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Abstract

Computer vision datasets often exhibit biases in the form
of spurious correlations between certain attributes and tar-
get variables. While recent efforts aim to mitigate such
biases and foster bias-neutral representations, they fail in
complex real-world scenarios. In particular, existing meth-
ods excel in controlled experiments on benchmarks with
single-attribute injected biases, but struggle with complex
multi-attribute biases that naturally occur in established CV
datasets. In this paper, we introduce BAdd, a simple yet
effective method that allows for learning bias-neutral rep-
resentations invariant to bias-inducing attributes. This is
achieved by injecting features encoding these attributes into
the training process. BAdd is evaluated on seven bench-
marks and exhibits competitive performance, surpassing
state-of-the-art methods on both single- and multi-attribute
bias settings. Notably, it achieves +27.5% and +5.5% ab-
solute accuracy improvements on the challenging multi-
attribute benchmarks, FB-Biased-MNIST and CelebA, re-
spectively.

1. Introduction

Deep Learning (DL) models have demonstrated impressive

capabilities and groundbreaking performance across var-

ious Computer Vision (CV) tasks [11, 13, 38]. However,

a concerning issue has emerged alongside these advance-

ments: the potential for bias in Artificial Intelligence (AI)

systems, disproportionately impacting specific groups

[6, 12, 31]. Specifically, when AI systems base their deci-

sions, often indirectly, on attributes like age, gender, or race,

they become discriminatory. Considering the profound

impact AI decisions can have on individuals’ lives, such bi-

ases should be mitigated before deployment in high-stakes

applications [7, 10, 37, 38]. Moreover, even when such bi-

ases are not demographic-related but stem from “shortcuts”

that prioritize irrelevant features, addressing them is crucial

for building more robust and reliable CV systems [22, 28].

Filter Activations

Background focus

Data

Bias-Conflicting

Bias-Aligned

epochsm
ea

n 
ac

tiv
at

io
ns

 o
n 

ba
ck

gr
ou

nd

va
ni
lla

Bi
as
ed
-M
N
IS
T

BA
dd

Figure 1. During training on Biased-MNIST, where the color-digit

association is strong, a vanilla model struggles with bias, as re-

ducing reliance on the protected attribute (here ‘color’) results in

increased loss for samples that deviate from this spurious corre-

lation. In contrast, BAdd results in learning bias-neutral feature

representations of the digits, independent of color. This is evi-

denced by the activation maps on the samples where bias occurs.

Bias in CV often originates from the composition of

training datasets [12]. The most common way bias arises

in training sets is through a data selection process that as-

sociates specific groups of people or objects with certain

This ICCV Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7673



visual attributes. When such data is used to train DL mod-

els, the attribute associations lead the model to prioritize

irrelevant attributes in its decision making process [27, 45].

Motivated by this issue, several approaches have been pro-

posed to enable learning bias-neutral representations that

are robust to the so-called bias attributes [5, 16, 30], i.e.,

attributes that exhibit spurious correlations with the target

classes. Such methods often leverage labels associated with

protected attributes to guide model training towards learn-

ing bias-neutral representations [4, 5, 8, 9, 16, 30] through

techniques like adversarial training [17, 41] and regulariza-

tion [5, 16, 30, 39].

A fundamental limitation of existing approaches lies in

their loss-based nature. Typically, these methods intro-

duce additional loss terms to penalize the biased model’s

behavior, which retroactively corrects bias that is already

introduced in the model’s learning process. While meth-

ods adopting this strategy may appear sound in theory

and demonstrate state-of-the-art performance on simple

datasets, they struggle with more complex forms of bias,

especially when dealing with multiple biased attributes, and

demonstrate sub-optimal performance. To overcome these

challenges, there is a need for more proactive bias mitiga-

tion approaches that intervene earlier in the training process

to address the root cause of bias propagation in the model

itself. By disrupting the process through which bias enters

the model, we can build models that are more effective for

a wide range of complex biases present in CV datasets.

In this paper, we introduce BAdd, a simple yet effec-

tive and versatile in-processing bias mitigation method. The

proposed method relies on the principle that injecting bias-
capturing features into the penultimate layer’s output en-

ables learning representations invariant to these features

(see Fig. 1). Deriving bias-capturing features is straight-

forward in practice, since it can be formulated as the task of

predicting the values of biased attributes. BAdd intervenes

in the mechanism by which bias is introduced to DL models

during training via the minimization of the loss function. In

particular, a vanilla model optimizes its parameters by tak-

ing advantage of biases present in the data, as doing so re-

duces the overall loss. Such a model learns to prioritize fea-

tures associated with the biased attributes, reinforcing and

perpetuating the bias within its representations. To alleviate

this issue, BAdd suggests that the intentional inclusion of

bias-capturing features in the training process ensures that

the attributes introducing the bias do not exert undue influ-

ence on the loss function optimization, and thus the train-

able parameters of the model are not affected by them. In

essence, BAdd decouples the learning of biased features

from the optimization process and thus allows for learn-

ing bias-neutral representations. BAdd outperforms or is on

par with state-of-the-art bias mitigation methods on a wide

range of experiments involving four datasets with single at-

tribute biases (i.e., Biased-MNIST, Biased-UTKFace, Wa-

terbirds, and Corrupted-CIFAR10) and three datasets with

multi-attribute biases (i.e., FB-Biased-MNIST, UrbanCars,

and CelebA). Where BAdd shines is on datasets with multi-

attribute biases, where it outperforms the state of the art

by +27.5%, and +5.5% absolute accuracy improvements on

FB-Biased-MNIST, and CelebA, respectively.

In summary, the paper makes the following contribu-

tions: (i) we introduce BAdd, an effective methodology

for learning bias-neutral representations concerning one or

more protected attributes by incorporating bias-capturing

features into the model’s representations (ii) we provide

an extensive evaluation involving seven benchmarks,

demonstrating the superiority of BAdd on both single- and

multi-attribute bias scenarios. BAdd implementation is

available as part of the VB-Mitigator library [29].

2. Related Work
Bias-aware image classification benchmarks. Most

standard benchmarks for evaluating bias mitigation meth-

ods in CV involve artificially generated single-attribute bi-

ases. Biased-MNIST [4], a MNIST derivative dataset, asso-

ciates each digit with a specific colored background. Sim-

ilarly, Corrupted-CIFAR10 [15] introduces biased textures

across the classes of CIFAR10. The Waterbirds [28] dataset

is constructed by cropping birds from the CUB-200 [40]

dataset and transferring them onto backgrounds from the

Places dataset [48], introducing correlations between bird

species and certain backgrounds (i.e., habitat types). On the

other hand, datasets like Biased-UTKFace [16] and Biased-

CelebA [16] are carefully selected subsets of UTKFace [47]

and CelebA [24], respectively, designed to exhibit an asso-

ciation of 90% between specific attributes, such as gender
and race. Despite their value in research, all these bench-

marks share a crucial limitation: they are far from capturing

the complexities of real-world dataset biases, as they typ-

ically exhibit uniformly distributed single attribute biases.

To address this limitation, recent works introduced bench-

marks that involve multi-attribute biases, such as Biased-

MNIST variations [2, 33, 34] and UrbanCars [22]. The lat-

ter introduces a multi-attribute bias setting by incorporating

biases related to both background and co-occurring objects

and the task is to classify the car body type into urban or

country car.

In addition to the above benchmarks, in this paper, we

create a variation of Biased-MNIST, termed FB-Biased-

MNIST, which builds on the background color bias in

Biased-MNIST by injecting an additional foreground color

bias. Furthermore, we consider a benchmark that utilizes

the original, unmodified CelebA dataset but focuses on

evaluating performance against the most prominent bias-

inducing attributes in the dataset. This allows for evaluating

bias-aware methods on multiple biases in a more realistic
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setting, without artificially enforced biases.

Bias-aware approaches. Efforts on learning bias-neutral

representations using biased data encompass techniques

like ensemble learning [9, 42], contrastive learning [5, 16],

adversarial frameworks [1, 3, 17, 36, 41, 44], and regu-

larization approaches [8, 16, 30, 39]. For instance, the

Learning Not to Learn (LNL) approach [17] penalizes mod-

els if they predict protected attributes, while the Domain-

Independent (DI) approach [42] introduces the usage of

domain-specific classifiers to mitigate bias. Entangling and

Disentangling deep representations (EnD) [39] suggests a

regularization term that entangles or disentangles feature

vectors w.r.t. their target and protected attribute labels.

FairKL [5] and BiasContrastive-BiasBalance (BC-BB) [16]

employ contrastive learning for bias mitigation by utilizing

the pairwise similarities of samples in the feature space. Fi-

nally, there are several works that can be employed with-

out utilizing the protected attribute labels, such as Learned-

Mixin (LM) [9], Rubi [8], ReBias [4], Learning from Fail-

ure (LfF) [25], and FLAC [30]. The latter achieves state-of-

the-art performance by utilizing a bias-capturing classifier

and a sampling strategy that effectively focuses on the un-

derrepresented groups.

It is worth noting that methodologies for distribution-

ally robust optimization [21–23, 26, 28, 43] are relevant to

the field of bias mitigation, as they aim at mitigating bi-

ases arising from spurious correlations in the training data.

Similarly to the above bias mitigation methods, [28] and

[21] suggest regularization terms to mitigate such correla-

tions, while [23] and [43] introduced methods that try to

compensate the effect of spurious correlations by increas-

ing or decreasing the weights of certain training samples.

Based on the same idea, [26] focuses on reweighting the

features rather than the samples. Finally, the Last Layer

Ensemble (LLE) [22] employs multiple augmentations to

eliminate different biases (i.e., one type of augmentation

for each type of bias). However, LLE requires extensive

pre-processing (e.g., object segmentation), which makes it

challenging to apply or even infeasible in new CV datasets.

On the other hand, BAdd is a simple yet effective approach

that can be easily applied to any network architecture and

CV dataset.

3. Bias Mitigation
3.1. Problem Formulation
Consider a dataset D comprising training samples

(x(i), y(i)), where x(i) represents the input sample and y(i)

belongs to the set of target labels Y . Let h(·) denote a

model trained on D and h the model feature representa-

tion (e.g., output of penultimate model layer). Let also

T be the domain of tuples of protected attributes, e.g.,

t = (male, 25, black) ∈ T for protected attributes gender,

age and race. The objective is to train h such that the pro-

tected attributes are not used to predict the targets in Y . In

addition, we also assume that a bias-capturing model b(·),
with feature representation b, has been trained to predict the

value of the protected attribute(s) t ∈ T from x.

We define D as biased with respect to the protected at-

tributes in T if there is a high correlation of certain val-

ues in Y with a value or a combination of values of pro-

tected attributes in T . Within a batch B, samples exhibit-

ing the dataset bias are termed bias-aligned (BA), while

those that deviate from it are referred to as bias-conflicting
(BC). The set D is assumed to include at least some

bias-conflicting examples. Note that bias-aligned and bias-

conflicting samples correspond to the over-represented and

under-represented groups within D, respectively. Using

such a biased dataset for training often introduces model

bias, by leading h to encode information related to t. Our

objective is to mitigate these dependencies between repre-

sentations h and b, leading to a bias-neutral feature repre-

sentation.

3.2. The Vicious Circle of Bias
Before introducing the proposed methodology, we for-

mally describe how bias is typically introduced in a vanilla

model. When training a classification model h(·) on a bi-

ased dataset D, the model often prioritizes learning features

correlated with protected attributes rather than those that di-

rectly characterize the target class. This phenomenon arises

in cases of high correlation between protected attributes and

targets, provided that the protected attribute’s visual charac-

teristics are easier to capture than the visual characteristics

of the target [45]. Below, we delve into the details behind

a vanilla model’s inherent inclination towards this kind of

bias and explain how the proposed approach addresses this

limitation.

First, let us consider the Cross-Entropy loss on a batch

of samples B = BA ∪ BC :

L = − 1

N

∑
i∈B

K∑
k=1

y
(i)
k log ŷ

(i)
k = − 1

N

∑
i∈BA

K∑
k=1

y
(i)
k log ŷ

(i)
k

− 1

N

∑
i∈BC

K∑
k=1

y
(i)
k log ŷ

(i)
k = LBA + LBC .

(1)

where N is the number of samples within a batch, and K

is the number of target classes. The predictions ŷ
(j)
k are

computed via multinomial logistic regression, as follows:

ŷ
(j)
k = σk(z(x

(j);θh)), (2)

where j is the index of input sample x(j), θh the learn-

able parameters of model h(·) and σk the k-th class prob-
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ability after applying the softmax function on the logits

z(x(j);θh).
Given that ||BA||>> ||BC ||, where ||·|| denotes the car-

dinality of a set, we can assume that there exists a point in

the training process at which the model has learned to be ac-

curate on the bias-aligned samples BA misguidedly relying

on protected attributes’ features, so that LBA ≈ 0, while

at the same time LBC >> 0. Consequently, backpropa-

gating the gradients of L will update the parameters θh in

a way that steers the model towards accurately predicting

the bias-conflicting samples BC to further reduce L, which

stops reliance of h(·) on the protected attributes. The major

limitation of a vanilla model is directly connected to the loss

behavior when the model processes the next mini-batch. In

particular, the step the model makes towards correctly pre-

dicting the samples in BC , thus reducing LBC , adversely af-

fects the loss w.r.t. the bias-aligned samples, which is now

LBA >> 0, as h(·) relies less on the protected attributes and

at the same time it is impossible to learn to encode the tar-

get with only one batch of ||BC || bias-conflicting samples.

This leads to a loss spike for the bias-aligned samples that

in the next iteration will restore the model’s parameters θh
to their initial state (encoding the protected attributes’ fea-

tures) in order to again achieve a much lower L. Figure 2

illustrates this behavior through a snapshot of the losses and

the gradients related to the bias-aligned and bias-conflicting

samples during several training steps of the vanilla model

(refer to the supplementary material for the BAdd model

behavior). In this example, to emphasize the described phe-

nomenon, we primarily include bias-aligned samples, with

only 2 batches of bias-conflicting samples introduced every

200 training steps.

To better expose this behavior, let us consider the deriva-

tive of the loss of (1) w.r.t. a parameter θ0h for the i-th
sample:

∂L(i)

∂θ0h
= yκ

∂ log σκ(z(x
(i);θh))

∂θ0h

= yκ
1

σκ(z(x(i);θh))

∂σκ(z(x
(i);θh))

∂θ0h
.

(3)

where κ is the correct class, according to the ground truth

(i.e., yκ = 1). Setting A
(i)
0 = ∂σκ(z(x

(i);θh))
∂θ0

h
and σ

(i)
κ =

σκ(z(x
(i);θh)), the derivative for a batch becomes

∂L
∂θ0h

= − 1

N

( ∑
i:x(i)∈BA

1

σ
(i)
κ

A
(i)
0 +

∑
j:x(j)∈BC

1

σ
(j)
κ

A
(j)
0

)
.

(4)

After the model has learned to predict the targets based on

the protected attributes, σ
(i)
κ is large (close to 1) while A

(i)
0

is small, as h(·) already correctly predicts samples in BA.

In contrast, σ
(j)
κ is small while A

(j)
0 is large. The model

(a) Losses

(b) Gradients

Figure 2. Biased-MNIST bias-conflicting samples trigger spikes

on LA and gradients of LA. Blue bars indicate the steps where

bias-conflicting samples occur, with height representing y-axis

values.

update, therefore, strongly depends on the samples in BC .

After the update step, however, σ
(i)
κ becomes smaller, A

(i)
0

becomes larger and given that ||BA||>> ||BC ||, the deriva-

tive is now dominated by samples in BA, and the parame-

ters revert back to their previous values. In other words, any

progress the model makes towards reducing its bias is coun-

teracted by the loss function, which is lower when the model

focuses on the easier-to-learn, biased samples. This essen-

tially traps the model in a vicious circle where the model is

condemned to encode the protected attributes instead of the

targets.

3.3. Bias Mitigation through Bias Addition

BAdd proposes incorporating the features b that capture

the protected attributes of the dataset in the model’s fea-

ture representation h. Feature representation b encapsulates

all the desired protected attributes and can be considered as

b = b1 + b2 + · · · + bM where M = |T | is the num-

ber of protected attributes in the dataset. These features

can be obtained either by training a bias-capturing classi-

fier or, in case the protected attribute labels are known, by

projecting them into the dimension of h through one-hot

encoding. In the first case, a typical DL model is trained

to predict the attribute of interest, e.g., race, gender, hair

color, or background, which the main model should avoid
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“using” for its prediction. Note that training a classifier to

predict the protected attributes encourages the learning of

richer, more diverse latent features associated with them.

This approach helps capture subtle, underlying patterns in

the data that may otherwise be lost when relying solely on

labeled attributes. On the other hand, directly projecting

attribute labels through one-hot encoding is easier to imple-

ment and computationally less intensive. However, it may

not capture the complexity of visual features as effectively

as a dedicated bias-capturing classifier.

The sum of the representations, h + b, is then fed to

the final classification layer. Thus, during training, model

predictions are computed as ŷ
(j)
k = σk(W(h(x(j);θh) +

b(x(j)))+ρ), where W and ρ are the parameters of the last

linear layer of h(·). By incorporating the biased features b
in the training, we equip the model with the necessary infor-

mation to consistently account for the bias-aligned samples.

This means that the LBA values are consistently close to 0,

preventing the loss spikes, and thus enabling features h to

encode information about the target classes rather than the

protected attributes, without having a negative impact on

the loss of the bias-aligned samples. In terms of the training

process implied by (4), the addition of b entails invariably

large σ
(i)
κ and small A

(i)
0 , thus forcing model updates to de-

pend on the samples of BC consequently eliminating the ef-

fect of bias-aligned samples. Having learned a bias-neutral

representation h, a final fine-tuning step is required to ac-

count for the fact that b will not be added to input samples

at inference time. During this fine-tuning stage, only the fi-

nal classification layer (i.e., W and ρ) is updated using h
as input. After this step, model predictions are computed

using ŷ
(j)
k = σk(Wh(x(j);θh) + ρ).

While BAdd is found to be very effective in mitigating

bias in cases of highly biased datasets, we observe that it

does not adversely affect model performance in cases of

datasets where bias is much less prevalent (cf. experimen-

tal results in the supplementary material). This is an ex-

pected behavior because, in low- or no-bias scenarios, the

bias-capturing features, b, do not contain information that

the model can exploit to predict the target variables. As a

result, these features act as noise, which the model naturally

learns to ignore without affecting its overall performance.

4. Experimental Setup
4.1. Datasets
Biased-MNIST [4] is an MNIST derivative dataset [20]

that serves as a benchmark for bias mitigation methods. It

features digits with colored backgrounds, introducing bias

through the association of each digit with a specific color.

The degree of bias, represented by the probability q of sam-

ples belonging to class y and at the same time possessing

the attributes t, thus determines the strength of this spurious

correlation. We consider four variations of Biased-MNIST

with q values of 0.99, 0.995, 0.997, and 0.999, as commonly

used in previous works. Biased-CelebA [16] is a subset of

the CelebA facial image dataset, which is annotated with 40

binary attributes. Biased-CelebA considers gender as the

target, while HeavyMakeup and WearingLipstick
serve as the attributes introducing bias. Similarly, Biased-

UTKFace [16] is a subset of the facial image UTKFace

dataset that is annotated with gender, race, and age la-

bels. Gender is the target label, with race or age con-

sidered as protected attributes. In both Biased-CelebA and

Biased-UTKFace, the enforced correlation between the tar-

get and protected attributes is 0.9. The Corrupted-CIFAR10

dataset [15] consists of 10 classes with texture-related bi-

ases uniformly distributed in the training data using four

different values of q: 0.95, 0.98, 0.99, and 0.995. Finally,

the Waterbirds [28] dataset demonstrates a co-occurrence of

0.95 between waterbirds (or landbirds) and aquatic environ-

ments (or terrestrial environments) as background.

Table 1. Fairness of a vanilla gender classifier trained on default

CelebA w.r.t. potentially biased attributes. Accuracy for the under-

represented groups (e.g., male-WearingLipstick) is denoted

as “Bias-Conflicting” and the average accuracy across all the sub-

groups defined by the gender and the attribute is denoted as “Un-

biased”.

Attribute
Accuracy

Unbiased Bias-conflicting

Smiling 98.6 98.5

WearingNecklace 98.1 97.3

WearingEarrings 97.7 96.3

BlondHair 96.9 94.9

Eyeglasses 96.5 94.5

WearingLipstick 95.2 91.1

HeavyMakeup 93.0 86.7

Similar to the Biased-MNIST, we create FB-Biased-

MNIST, an extension that enhances the bias introduced

by the background color in Biased-MNIST, by injecting

foreground color bias into the dataset. Considering the

increased complexity of this dataset compared to Biased-

MNIST, we opt for lower q values, namely 0.9, 0.95, and

0.99. Furthermore, the UrbanCars dataset is a synthetic

Table 2. CelebA: co-occurrence between gender and

WearingLipstick and HeavyMakeup attributes.

Attribute
Co-occurrence

Females Males

WearingLipstick 80.6% 0.06%

HeavyMakeup 66.3% 0.03%
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dataset that exhibits a 0.95 co-occurrence between car body

type and the background and/or certain objects relevant to

urban or rural regions. We also assess the performance

of bias mitigation methods on the default CelebA dataset

[24] that is devoid of injected biases. To properly select at-

tributes with a measurable degree of bias that could lead

to problematic model behavior, we consider the perfor-

mance disparities of a standard gender classifier trained

on CelebA with respect to various potentially biased at-

tributes. Subsequently, we identify the top two attributes

(WearingLipstick, HeavyMakeup) with the most

significant impact on the model’s performance (Tab. 1), as a

result of the strong association between these attributes and

females (Tab. 2).

4.2. Evaluation Protocol
Different evaluation setups are used for each dataset, fol-

lowing the conventions of the literature to be comparable

with previous works. In particular, following [5, 16, 30], the

test sets used for Biased-MNIST and FB-Biased-MNIST

are composed using q = 0.1 that ensures each digit-color

group is equally represented. For Biased-UTKFace and

CelebA datasets, we utilize bias-conflicting and unbiased

accuracy as in [16, 30]. In particular, bias-conflicting accu-

racy refers to the accuracy of the under-represented samples

(e.g., males wearing lipstick), and unbiased accuracy refers

to the average accuracy across all the subgroups defined by

the target (i.e., gender) and the protected attributes (i.e.,

WearingLipstick and HeavyMakeup). The original

test set, as shared by the dataset creators, is used in the case

of Corrupted-CIFAR10. Regarding the Waterbirds dataset,

we employ the average accuracy between different groups

and the Worst-Group (WG) accuracy. Finally, for the Ur-

banCars dataset, we measure the In Distribution Accuracy

(I.D. Acc) which is the weighted average accuracy w.r.t.

the different groups, where the correlation ratios are the

weights. The I.D. Acc is used as a baseline to measure the

accuracy drop with respect to the background (BG Gap), co-

occurring objects (CoObj Gap), and both the background

and co-occurring objects (BG+CoObj Gap). Note that the

implementation details are provided in the supplementary

material.

5. Results

5.1. Single Attribute Bias
Table 3 presents the performance of BAdd against nine

competing methods. The proposed approach consistently

surpasses state-of-the-art, demonstrating accuracy improve-

ments ranging from 0.1% to 0.8% across different q val-

ues. Fig. 3 illustrates the mean activations in image regions

where bias occurs alongside the corresponding classifica-

tion errors for both the Vanilla and BAdd approaches. This
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(a) Mean activation values of the first convolutional layer on sample back-
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Figure 3. Vanilla vs BAdd: Mean biased filter activation values

and classification error.

makes clear that the proposed method effectively reduces

activations in areas where bias appears, leading to signif-

icant improvements in classification performance. This is

particularly pronounced in experiments with q = 0.999,

where the vanilla approach struggles with the impact of the

biased attribute. Furthermore, the efficacy of BAdd to learn

feature representations that are independent of the protected

attribute is illustrated in Tab. 4. Specifically, Tab. 4 shows

the mean pairwise cosine similarity between 10 variations

of each Biased-MNIST test sample, where each variation

has a different background color. BAdd leads to similar-

ity values consistently close to 1 for all correlation ratios,

which is not the case for the vanilla model that cannot main-

tain high similarities when the correlation ratio increases

(e.g., 0.416 similarity for q = 0.999).
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Table 3. Evaluation on Biased-MNIST for different bias levels.

Method
q

0.99 0.995 0.997 0.999

Vanilla 90.8±0.3 79.5±0.1 62.5±2.9 11.8±0.7

LM [9] 91.5±0.4 80.9±0.9 56.0±4.3 10.5±0.6

Rubi [8] 85.9±0.1 71.8±0.5 49.6±1.5 10.6±0.5

ReBias [4] 88.4±0.6 75.4±1.0 65.8±0.3 26.5±1.4

LfF [25] 95.1±0.1 90.3±1.4 63.7±20.3 15.3±2.9

LNL [17] 86.0±0.2 72.5±0.9 57.2±2.2 18.2±1.2

EnD [39] 94.8±0.3 94.0±0.6 82.7±0.3 59.5±2.3

BC-BB [16] 95.0±0.9 88.2±2.3 82.8±4.2 30.3±11.1

FairKL [5] 97.9±0.0 97.0±0.0 96.2±0.2 90.5±1.5

FLAC [30] 97.9±0.1 96.8±0.0 95.8±0.2 89.4±0.8

BAdd 98.1±0.2 97.3±0.2 96.3±0.2 91.7±0.6

Table 4. Mean pairwise cosine similarity between 10 variations of

each Biased-MNIST test sample, where each sample variation has

a different background color.

Method
q

0.99 0.995 0.997 0.999

Vanilla 0.889 0.854 0.811 0.416

BAdd 0.985 0.985 0.980 0.973

Table 5 illustrates the performance comparison of BAdd

against the competing methods on the Biased-UTKFace

dataset, where race and age are considered as pro-

tected attributes. Across both protected attributes, the pro-

posed approach outperforms competing methods on bias-

conflicting samples, achieving improvements of +1.1%

(race) and +1.9% (age) compared with the second best.

In terms of unbiased performance, BAdd exhibits only

marginal differences compared to the state-of-the-art meth-

ods, with increases of 0.2% (race) and decreases of 0.3%

(age).

Table 5. Evaluation of the proposed method on Biased-UTKFace

for two different protected attributes, namely race and age, with

gender as the target attribute.

Bias

Method Race Age

Unbiased Bias-conflicting Unbiased Bias-conflicting

Vanilla 87.4±0.3 79.1±0.3 72.3±0.3 46.5±0.2

LNL [17] 87.3±0.3 78.8±0.6 72.9±0.1 47.0±0.1

EnD [39] 88.4±0.3 81.6±0.3 73.2±0.3 47.9±0.6

BC-BB [16] 91.0±0.2 89.2±0.1 79.1±0.3 71.7±0.8

FairKL [5] 85.5±0.7 80.4±1.0 72.7±0.2 48.6±0.6

FLAC [30] 92.0±0.2 92.2±0.7 80.6±0.7 71.6±2.6

BAdd 92.2±0.2 93.3±0.2 80.3±0.8 73.6±1.0

In the final single-attribute evaluation scenario, biases

(a) Vanilla: bias-

conflicting

(b) BAdd: bias-

conflicting

(c) Vanilla: bias-

aligned

(d) BAdd: bias-

aligned

Figure 4. Vanilla vs BAdd: GradCam activations on bias-aligned

(waterbird with sea background) and bias-conflicting (land bird

with sea background) samples of Waterbirds dataset.

stemming from image background or textures are consid-

ered. As for the texture biases, the results obtained on

the Corrupted-CIFAR10 dataset for four different bias ra-

tios are summarized in Tab. 6. Given the complexity of

training a bias-capturing classifier in this scenario, BAdd

is implemented using a projection of one-hot vectors repre-

senting the texture labels to the feature space of the main

model. Notably, BAdd consistently outperforms state-of-

the-art across all Corrupted-CIFAR10 variations. Specifi-

cally, it achieves improvements of 6.5%, 3.1%, 3.4%, and

1.6% for correlation ratios of 0.95, 0.98, 0.99, and 0.995,

respectively.

Table 7, demonstrates the performance of BAdd on the

Waterbirds dataset compared to the state-of-the-art meth-

ods for distributionally robust optimization. Here, BAdd

reaches the state-of-the-art WG accuracy, i.e., 92.9%, and

demonstrates competitive average accuracy, i.e., 93.6%. To

further illustrate the effect of BAdd on the behavior of h(·),
we visualize GradCam [32] activations for a bias-aligned

and a bias-conflicting sample of Waterbirds in Fig. 4. As

can be easily noticed, the model trained with BAdd effec-

tively focuses on birds, remaining unaffected by the pres-

ence of biases (i.e., background). In contrast, the vanilla

model relies primarily on the background for its predictions.

Table 6. Evaluation on Corrupted-CIFAR10.

Method
q

0.95 0.98 0.99 0.995

Vanilla 39.4±0.6 30.1±0.7 25.8±0.3 23.1±1.2

EnD [39] 36.6±4.0 34.1±4.8 23.1±1.1 19.4±1.4

ReBias [4] 43.4±0.4 31.7±0.4 25.7±0.2 22.3±0.4

LfF [25] 50.3±1.6 39.9±0.3 33.1±0.8 28.6±1.3

FairKL [5] 50.7±0.9 41.5±0.4 36.5±0.4 33.3±0.4

FLAC [30] 53.0±0.7 46.0±0.2 39.3±0.4 34.1±0.5

BAdd 59.5±0.5 49.1±0.3 42.7±0.2 35.7±0.6
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Table 7. Evaluation on Waterbirds.

Method WG Acc. Avg. Acc.

JTT [23] 86.7±1.5 93.3±0.3

DISC [43] 88.7±0.4 93.8±0.7

GroupDro [28] 90.6±1.1 91.8±0.3

DFR [19] 92.9±0.2 94.2±0.4

BAdd 92.9±0.3 93.6±0.2

Table 8. Evaluation on FB-Biased-MNIST.

Method
q

0.9 0.95 0.99

Vanilla 82.5±0.8 57.9±1.7 25.5±0.6

EnD [39] 82.5±1.0 57.5±2.0 25.7±0.8

BC-BB [16] 80.9±2.4 66.0±2.4 40.9±3.4

FairKL [5] 87.6±0.8 61.6±2.6 42.0±1.1

FLAC [30] 84.4±0.8 63.1±1.7 32.4±1.1

BAdd 95.6±0.3 89.0±1.8 69.5±2.5

5.2. Multi-Attribute Bias

As previously discussed, evaluating bias mitigation per-

formance solely in single-attribute scenarios provides an

initial assessment but fails to capture the complexities of

real-world settings. In this section, we present the perfor-

mance of BAdd in two multi-attribute bias evaluation se-

tups, namely on FB-Biased-MNIST and CelebA datasets.

As depicted in Tab. 8, competing methods struggle to

effectively mitigate bias on the FB-Biased-MNIST dataset,

while BAdd consistently outperforms the second-best per-

forming methods by significant margins of 8%, 23%, and

27.5% for q of 0.9, 0.95, and 0.99, respectively. Notably,

even in an artificial dataset like FB-Biased-MNIST, exist-

ing approaches struggle to address multiple biases. Ta-

ble 9 demonstrates the performance of BAdd on Urban-

Cars, a dataset with artificially injected bias that is much

more challenging than FB-Biased-MNIST. As observed,

most methods struggle to address both the background

and the co-occurring object biases. The only exception is

LLE, which employs architectural modifications and spe-

cific bias-oriented augmentations to tackle each type of bias.

However, LLE requires extensive pre-processing, includ-

ing object segmentation, making its application to other

CV datasets very effort-intensive or even infeasible. Fi-

nally, as an example of a real-world dataset without arti-

ficially injected biases, we use the default CelebA dataset,

where gender is the target attribute and multiple biases are

present. As shown in Tab. 10, BAdd consistently improves

performance for the attributes introducing bias, achieving

absolute accuracy improvements of +3.5% and +5.5% for

the bias-conflicting samples and +1.1% and +2.1% average

accuracy across the subgroups compared to the second-best

performing methods.

Table 9. Evaluation on UrbanCars.

Method I.D. Acc BG Gap CoObj Gap BG+CoObj Gap

LfF [25] 97.2 -11.6 -18.4 -63.2

JTT [23] 95.9 -8.1 -13.3 -40.1

Debian [21] 98.0 -14.9 -10.5 -69.0

GroupDro [28] 91.6 -10.9 -3.6 -16.4

DFR [19] 89.7 -10.7 -6.9 -45.2

LLE [22] 96.7 -2.1 -2.7 -5.9

BAdd 91.0±0.7 -4.3±0.4 -1.6±1.0 -3.9±0.4

Table 10. Evaluation of the proposed method on CelebA for multi-

ple attributes introducing bias, namely WearingLipstick and

HeavyMakeup. Gender is the target attribute.

Biases

Method WearingLipstick HeavyMakeup

Unbiased Bias-conflicting Unbiased Bias-conflicting

Vanilla 95.2±0.3 91.1±0.6 93.0±0.8 86.7±1.6

EnD [39] 95.1±0.4 91.0±0.7 92.3±0.7 85.3±1.5

BC-BB [16] 91.6±2.6 85.8±5.1 89.7±2.3 81.8±4.5

FairKL [5] 82.7±0.4 74.7±0.3 84.4±0.9 77.9±1.2

FLAC [30] 95.4±0.3 91.6±0.5 93.2±0.3 87.2±0.7

BAdd 96.5±0.2 95.1±0.4 95.3±0.5 92.7±1.1

6. Conclusion

In this work, we propose a method for bias mitigation in

CV DL models, termed BAdd. The proposed method in-

jects bias-capturing features in the features of a model to

force the model parameter updates to rely only on unbiased

samples, thus leading to bias-neutral representations. The

main requirement for BAdd is to either have access to the la-

bels introducing bias within the dataset or to be able to train

attribute label predictors on another dataset where these la-

bels are available. Also, note that existing bias identifica-

tion methods [18, 46] can be employed to infer such labels.

However, the exploration of bias identification techniques

falls outside the scope of this work. Through a comprehen-

sive experimental evaluation, we show that the proposed ap-

proach surpasses the state-of-the-art in single-attribute and

more profoundly in multi-attribute bias scenarios.
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