ratios can result in values κb
i > 1. Since this is an in-

valid solution, we clip this keep ratios to 1 and rescale the

resulting blocks until a valid solution is found.

B. Soft Masking Formulation

In the previous section we defined the superior keep ratio

κb
i for Attention and MLP blocks. Based on this parameter

budget, P3B creates a soft mask M to prune the least im-

portant model structures. As extension to the block intrinsic

mask definition in Sec. 3.3, this section explains more con-

cretely how the goal sparsity is encoded in the soft mask

and how the mask sharpness can be controlled to force a

hard mask.

Our proposed method P3B uses a soft mask M ∈ [0, 1]
to smoothly reduce the influence of less important opera-

tions during training. Thereby, soft masking ensures already

pruned elements to keep their numerical importance order,

which is necessary for reactivation of already pruned chan-

nels. To clarify this point, hard masking prunes elements

by setting the mask values to eather 0 or 1. Consequently

the local importance order is lost for all pruned elements,

since the regarding importance scores Ij result in 0. In con-

trast, soft masking uses intermediate values between 0 and

1 which allows the gradient to roughly scale with the mask

value. Consequently, already pruned elements can be re-

activated using soft masking, without losing the numerical

importance order. The updated mask M ′ is defined as

 M' = \varphi (t(argsort(\mathcal {I}^i_{cat}), \kappa ^b_i, \tau)), \tag {8}

 (8)

where the values are assigned, according to the importance

score Ii
cat. High importance values will result in a mask

value close to 1, while low importance values smoothly de-

crease to 0. Thereby, transformation function t in combi-

nation with sigmoid function φ ensures that the new mask

satisfies keep ratio κb
i , while the mask sharpness can be con-

trolled by factor τ . Function t is defined as:

 t(x, \kappa ^b_i, \tau)) = - log(\frac {1}{M_{ref}} - 1) \cdot \frac {x - x_{shift}(\kappa ^b_i)}{\tau \cdot |x|}.

 (9)

This formulation ensures two properties regarding prun-

ing mask M:

1. Sparsity: The resulting mask is created by sigmoid

function φ ∈ [0, 1], based on the sorted list of importance

scores Ii
cat, where high scores get a higher mask value.

To satisfy the sparsity condition of block keep ratio κb
i ,

we define index ishift with value xshift as the least im-

portant element that remains after pruning. By substract-

ing xshift to input vector x, we ensure element ishift will

be the least important remaining element with mask value

M ′ = 0.5. Dependent on the importance index, higher val-

ues approaches 1, while unimportant indices converges to 0.

2. The Sharpness of mask M can be controlled by fac-

tor τ . Therefore we define a reference mask value Mref =
0.9 at index iref = ishift + τ · |x|. For higher values of τ

the reference value Mref is more distant form the fix value

ishift, resulting in a smooth mask. The sharpness can be in-

creased by shifting parameter τ close to 0, where the lower

bound of τ = 0 represents a hard mask. During the pruning

steps warm up and sparsification, we set factor τ = 0.1.

The following step sharpening we linearly decreases this

value to 0 to force a hard mask.

C. Training Setting

The pruning process of P3B is divided into 4 steps: warm

up, sparsification, sharpening and fine-tuning. During the

first 3 steps P3B smoothly sparsify the model by masking

out unimportant structures. Therefore, Table 5 describes the

applied training parameters. Note that all pruning steps are

trained for 50 epochs in sum.

Step fine-tuning is applied according to the standard

training pipeline of Deit [45]. The model is trained

for 300 epochs using batch size 512 with learning rate

0.0005 batchsize
512

. During all training steps, we adapt

parameter value note

epochs warmup 3

epochs sparsify 22

epochs sharpening 25

lr model 5 · 10−4 const value

lr BPI 5 · 10−4 const value

α 0.5 balance Ib,c vs. Ib,p

Mref 0.9 sharpening reference

τ 0.1 sharpening factor

mask update freq 1000 scale with data size

Table 5. Applied parameter for training Vision Transformer with

P3B. This settings are used for dataset Imagenet-1K.

the augmentation strategies from Deit [45], including Cut-

Mix [56], Random Augmentation [10] and Mixup [57].

D. Datasets

The experiments to transfer learning tasks in Sec. 4.2 of the

main paper show that our method P3B is highly performant

on various downstream tasks. In this section, we further

discuss the properties of the used datasets to show our ex-

periments cover a high variety of domains and task com-

plexities.

Table 6 provides a summary of the data size and num-

ber of classes for each applied datasets. The chosen down-

stream tasks INAT19, IFOOD and CIFAR100 show a di-

verse size of training samples and a high variation in their

class complexity. Furthermore, the data sets encompass a

wide domain range. While INAT19 focuses on the clas-

sification of plants, IFOOD classifies dishes. These two

datasets can be classified as highly fine-grained. In com-

parison, the data distribution of CIFAR100 is more coarse.

For our transfer learning experiment we initialize the

model with checkpoints from Deit [45] that are already

tuned on dataset Imagenet-1K and train the model on an-

other downstream task. For all experiments we apply the

same settings as described in Sec. C, except the mask up-

date frequency. Since this parameter scales with the data

size we set this parameter to 50, 100 and 500 for dataset

CIFAR100, IFOOD and INAT19, respectively.

dataset train size val size number classes

Imagenet-1K [28] 1.281.167 50.000 1.000

INaturalist 2019 (INAT19) [22] 265.213 3.030 1.010

IFOOD 2019 (IFOOD) [25] 118.475 11.994 251

CIFAR100 [27] 50.000 10.000 100

Table 6. Overview of used datasets in this paper. We list the size

of training and validation sets as well as the number of classes.

parameters GPU CPU

model
remain
(M) ↓

pruned

(%) ↑

FPS

(1
s

) ↑
FPS

speedup ↑

FPS

(1
s

) ↑
FPS

speedup ↑

Deit-
Base

86.6 0% 536 1.0 3.8 1.0

21.5 75% 1156 2.16 11.6 3.05

8.7 90% 1674 3.12 22.9 6.03

Deit-
Small

22.1 0% 1676 1.0 13.9 1.0

5.4 75% 2473 1.48 35.0 2.52

2.2 90% 3157 1.88 60.6 4.36

Table 7. Inference speed quantified in frames per second (FPS)

measured on CPU and GPU. The models pruned by P3B exhibit a

throughput increase of up to 3.12x on GPU and 6.03x on CPU.

E. Throughput

In this chapter investigates the throughput using P3B as

pruning method. Therefore, we measure the processed im-

ages as frames per second (FPS). All results are obtained

using an Nvidia GeForce RTX 3090 GPU with a batch size

of 1024 and an Intel Core i9-12900K CPU with a batch size

of 1. Each result is averaged over 1000 runs.

Table 7 shows the resulting FPS-scores. Notably, a pa-

rameter reduction of 75% results in a speedup ratio of 2.16
on Deit-Base, while the pruning rate of 90% even increases

the inference speed up to factor 3.12. This illustrates the

potential using a reduced model size.

F. Knowledge Distillation

In this experiment we apply P3B in a Knowledge Distilla-

tion setting. Therefore the cross-entropy-loss LCE is re-

placed by the Knowledge Distillation loss LKD defined

in [51]. To calculate distillation loss LKD(pc, pd, pT , y),
the class logit for classification token pc and distillation to-

ken pd are needed from the student model. Here, pT repre-

sents the class logit from the teacher model, and y denotes

the ground truth label for the target class. Given the classifi-

cation token xc, the class logit is calculated by pc = hc(xc)
and the distillation logit pd, respectively. Thus the clas-

sification Block Performance for a Knowledge Distillation

Problem is formulated as

 \Delta \Psi ^c_i = \mathcal {L}_{KD}(p^c_{i-1}, p^d_{i-1}, p^T, y) - \mathcal {L}_{KD}(p^c_i, p^d_i, p^T, y).

(10)

Similarly, we formulate the patch Block Performance given

patch logit pp as

 \Delta \Psi ^p_i = \mathcal {L}_{KD}(p^p_{i-1}, p^p_{i-1}, p^T, y) - \mathcal {L}_{KD}(p^p_i, p^p_i, p^T, y).

(11)

The pruning procedure is applied according to the set-

tings described in Sec. 3 in the main paper. For compari-

son, we reduce the learning rate to 2 · 10−4 according to the

experiments in [51].

loss
models to train req. GPU-memory ↓

teacher student Deit-Small Deit-Tiny

KD ✓ ✓ 28.1 GiB 28.1 GiB

CE ✗ ✓ 14.4 GiB 7.7 Gib

Table 8. Trainings requirements using a non-teacher based loss

(e.q. CE-loss) and Knowledge Distillation loss (KD), introduced

in [51]. KD training strategies require the teacher model to also be

adapted to the new target domain, which necessitates an additional

training run.

Method
Param
(M) ↓

Flops

(G) ↓

Top-1 Acc.

(%) ↑

Deit-B-Dist [45] 86.6 17.6 83.36

Deit-S-Dist [45] 22.4 4.6 81.20

NViT-S [51] 21.0 4.2 82.19

P3B-Dist-S (ours) 22.0 4.4 82.08

Deit-T-Dist [45] 5.9 1.3 74.50

NViT-T [51] 6.9 1.3 76.21

P3B-Dist-T (ours) 6.8 1.2 75.04

Table 9. Classification Results of distilled pruning methods on

Imagenet-1K. All methods use Deit-Base-Distilled as prunable

model [45]. The results show that using P3B-Distilled improves

performance compared to Deit-S/T-Dist at similar sparsity levels.

To evaluate the Knowledge Distillation loss, we

prune the on Imagenet-1K pretrained model Deit-Base-

Distilled [45] to a size comparable with Deit-Tiny and Deit-

Small. The classification results are shown in Tab. 9. P3B-

Dist shows an improved performance compared to the the

original distilled model of size small and tiny. For instance

P3B-Dist-S improves the accuracy from Deit-S-Dist from

81.2% up to 82.08%. Compared to the results of NViT the

accuracy of P3B slightly drops.

However, Knowledge Distillation typically relies on the

teacher model being fully converged before training the stu-

dent model. In real world scenarios the target domain is not

encoded in the initial model, leading to a performance loss

caused by a mismatch of weight importance, as investigated

in Sec. 4.3 in the main paper. Training the model on the tar-

get task before pruning is feasible but requires more than

twice the training time, as the large scaled teacher model

must be trained on the target domain first. Table 8 illus-

trates the limitations of Knowledge Distillation, showing

the GPU memory requirements for a dense training run.

These measurements were performed at a batch size of 256,

using DeiT-Base as the teacher. Cross-Entropy loss notably

uses less GPU memory than KD-loss, reducing the memory

demand by a factor of 2 for DeiT-Small and 4 for DeiT-

Tiny. By focusing on non-teacher-based losses, such as

CE-loss, our P3B pruning method efficiently saves GPU-

memory and prunes the model in a single training run.

G. Necessity of Reordering

The experiments in Sec. 4.3 in the main paper emphasise

that the changing importance order of mask elements, fol-

lowing described as reordering, has a significant effect on

the resulting performance. We compared the pruning frame-

work P3B as dynamic pruning approach to a one-shot prun-

ing method by freezing the model during the pruning steps.

The results in the main paper show, that the frozen model

performs significantly worse than the trainable model. This

performance drop increases with higher pruning rates and

on new target domains. To further understand the reasons

for this performance loss, this section analyses the mea-

sured Block Performance (BP) for the frozen case, in order

to demonstrate the depth dependent information loss caused

by pruning.

By freezing the model during the pruning steps of P3B,

the model is not able to adapt to the new data domain, before

finally getting pruned. Consequently, the decision about

which elements to prune, is based only on the initial model

configuration. Although the frozen model is not allowed

to change its local structures, we train the BPI-function to

evaluate the global block importance Ib
i and measure the

local importance scores Ij to identify the least important

channels that can be pruned. However, since the local im-

portance score defined in Eq. 7 requires a gradient, we do

not actually freeze the model, but set the pruning learning

rate to 1·10−8. This value is negligibly small, so we assume

the model to be frozen. In comparison, trainable pruning

uses an initial learning rate of 5 · 10−4.

In addition to the accuracy results between the frozen

and trainable model in the main paper, we present the rela-

tive contribution on each block for the frozen and trainable

setting in Figure 5, measured by Block Performance (BP).

The left column shows the class BP for Attention blocks

∆Ψc
i , whereas the right column demonstrates the patch BP

of MLP blocks ∆Ψp
i . All graphs show that the BP-score

drops significantly if the model is frozen. This illustrates

the loss of class discriminative features, once the model is

pruned or applied to another downstream task, as demon-

strated by datasets CIFAR100, IFOOD and INAT19. The

frozen model is not able to recover lost information. If we

consider the classificaton BP of Attention blocks, the deeper

layers with index ≥ 6, show an increased BP for the train-

able model. Consequently, deeper layers are able to recover

their discriminative ability, in case informations are lost by

removed channels. Considering the MLP blocks in the right

column, the frozen model exhibits a comparable informa-

tion loss of semantic features, measured by patch BP. In-

terestingly, shallower layers with a smaller block index are

able to better conserve the BP, compared to deeper layers.

To summarize this experiment, the layers performance

drops drastically once model structures are pruned. Train-

ing the model while removing its structures allows At-

tention and MLP blocks to compensate lost information,

and readjust the network topology. The accuracy results

in Tab. 3 emphasize that this importance reordering dur-

ing training improves the overall performance, especially

in higher sparsity regimes and on new target domains.

H. Do Attention and MLP blocks create dis-

criminative features equally good?

In Sec. 4.5 in the main paper we analyse the discrimina-

tive ability of individual Attention and MLP blocks in order

to show the change of class-discriminance along the net-

work depth. The relative discriminative improvement in the

feature map is measured using the BP-metric introduced

in Sec. 3.2 of the main paper. This metric learns individ-

ual classifiers from the input- and output-featurmap of each

block to determine the relative gain measured by Cross-

Entropy-Loss. We separate the BP-score for classification

token and semantic patches.

Fig. 6 presents additional results to the experiments in

the main paper. The column shows the results for mod-

els Deit-S and Deit-T while rows represent the datasets

Imagenet-1k, INAT19, IFOOD, and CIFAR100. We ob-

serve the BP of MLP blocks is very close to 0 in all settings,

while the Attention blocks reach an averaged BP-score of

≥ 0.15. This illustrates the small impact of MLP blocks on

the classification token. Moreover we measure the semantic

performance improvement within patches by ∆Ψp. Atten-

tion and MLP blocks show a decreasing discriminative gain

along the network depth. Layers 11 and 12 have a BP-score

of almost 0, showing the low impact of these layers on the

semantic feature representation. In comparison of Atten-

tion and MLP-blocks in terms of patch performance, the

MLP-blocks show stronger semantic feature improvements

in layers 1−6, but both layer types contribute equally strong

in the deeper layers 7− 12.

I. Which layers become discriminative first?

This section demonstrates further results to answer the

question ”Which layers become discriminative first?” from

Sec. 4.6 in the main paper. Specifically, we extend the pre-

sented results on IFOOD [25] by dataset INAT19 [22].

In this experiment, we train the Vision Transformer

model of size small on a defined downstream task and

save certain intermediate checkpoints. To answer the ques-

tion about the changing discriminative properties, we reload

each checkpoint separately, freeze the model and train only

the introduced Block Performance Indicator (BPI). The BPI

consists of a separate classification head for each individ-

ual Attention and MLP block to accurately gauge the rela-

tive performance improvement of blocks. We tune the BPI-

module on each checkpoint separately, to ensure this clas-

sifier to be fully converged. This convergence property is

not always given during the pruning procedure of P3B, but

it is confident enough to deliver appropriate budget lever-

ages. In this experiment we train our BPI for 50 epochs to

convergence. To consider all data samples for the BP-score

∆Ψ, the mask is updated only once per epoch.

Fig. 7 shows the Block Performance (BP) for IFOOD,

which has already been discussed in the main paper. We

extend this results for dataset INAT19 in Fig. 8. In compar-

ison of this two datasets, we observe similar results. For

instance, considering the class-BP ∆Ψc of the Attention

blocks, the initial BP shows a peak-value at layer 6 and de-

creases down to 0 for layers at higher indices. We assume

this decreasing performance is due to the property of deeper

layers to contain more task specific features [33]. However,

the performance of deeper layers can be recovered by fine

tuning. Both datasets show that the deeper layers have more

discriminative impact on the classification token in the con-

verged state (epoch 300), compared to shallower layers.

Overall, we observe that shallower layers do not increase

their feature contribution significantly by training. In con-

trast, all block performances (∆Ψc and ∆Ψp) show strong

performance improvements in the deeper layers (index >

6).

0

0.1

0.2

0.3

0.4

B
P
∆
Ψ
i

Classificaton BP ∆Ψ
c
i

Attention Blocks

trainable model frozen model

0

0.05

0.1

0.15

0.2

Im
ag

en
et

-1
K

[2
8
]

Patch BP ∆Ψ
p
i

MLP Blocks

0

0.1

0.2

B
P
∆
Ψ
i

0

0.05

0.1

C
IA

F
R

1
0

0
[2

7
]

0

0.1

0.2

B
P
∆
Ψ
i

0

0.05

0.1

IF
O

O
D

[2
5
]

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

0.3

0.4

block index i

B
P
∆
Ψ
i

1 2 3 4 5 6 7 8 9 10 11 12

0

0.05

0.1

0.15

0.2

block index i

IN
A

T
1

9
[2

2
]

Figure 5. Block Performance ∆Ψ for trainable and frozen model during the pruning steps of P3B at pruning rate 50%. The left column

shows the Classification BP ∆Ψ
c
i for Attention blocks, while the right columns demonstrates the patch BP ∆Ψ

p
i for MLP blocks. Both

Attention and MLP blocks highly lose their discriminative impact in the frozen setting. This illustrates the necessity of reordering, to fairly

measure the depth dependent importance using P3B.

0

0.1

0.2

0.3

0.4

B
P
∆
Ψ

Deit-S

0

0.1

0.2

0.3

0.4

Im
ag

en
et

-1
k

[2
8]

Deit-T

0

0.1

0.2

0.3

0.4

B
P
∆
Ψ

0

0.1

0.2

0.3

0.4

IN
A

T
19

[2
2]

0

0.1

0.2

0.3

B
P
∆
Ψ

0

0.1

0.2

IF
O

O
D

[2
5]

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

block index i

B
P
∆
Ψ

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

block index i

C
IF

A
R

10
0

[2
7]

BP-Class (∆Ψc) BP-Patch (∆Ψp)

Attn Blocks Attn Blocks

MLP Blocks MLP Blocks

Figure 6. Relative performance gain of Attention and MLP blocks measured by Block Performance ∆Ψ. We apply P3B to model Deit-S

and Deit-T [45] with pruning rate 50%. Each row corresponds to one of the datatasets: Imagenet, INAT, IFOOD, CIFAR. The results show

that only Attention blocks increase the classification tokens discriminance. MLP blocks mainly contribute to semantic patch tokens in a

decreasing manner.

0

0.5

1

cl
as

s-
B

P
(∆

Ψ
c
)

Attention Block

initialization epoch 1 epoch 10 epoch 50 epoch 300

−0.5

0

0.5

1

MLP Block

1 2 3 4 5 6 7 8 9 10 11 12
−0.5

0

0.5

1

index

p
at

ch
-B

P
(∆

Ψ
p
)

1 2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

index

Relative Block Performance on dataset: IFOOD [25]

Figure 7. Block Performance ∆Ψ on intermediate checkpoints. We train model Deit-S on dataset IFOOD [25] without pruning the model.

Each subplot is normalized by it’s maximum value.

0

0.5

1

cl
as

s-
B

P
(∆

Ψ
c
)

Attention Block

initialization epoch 1 epoch 10 epoch 50 epoch 300

−1

0

1

MLP Block

1 2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

index

p
at

ch
-B

P
(∆

Ψ
p
)

1 2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

index

Relative Block Performance on dataset: INAT19 [22]

Figure 8. Block Performance ∆Ψ on intermediate checkpoints. We train model Deit-S on dataset INAT19 [22] without pruning the model.

Each subplot is normalized by it’s maximum value.

	Intra Block Importance
	Soft Masking Formulation
	Training Setting
	Datasets
	Throughput
	Knowledge Distillation
	Necessity of Reordering
	Do Attention and MLP blocks create discriminative features equally good?
	Which layers become discriminative first?

