Appendix for:
Pruning by Block Benefit
(P3B)

This appendix is organized into several sections, each
providing a focused look at a particular aspect of our re-
search. The discussion begins with the formulations of Intra
Block Importance in Section A and Soft Masking in Sec-
tion B. Section C then details the experimental settings and
training configurations, while Section D outlines the prop-
erties of the datasets used. Next, the inference speedup
reached by P3B is examined in Section E. Descriptions of
further experiments using Knowledge Distillation loss are
found in Section F, and a deeper exploration of the impor-
tance of reordering in pruning is presented in Section G.
Finally, Sections H and I present extended experimental re-
sults related to research questions Q1 and Q2 in the main

paper.

A. Intra Block Importance

This section extends the information about the Intra Block
Formulation, described in Sec. 3.2. Specifically, we further
explain the architecture of the Block Performance Indica-
tor (BPI) module AV and define the smoothing function ~y
from Eq. 2.

The proposed method Pruniny by Block Benefit (P3B)
assigns a depth dependent parameter budget as keep ratio
k% to consecutively aligned Attention and Multi-Layer Per-
ceptron (MLP) blocks. Thereby, P3B conserves the com-
putational capacity of blocks, that mainly increase the class
discriminance and penalizes ones with reduced impact. To
measure this blockwise classification performance (BP), the
Block Performance Indicator (BPI) AV is introduced as a
lightweight learnable function for classification token and
patches. In Vision Transformers, the classification token is
used to learn class distinguishable features, while patches
contain semantic information. The architecture of classifi-
cation and patch classifiers is defined as follows:

e Class head is realized as the origin ViT-classification
head using a single linear layer [13].

¢ Patch head is based on the Resnet architecture [19]. We
apply a single Resnet block and it’s classification head to
determine the logits for loss calculation.

The introduced BPI learns an individual classification
and patch head (¥, \Ilf ) for each block, by using the fea-
ture map before and after the regarding block as input.
For the classification task, BPI is optimized towards Cross-
Entropy-Loss L. Individual heads for each block ensure
that the resulting BP-score is not influenced by the feature

maps of other network depths. Different to other soft clas-
sifier methods such as [53], we do not focus on the classifi-
cation token alone, but also discriminate the patch tokens to
identify beneficial semantic features. As defined in Eq. | in
the main paper, P3B uses the relative loss to assign a depth
dependent keep ratio ! to block . Given the measured BP-
score for classification tokens AW¢ and patches AUY, the
block importance is determined by
’ lwil + €

The number of remaining parameters |w;| is determined
with a mask value M > 0.5, while € is a small value used
for numerical stability. Additionally, a smoothing function
~ is applied to restrain high peak values and those with neg-
ative BP. Therefore we normalize AW¢ and AUP by it’s
max value and apply:

v(x)=SP(l4-s-2)—SP(l4-s-x—s). (8)

The input value is scaled by factor s = 10 to adjust the
smoothing amount. SP(x) is the SoftPlus operator that
approaches zero for values < 0 and scales almost pro-
portional to the input value for x > 0 [50]. While the first
S P-term defines the lower bound to zero, the second S P-
operator limits the upper bound for high values.

According to Eq. 3 in the main paper, we merge clas-
sification and patch importance If’ " and If '’ by a normal-
ized weighted sum to block importance score Z?. Following
each block is assigned a keep ratio x? proportionally scaled
to Z? until the overall model keep ratio x™ = SN |w;|x?
has reached. During this scaling process individual block
keep ratios can result in values k? > 1. Since this is an in-
valid solution, we clip this keep ratios to 1 and rescale the
resulting blocks until a valid solution is found.

B. Soft Masking Formulation

In the previous section we defined the superior keep ratio
k! for Attention and MLP blocks. Based on this parameter
budget, P3B creates a soft mask M to prune the least im-
portant model structures. As extension to the block intrinsic
mask definition in Sec. 3.3, this section explains more con-
cretely how the goal sparsity is encoded in the soft mask
and how the mask sharpness can be controlled to force a
hard mask.

Our proposed method P3B uses a soft mask M € [0, 1]
to smoothly reduce the influence of less important opera-
tions during training. Thereby, soft masking ensures already
pruned elements to keep their numerical importance order,
which is necessary for reactivation of already pruned chan-
nels. To clarify this point, hard masking prunes elements
by setting the mask values to eather 0 or 1. Consequently
the local importance order is lost for all pruned elements,



since the regarding importance scores Z; result in 0. In con-
trast, soft masking uses intermediate values between 0 and
1 which allows the gradient to roughly scale with the mask
value. Consequently, already pruned elements can be re-
activated using soft masking, without losing the numerical
importance order. The updated mask M’ is defined as

M' = o(t(argsort(T.,,), k2, 7)), (8)

where the values are assigned, according to the importance
score Z!,,. High importance values will result in a mask
value close to 1, while low importance values smoothly de-
crease to 0. Thereby, transformation function ¢ in combi-
nation with sigmoid function ¢ ensures that the new mask
satisfies keep ratio x?, while the mask sharpness can be con-
trolled by factor 7. Function ¢ is defined as:
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This formulation ensures two properties regarding prun-
ing mask M:

1. Sparsity: The resulting mask is created by sigmoid
function ¢ € [0, 1], based on the sorted list of importance
scores Z!,,, where high scores get a higher mask value.
To satisfy the sparsity condition of block keep ratio x?,
we define index isp;f¢ With value 2445, as the least im-
portant element that remains after pruning. By substract-
ing Zspif¢ to input vector x, we ensure element 4, r¢ Will
be the least important remaining element with mask value
M’ = 0.5. Dependent on the importance index, higher val-
ues approaches 1, while unimportant indices converges to 0.

2. The Sharpness of mask M can be controlled by fac-
tor 7. Therefore we define a reference mask value M,.; =
0.9 at index iyef = ishift + 7 - ||. For higher values of 7
the reference value M,..; is more distant form the fix value
ishift, resulting in a smooth mask. The sharpness can be in-
creased by shifting parameter 7 close to 0, where the lower
bound of 7 = 0 represents a hard mask. During the pruning
steps warm up and sparsification, we set factor 7 = 0.1.
The following step sharpening we linearly decreases this
value to 0 to force a hard mask.

C. Training Setting

The pruning process of P3B is divided into 4 steps: warm
up, sparsification, sharpening and fine-tuning. During the
first 3 steps P3B smoothly sparsify the model by masking
out unimportant structures. Therefore, Table 5 describes the
applied training parameters. Note that all pruning steps are
trained for 50 epochs in sum.

Step fine-tuning is applied according to the standard
training pipeline of Deit [45]. The model is trained
for 300 epochs using batch size 512 with learning rate

0.0005 b‘”gh% During all training steps, we adapt

parameter value note

epochs warmup 3

epochs sparsify 22

epochs sharpening 25

Ir model 5.107% const value

Ir BPI 5.107% const value

@ 0.5 balance Z%¢ vs. Z0P
Myey 0.9 sharpening reference
T 0.1 sharpening factor

mask update freq 1000 scale with data size

Table 5. Applied parameter for training Vision Transformer with
P3B. This settings are used for dataset Imagenet-1K.

the augmentation strategies from Deit [45], including Cut-
Mix [56], Random Augmentation [10] and Mixup [57].

D. Datasets

The experiments to transfer learning tasks in Sec. 4.2 of the
main paper show that our method P3B is highly performant
on various downstream tasks. In this section, we further
discuss the properties of the used datasets to show our ex-
periments cover a high variety of domains and task com-
plexities.

Table 6 provides a summary of the data size and num-
ber of classes for each applied datasets. The chosen down-
stream tasks INAT19, IFOOD and CIFAR100 show a di-
verse size of training samples and a high variation in their
class complexity. Furthermore, the data sets encompass a
wide domain range. While INAT19 focuses on the clas-
sification of plants, IFOOD classifies dishes. These two
datasets can be classified as highly fine-grained. In com-
parison, the data distribution of CIFAR100 is more coarse.

For our transfer learning experiment we initialize the
model with checkpoints from Deit [45] that are already
tuned on dataset Imagenet-1K and train the model on an-
other downstream task. For all experiments we apply the
same settings as described in Sec. C, except the mask up-
date frequency. Since this parameter scales with the data
size we set this parameter to 50, 100 and 500 for dataset
CIFAR100, IFOOD and INAT19, respectively.

dataset train size val size number classes
Imagenet-1K [28] 1.281.167 50.000 1.000
INaturalist 2019 (INAT19) [22] 265213  3.030 1.010
IFOOD 2019 (IFOOD) [25] 118.475 11.994 251
CIFAR100 [27] 50.000 10.000 100

Table 6. Overview of used datasets in this paper. We list the size
of training and validation sets as well as the number of classes.



parameters GPU CPU

remain pruned FPS FPS FPS FPS
model | (M)} (%) 1 | ()1 speedup? | ()t speedup T
Deit- 86.6 0% 536 1.0 3.8 1.0
Base | 215 75% | 1156 2.16 11.6 3.05

8.7 90% | 1674 3.12 229 6.03
Deit- 22.1 0% 1676 1.0 13.9 1.0
Small | 34 5% | 2473 1.48 35.0 2.52

22 90% | 3157 1.88 60.6 4.36

Table 7. Inference speed quantified in frames per second (FPS)
measured on CPU and GPU. The models pruned by P3B exhibit a
throughput increase of up to 3.12x on GPU and 6.03x on CPU.

E. Throughput

In this chapter investigates the throughput using P3B as
pruning method. Therefore, we measure the processed im-
ages as frames per second (FPS). All results are obtained
using an Nvidia GeForce RTX 3090 GPU with a batch size
of 1024 and an Intel Core i9-12900K CPU with a batch size
of 1. Each result is averaged over 1000 runs.

Table 7 shows the resulting FPS-scores. Notably, a pa-
rameter reduction of 75% results in a speedup ratio of 2.16
on Deit-Base, while the pruning rate of 90% even increases
the inference speed up to factor 3.12. This illustrates the
potential using a reduced model size.

F. Knowledge Distillation

In this experiment we apply P3B in a Knowledge Distilla-
tion setting. Therefore the cross-entropy-loss Lo is re-
placed by the Knowledge Distillation loss Lxp defined
in [51]. To calculate distillation loss L£xp(p°, p?, pT, ),
the class logit for classification token p© and distillation to-
ken p? are needed from the student model. Here, p” repre-
sents the class logit from the teacher model, and y denotes
the ground truth label for the target class. Given the classifi-
cation token x¢, the class logit is calculated by p© = h¢(z¢)
and the distillation logit p, respectively. Thus the clas-
sification Block Performance for a Knowledge Distillation
Problem is formulated as

A\I/zc = ‘CKD (pg—lap?—lapTa y) - ‘CKD(ngapzdva7 y)
(10)
Similarly, we formulate the patch Block Performance given
patch logit p” as

AV} = LrpP]_1, {107 y) = Lk w0}, 0" y)-
(1)
The pruning procedure is applied according to the set-
tings described in Sec. 3 in the main paper. For compari-
son, we reduce the learning rate to 2 - 10~# according to the
experiments in [51].

models to train req. GPU-memory |

loss teacher  student  Deit-Small ~ Deit-Tiny
KD v v 28.1 GiB 28.1 GiB
CE X v 14.4 GiB 7.7 Gib

Table 8. Trainings requirements using a non-teacher based loss
(e.q. CE-loss) and Knowledge Distillation loss (KD), introduced
in [51]. KD training strategies require the teacher model to also be
adapted to the new target domain, which necessitates an additional
training run.

Param FlOpS Top'l Acc.
Method Ml @) %7
Deit-B-Dist[45]  86.6  17.6 83.36
Deit-S-Dist [45] 224 46 81.20
NViTS [51] 210 42 82.19
P3B-Dist-S (ours)  22.0 4.4 82.08
Deit-T-Dist [45] 59 1.3 74.50
NVIiT-T [51] 6.9 1.3 76.21
P3B-Dist-T (ours) 6.8 1.2 75.04

Table 9. Classification Results of distilled pruning methods on
Imagenet-1K. All methods use Deit-Base-Distilled as prunable
model [45]. The results show that using P3B-Distilled improves
performance compared to Deit-S/T-Dist at similar sparsity levels.

To evaluate the Knowledge Distillation loss, we
prune the on Imagenet-1K pretrained model Deit-Base-
Distilled [45] to a size comparable with Deit-Tiny and Deit-
Small. The classification results are shown in Tab. 9. P3B-
Dist shows an improved performance compared to the the
original distilled model of size small and tiny. For instance
P3B-Dist-S improves the accuracy from Deit-S-Dist from
81.2% up to 82.08%. Compared to the results of NViT the
accuracy of P3B slightly drops.

However, Knowledge Distillation typically relies on the
teacher model being fully converged before training the stu-
dent model. In real world scenarios the target domain is not
encoded in the initial model, leading to a performance loss
caused by a mismatch of weight importance, as investigated
in Sec. 4.3 in the main paper. Training the model on the tar-
get task before pruning is feasible but requires more than
twice the training time, as the large scaled teacher model
must be trained on the target domain first. Table 8 illus-
trates the limitations of Knowledge Distillation, showing
the GPU memory requirements for a dense training run.
These measurements were performed at a batch size of 256,
using DeiT-Base as the teacher. Cross-Entropy loss notably
uses less GPU memory than KD-loss, reducing the memory
demand by a factor of 2 for DeiT-Small and 4 for DeiT-
Tiny. By focusing on non-teacher-based losses, such as
CE-loss, our P3B pruning method efficiently saves GPU-
memory and prunes the model in a single training run.



G. Necessity of Reordering

The experiments in Sec. 4.3 in the main paper emphasise
that the changing importance order of mask elements, fol-
lowing described as reordering, has a significant effect on
the resulting performance. We compared the pruning frame-
work P3B as dynamic pruning approach to a one-shot prun-
ing method by freezing the model during the pruning steps.
The results in the main paper show, that the frozen model
performs significantly worse than the trainable model. This
performance drop increases with higher pruning rates and
on new target domains. To further understand the reasons
for this performance loss, this section analyses the mea-
sured Block Performance (BP) for the frozen case, in order
to demonstrate the depth dependent information loss caused
by pruning.

By freezing the model during the pruning steps of P3B,
the model is not able to adapt to the new data domain, before
finally getting pruned. Consequently, the decision about
which elements to prune, is based only on the initial model
configuration. Although the frozen model is not allowed
to change its local structures, we train the BPI-function to
evaluate the global block importance Z? and measure the
local importance scores Z; to identify the least important
channels that can be pruned. However, since the local im-
portance score defined in Eq. 7 requires a gradient, we do
not actually freeze the model, but set the pruning learning
rate to 1-10~8. This value is negligibly small, so we assume
the model to be frozen. In comparison, trainable pruning
uses an initial learning rate of 5 - 1074,

In addition to the accuracy results between the frozen
and trainable model in the main paper, we present the rela-
tive contribution on each block for the frozen and trainable
setting in Figure 5, measured by Block Performance (BP).
The left column shows the class BP for Attention blocks
AW, whereas the right column demonstrates the patch BP
of MLP blocks AWY. All graphs show that the BP-score
drops significantly if the model is frozen. This illustrates
the loss of class discriminative features, once the model is
pruned or applied to another downstream task, as demon-
strated by datasets CIFAR100, I[FOOD and INAT19. The
frozen model is not able to recover lost information. If we
consider the classificaton BP of Attention blocks, the deeper
layers with index > 6, show an increased BP for the train-
able model. Consequently, deeper layers are able to recover
their discriminative ability, in case informations are lost by
removed channels. Considering the MLP blocks in the right
column, the frozen model exhibits a comparable informa-
tion loss of semantic features, measured by patch BP. In-
terestingly, shallower layers with a smaller block index are
able to better conserve the BP, compared to deeper layers.

To summarize this experiment, the layers performance
drops drastically once model structures are pruned. Train-
ing the model while removing its structures allows At-

tention and MLP blocks to compensate lost information,
and readjust the network topology. The accuracy results
in Tab. 3 emphasize that this importance reordering dur-
ing training improves the overall performance, especially
in higher sparsity regimes and on new target domains.

H. Do Attention and MLP blocks create dis-
criminative features equally good?

In Sec. 4.5 in the main paper we analyse the discrimina-
tive ability of individual Attention and MLP blocks in order
to show the change of class-discriminance along the net-
work depth. The relative discriminative improvement in the
feature map is measured using the BP-metric introduced
in Sec. 3.2 of the main paper. This metric learns individ-
ual classifiers from the input- and output-featurmap of each
block to determine the relative gain measured by Cross-
Entropy-Loss. We separate the BP-score for classification
token and semantic patches.

Fig. 6 presents additional results to the experiments in
the main paper. The column shows the results for mod-
els Deit-S and Deit-T while rows represent the datasets
Imagenet-1k, INAT19, IFOOD, and CIFAR100. We ob-
serve the BP of MLP blocks is very close to 0 in all settings,
while the Attention blocks reach an averaged BP-score of
> 0.15. This illustrates the small impact of MLP blocks on
the classification token. Moreover we measure the semantic
performance improvement within patches by AWUP. Atten-
tion and MLP blocks show a decreasing discriminative gain
along the network depth. Layers 11 and 12 have a BP-score
of almost 0, showing the low impact of these layers on the
semantic feature representation. In comparison of Atten-
tion and MLP-blocks in terms of patch performance, the
MLP-blocks show stronger semantic feature improvements
in layers 1—6, but both layer types contribute equally strong
in the deeper layers 7 — 12.

I. Which layers become discriminative first?

This section demonstrates further results to answer the
question "Which layers become discriminative first?” from
Sec. 4.6 in the main paper. Specifically, we extend the pre-
sented results on IFOOD [25] by dataset INAT19 [22].

In this experiment, we train the Vision Transformer
model of size small on a defined downstream task and
save certain intermediate checkpoints. To answer the ques-
tion about the changing discriminative properties, we reload
each checkpoint separately, freeze the model and train only
the introduced Block Performance Indicator (BPI). The BPI
consists of a separate classification head for each individ-
ual Attention and MLP block to accurately gauge the rela-
tive performance improvement of blocks. We tune the BPI-
module on each checkpoint separately, to ensure this clas-
sifier to be fully converged. This convergence property is



not always given during the pruning procedure of P3B, but
it is confident enough to deliver appropriate budget lever-
ages. In this experiment we train our BPI for 50 epochs to
convergence. To consider all data samples for the BP-score
AW, the mask is updated only once per epoch.

Fig. 7 shows the Block Performance (BP) for IFOOD,
which has already been discussed in the main paper. We
extend this results for dataset INAT19 in Fig. 8. In compar-
ison of this two datasets, we observe similar results. For
instance, considering the class-BP AW¢ of the Attention
blocks, the initial BP shows a peak-value at layer 6 and de-
creases down to O for layers at higher indices. We assume
this decreasing performance is due to the property of deeper
layers to contain more task specific features [33]. However,
the performance of deeper layers can be recovered by fine
tuning. Both datasets show that the deeper layers have more
discriminative impact on the classification token in the con-
verged state (epoch 300), compared to shallower layers.

Overall, we observe that shallower layers do not increase
their feature contribution significantly by training. In con-
trast, all block performances (AW and AWP) show strong
performance improvements in the deeper layers (index >
6).
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Figure 5. Block Performance AWV for trainable and frozen model during the pruning steps of P3B at pruning rate 50%. The left column
shows the Classification BP AW§ for Attention blocks, while the right columns demonstrates the patch BP AU? for MLP blocks. Both
Attention and MLP blocks highly lose their discriminative impact in the frozen setting. This illustrates the necessity of reordering, to fairly
measure the depth dependent importance using P3B.
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Figure 6. Relative performance gain of Attention and MLP blocks measured by Block Performance AW. We apply P3B to model Deit-S
and Deit-T [45] with pruning rate 50%. Each row corresponds to one of the datatasets: Imagenet, INAT, IFOOD, CIFAR. The results show
that only Attention blocks increase the classification tokens discriminance. MLP blocks mainly contribute to semantic patch tokens in a
decreasing manner.



Relative Block Performance on dataset: IFOOD [25]
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Figure 7. Block Performance AW on intermediate checkpoints. We train model Deit-S on dataset IFOOD [25] without pruning the model.
Each subplot is normalized by it’s maximum value.
Relative Block Performance on dataset: INAT19 [22]
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Figure 8. Block Performance AW on intermediate checkpoints. We train model Deit-S on dataset INAT19 [22] without pruning the model.
Each subplot is normalized by it’s maximum value.
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