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A. Implementation Details

A.1. 3D Representation

As discussed in Sec. 3.2, we employed a 3D compact rep-
resentation rather than a BEV representation. The primary
limitation of the BEV representation is the absence of the
Z dimension, while it retains full resolution along the H

and W dimensions (typically H = 200 and W = 200). To
perform binary occupancy prediction from the BEV repre-
sentation, the channel dimension C must be reshaped (e.g.,
C = 512 is typically reshaped as Z⇥C

0 = 16⇥32 = 512).
However, this transformation presents two challenges for
our approach.

First, the reduced channel dimension C
0 = 32 is in-

sufficient for the subsequent sparse transformer, potentially
creating a bottleneck in the model. Second, the full res-
olution of the 3D space (typically H = 200, W = 200,
and Z = 16) is computationally prohibitive for real-time
applications. Consequently, it is necessary to downsam-
ple the spatial resolution from (H,W ) = (200, 200) to
(H 0

,W
0) = (100, 100), which may introduce an additional

bottleneck in the model.
To mitigate these limitations, the proposed model adopts

a 3D compact representation with H
c = 50, W c = 50,

Z
c = 16, and C = 256, thereby addressing the aforemen-

tioned concerns. The representation is then upsampled to a
resolution of Hb = 100, W b = 100, and Z

c = 16 for bi-
nary occupancy prediction. For auto-labeling experiments,
we employed higher-resolution setting with H

c = H
b =

256, W c = W
b = 256, Zc = Z

b = 40, and C = 64, as
the OpenOccupancy dataset provides a larger volume size
(H = 512, W = 512, Z = 40), and the auto-labeling ex-
periments consider only an offboard setting.

A.2. Architecture Details

For both LS-based and BEVFormer-based methods we em-
ployed a ResNet50 backbone with a FPN as the neck. The
standard transformer in BEVFormer utilizes spatially dense
queries and is therefore referred to as a dense transformer in
the main text. In contrast, the proposed method incorporates
a sparse transformer, which utilizes feature vectors corre-
sponding to occupied regions as queries, as explained in
Sec. 3.2. In both transformer architectures, we adopted the
following hyperparameters: the number of attention heads
is set to 8, the number of reference points for deformable
attention is 4 in the self-attention module and 8 in the cross-

attention module, and the embedding dimension is 256. For
further implementation details, please refer to the provided
code.

B. Evaluating Semantic Occupancy Predic-

tion with Varying Numbers of Fine-tuning

Scenes

In Section 4.1.1, we presented experimental results using
250 fine-tuning scenes. Figure 9 provides additional re-
sults with 500 and 1000 fine-tuning scenes. The proposed
method consistently demonstrates a performance advantage
across all fine-tuning set sizes.

C. Evaluating Binary Occupancy Prediction

During Pre-training

Figure 10 provides the IoU scores of the binary occupancy
prediction module within the proposed method as a func-
tion of the number of pre-training scenes. The IoU scores
are highest upon the completion of pre-training but decrease
during fine-tuning, as the number of fine-tuning scenes
is substantially smaller than that of pre-training scenes.
However, the proposed fine-tuning strategy effectively mit-
igates this performance degradation by incorporating the
pre-training scenes during fine-tuning.

D. Performance Evaluation in Auto-labeling

Pipelines

In Sec. 4.2, we evaluated the proposed auto-labeling model
using the OpenOccupancy dataset. However, OpenOc-
cupancy is not sufficiently large to evaluate auto-labeling
pipelines. Therefore, in this section, we utilize the Open-
Scene dataset to generate a large-scale semantic occupancy
dataset using the proposed pipeline and evaluate its ef-
fectiveness by training online methods on the generated
dataset.

Table 4 presents a comparison of Sparse-LSS in an off-
board setting—where GT binary occupancy is provided as
input—versus an onboard setting. Consistent with the re-
sults on OpenOccupancy, the offboard model achieves sig-
nificantly higher performance than its onboard counterparts.

Using the trained offboard model, we generated pseudo-
labels. However, dense predictions such as semantic occu-
pancy prediction require substantial storage capacity to save
the generated labels. Ideally, storing logits for all voxels



(a) BEVFormer (250 fine-tuning scenes) (b) BEVFormer (500 fine-tuning scenes) (c) BEVFormer (1000 fine-tuning scenes)

(d) LS (250 fine-tuning scenes) (e) LS (500 fine-tuning scenes) (f) LS (1000 fine-tuning scenes)

Figure 9. These figures display the mIoU scores as the number of pre-training scenes varies. The top row shows the results of BEVFormer-
based models, while the bottom row presents the results of LS-based models.

(a) BEVFormer (250 fine-tuning scenes) (b) BEVFormer (500 fine-tuning scenes) (c) BEVFormer (1000 fine-tuning scenes)

(d) LS (250 fine-tuning scenes) (e) LS (500 fine-tuning scenes) (f) LS (1000 fine-tuning scenes)

Figure 10. These figures display the IoU scores of binary occupancy prediction module with the proposed method as a function of the
number of pre-training scenes.

would maximize performance, but this is impractical due to
storage constraints. Therefore, in our experiments, we com-
pared two types of pseudo-labeling approaches. The first is
a storage-efficient approach, where only label indices cor-
responding to the highest predicted probability are stored
(denoted as “Top1” in Tab. 5). The second is a balanced
approach, where the top two logits are stored (denoted as
“Top2” in Tab. 5).

As a baseline, we trained an LS-based model on 500
scenes with GT semantic occupancy labels. From this base-
line, we progressively increased the number of scenes with
pseudo-labels. As shown in Tab. 5, both IoU and mIoU
improve as the number of pseudo-labeled scenes increases.
Additionally, as expected, the Top2 strategy outperforms
the Top1 strategy, demonstrating the benefits of retaining

more predictive information. Notably, when 7,500 pseudo-
labeled scenes are used, the model’s performance becomes
competitive with that of a model trained on 2,000 scenes
with GT labels, highlighting the effectiveness of pseudo-
labeling in reducing reliance on manually annotated data.

E. Performance Comparison with Longer

Epochs

All experiments in Sec. 4.1 were conducted with 24 epochs.
We here present experimental results with an extended fine-
tuning duration of 64 epochs, during which the mIoU scores
fully reach the plateau. As illustrated in Figure 11, our strat-
egy outperforms the baseline by achieving higher plateau
mIoU scores.



Method Offboard IoU mIoU
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Sparse-LS 43.92 19.20 36.88 0.23 8.00 22.92 19.49 10.20 12.94 42.94
Sparse-LS X 73.89 33.17 62.44 6.67 10.11 33.38 37.62 23.08 19.60 72.44

Table 4. Performance comparison between offboard and onboard models on the OpenScene dataset. The onboard model was pretrained on
8000 scenes and fine-tuned on 500 scenes. The offboard model was trained on the same 500 scenes dataset.

Method # of Scenes w/ GT # of Scenes w/ Pseudo-labels Pseudo-labels IoU mIoU
LS 500 0 - 37.70 15.45
LS 2000 0 - 41.12 18.76
LS 500 1500 Top1 37.62 17.10
LS 500 1500 Top2 44.62 17.40
LS 500 3500 Top1 38.24 17.55
LS 500 3500 Top2 46.09 18.11
LS 500 7500 Top1 38.72 18.22

Table 5. Evaluation results of the auto-labeling pipelines using the proposed offboard model. Top1 denotes the auto-labeling approach in
which only label indices corresponding to the highest predicted probability are stored, whereas Top2 represents the approach where the top
two logits are stored.

Figure 11. mIoU scores at 64 epoch as a function of the number
of pre-training scenes. 250 scenes are used for the fine-tuning.

F. Qualitative Evaluation

Figures 12-16 present representative examples of the out-
puts generated by the proposed method, which are omitted
from Sec. 4.1.4 in the main text due to page limitations.



Sparse-LS
 0 scenes pretraining

Sparse-LS (S+B)
 2000 scenes pretraining

Sparse-LS (S+B)
 8000 scenes pretraining Ground Truth

Vehicle C. Zone Sign Bicycle PedestrianGeneric Obj. Barrier BackgroundTraffic Cone

Figure 12. Qualitative comparison across different numbers of pre-training scenes: 0, 2000, and 8000. The top row presents the outputs of
the binary occupancy modules, while the bottom row shows the results of semantic occupancy prediction.

Sparse-LS
 0 scenes pretraining

Sparse-LS (S+B)
 2000 scenes pretraining

Sparse-LS (S+B)
 8000 scenes pretraining Ground Truth

Vehicle C. Zone Sign Bicycle PedestrianGeneric Obj. Barrier BackgroundTraffic Cone

Figure 13. Refer to the caption of Figure 12 for a detailed description.
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 0 scenes pretraining

Sparse-LS (S+B)
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Figure 14. Refer to the caption of Figure 12 for a detailed description.



Sparse-LS
 0 scenes pretraining

Sparse-LS (S+B)
 2000 scenes pretraining

Sparse-LS (S+B)
 8000 scenes pretraining Ground Truth
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Figure 15. Refer to the caption of Figure 12 for a detailed description.

Sparse-LS
 0 scenes pretraining

Sparse-LS (S+B)
 2000 scenes pretraining

Sparse-LS (S+B)
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Vehicle C. Zone Sign Bicycle PedestrianGeneric Obj. Barrier BackgroundTraffic Cone

Figure 16. Refer to the caption of Figure 12 for a detailed description.
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