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Abstract

Computer vision datasets often exhibit biases in the form
of spurious correlations between certain attributes and tar-
get variables. While recent efforts aim to mitigate such
biases and foster bias-neutral representations, they fail in
complex real-world scenarios. In particular, existing meth-
ods excel in controlled experiments on benchmarks with
single-attribute injected biases, but struggle with complex
multi-attribute biases that naturally occur in established CV
datasets. In this paper, we introduce BAdd, a simple yet
effective method that allows for learning bias-neutral rep-
resentations invariant to bias-inducing attributes. This is
achieved by injecting features encoding these attributes into
the training process. BAdd is evaluated on seven bench-
marks and exhibits competitive performance, surpassing
state-of-the-art methods on both single- and multi-attribute
bias settings. Notably, it achieves +27.5% and +5.5% ab-
solute accuracy improvements on the challenging multi-
attribute benchmarks, FB-Biased-MNIST and CelebA, re-
spectively.

1. Introduction

Deep Learning (DL) models have demonstrated impressive
capabilities and groundbreaking performance across var-
ious Computer Vision (CV) tasks [11, 13, 38]. However,
a concerning issue has emerged alongside these advance-
ments: the potential for bias in Artificial Intelligence (Al)
systems, disproportionately impacting specific groups
[6, 12, 31]. Specifically, when Al systems base their deci-
sions, often indirectly, on attributes like age, gender, or race,
they become discriminatory. Considering the profound
impact Al decisions can have on individuals’ lives, such bi-
ases should be mitigated before deployment in high-stakes
applications [7, 10, 37, 38]. Moreover, even when such bi-
ases are not demographic-related but stem from “shortcuts”
that prioritize irrelevant features, addressing them is crucial
for building more robust and reliable CV systems [22, 28].
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Figure 1. During training on Biased-MNIST, where the color-digit
association is strong, a vanilla model struggles with bias, as re-
ducing reliance on the protected attribute (here ‘color’) results in
increased loss for samples that deviate from this spurious corre-
lation. In contrast, BAdd results in learning bias-neutral feature
representations of the digits, independent of color. This is evi-
denced by the activation maps on the samples where bias occurs.

Bias in CV often originates from the composition of
training datasets [12]. The most common way bias arises
in training sets is through a data selection process that as-
sociates specific groups of people or objects with certain



visual attributes. When such data is used to train DL mod-
els, the attribute associations lead the model to prioritize
irrelevant attributes in its decision making process [27, 45].
Motivated by this issue, several approaches have been pro-
posed to enable learning bias-neutral representations that
are robust to the so-called bias attributes [5, 16, 30], i.e.,
attributes that exhibit spurious correlations with the target
classes. Such methods often leverage labels associated with
protected attributes to guide model training towards learn-
ing bias-neutral representations [4, 5, 8, 9, 16, 30] through
techniques like adversarial training [17, 41] and regulariza-
tion [5, 16, 30, 39].

A fundamental limitation of existing approaches lies in
their loss-based nature. Typically, these methods intro-
duce additional loss terms to penalize the biased model’s
behavior, which retroactively corrects bias that is already
introduced in the model’s learning process. While meth-
ods adopting this strategy may appear sound in theory
and demonstrate state-of-the-art performance on simple
datasets, they struggle with more complex forms of bias,
especially when dealing with multiple biased attributes, and
demonstrate sub-optimal performance. To overcome these
challenges, there is a need for more proactive bias mitiga-
tion approaches that intervene earlier in the training process
to address the root cause of bias propagation in the model
itself. By disrupting the process through which bias enters
the model, we can build models that are more effective for
a wide range of complex biases present in CV datasets.

In this paper, we introduce BAdd, a simple yet effec-
tive and versatile in-processing bias mitigation method. The
proposed method relies on the principle that injecting bias-
capturing features into the penultimate layer’s output en-
ables learning representations invariant to these features
(see Fig. 1). Deriving bias-capturing features is straight-
forward in practice, since it can be formulated as the task of
predicting the values of biased attributes. BAdd intervenes
in the mechanism by which bias is introduced to DL models
during training via the minimization of the loss function. In
particular, a vanilla model optimizes its parameters by tak-
ing advantage of biases present in the data, as doing so re-
duces the overall loss. Such a model learns to prioritize fea-
tures associated with the biased attributes, reinforcing and
perpetuating the bias within its representations. To alleviate
this issue, BAdd suggests that the intentional inclusion of
bias-capturing features in the training process ensures that
the attributes introducing the bias do not exert undue influ-
ence on the loss function optimization, and thus the train-
able parameters of the model are not affected by them. In
essence, BAdd decouples the learning of biased features
from the optimization process and thus allows for learn-
ing bias-neutral representations. BAdd outperforms or is on
par with state-of-the-art bias mitigation methods on a wide
range of experiments involving four datasets with single at-
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tribute biases (i.e., Biased-MNIST, Biased-UTKFace, Wa-
terbirds, and Corrupted-CIFAR10) and three datasets with
multi-attribute biases (i.e., FB-Biased-MNIST, UrbanCars,
and CelebA). Where BAdd shines is on datasets with multi-
attribute biases, where it outperforms the state of the art
by +27.5%, and +5.5% absolute accuracy improvements on
FB-Biased-MNIST, and CelebA, respectively.

In summary, the paper makes the following contribu-
tions: (i) we introduce BAdd, an effective methodology
for learning bias-neutral representations concerning one or
more protected attributes by incorporating bias-capturing
features into the model’s representations (ii) we provide
an extensive evaluation involving seven benchmarks,
demonstrating the superiority of BAdd on both single- and
multi-attribute bias scenarios. BAdd implementation is
available as part of the VB-Mitigator library [29].

2. Related Work

Bias-aware image classification benchmarks. Most
standard benchmarks for evaluating bias mitigation meth-
ods in CV involve artificially generated single-attribute bi-
ases. Biased-MNIST [4], a MNIST derivative dataset, asso-
ciates each digit with a specific colored background. Sim-
ilarly, Corrupted-CIFAR10 [15] introduces biased textures
across the classes of CIFAR10. The Waterbirds [28] dataset
is constructed by cropping birds from the CUB-200 [40]
dataset and transferring them onto backgrounds from the
Places dataset [48], introducing correlations between bird
species and certain backgrounds (i.e., habitat types). On the
other hand, datasets like Biased-UTKFace [16] and Biased-
CelebA [16] are carefully selected subsets of UTKFace [47]
and CelebA [24], respectively, designed to exhibit an asso-
ciation of 90% between specific attributes, such as gender
and race. Despite their value in research, all these bench-
marks share a crucial limitation: they are far from capturing
the complexities of real-world dataset biases, as they typ-
ically exhibit uniformly distributed single attribute biases.
To address this limitation, recent works introduced bench-
marks that involve multi-attribute biases, such as Biased-
MNIST variations [2, 33, 34] and UrbanCars [22]. The lat-
ter introduces a multi-attribute bias setting by incorporating
biases related to both background and co-occurring objects
and the task is to classify the car body type into urban or
country car.

In addition to the above benchmarks, in this paper, we
create a variation of Biased-MNIST, termed FB-Biased-
MNIST, which builds on the background color bias in
Biased-MNIST by injecting an additional foreground color
bias. Furthermore, we consider a benchmark that utilizes
the original, unmodified CelebA dataset but focuses on
evaluating performance against the most prominent bias-
inducing attributes in the dataset. This allows for evaluating
bias-aware methods on multiple biases in a more realistic



setting, without artificially enforced biases.

Bias-aware approaches. Efforts on learning bias-neutral
representations using biased data encompass techniques
like ensemble learning [9, 42], contrastive learning [5, 16],
adversarial frameworks [1, 3, 17, 36, 41, 44], and regu-
larization approaches [8, 16, 30, 39]. For instance, the
Learning Not to Learn (LNL) approach [17] penalizes mod-
els if they predict protected attributes, while the Domain-
Independent (DI) approach [42] introduces the usage of
domain-specific classifiers to mitigate bias. Entangling and
Disentangling deep representations (EnD) [39] suggests a
regularization term that entangles or disentangles feature
vectors w.r.t. their target and protected attribute labels.
FairKL [5] and BiasContrastive-BiasBalance (BC-BB) [16]
employ contrastive learning for bias mitigation by utilizing
the pairwise similarities of samples in the feature space. Fi-
nally, there are several works that can be employed with-
out utilizing the protected attribute labels, such as Learned-
Mixin (LM) [9], Rubi [8], ReBias [4], Learning from Fail-
ure (LfF) [25], and FLAC [30]. The latter achieves state-of-
the-art performance by utilizing a bias-capturing classifier
and a sampling strategy that effectively focuses on the un-
derrepresented groups.

It is worth noting that methodologies for distribution-
ally robust optimization [21-23, 26, 28, 43] are relevant to
the field of bias mitigation, as they aim at mitigating bi-
ases arising from spurious correlations in the training data.
Similarly to the above bias mitigation methods, [28] and
[21] suggest regularization terms to mitigate such correla-
tions, while [23] and [43] introduced methods that try to
compensate the effect of spurious correlations by increas-
ing or decreasing the weights of certain training samples.
Based on the same idea, [26] focuses on reweighting the
features rather than the samples. Finally, the Last Layer
Ensemble (LLE) [22] employs multiple augmentations to
eliminate different biases (i.e., one type of augmentation
for each type of bias). However, LLE requires extensive
pre-processing (e.g., object segmentation), which makes it
challenging to apply or even infeasible in new CV datasets.
On the other hand, BAdd is a simple yet effective approach
that can be easily applied to any network architecture and
CV dataset.

3. Bias Mitigation

3.1. Problem Formulation

Consider a dataset D comprising training samples
(x(),y(*)), where x(*) represents the input sample and y(*)
belongs to the set of target labels ). Let h(-) denote a
model trained on D and h the model feature representa-
tion (e.g., output of penultimate model layer). Let also
T be the domain of tuples of protected attributes, e.g.,
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t = (male, 25, black) € T for protected attributes gender,
age and race. The objective is to train i such that the pro-
tected attributes are not used to predict the targets in ). In
addition, we also assume that a bias-capturing model b(-),
with feature representation b, has been trained to predict the
value of the protected attribute(s) t € T from x.

We define D as biased with respect to the protected at-
tributes in 7 if there is a high correlation of certain val-
ues in ) with a value or a combination of values of pro-
tected attributes in 7. Within a batch B, samples exhibit-
ing the dataset bias are termed bias-aligned (I34), while
those that deviate from it are referred to as bias-conflicting
(Be). The set D is assumed to include at least some
bias-conflicting examples. Note that bias-aligned and bias-
conflicting samples correspond to the over-represented and
under-represented groups within D, respectively. Using
such a biased dataset for training often introduces model
bias, by leading h to encode information related to ¢. Our
objective is to mitigate these dependencies between repre-
sentations h and b, leading to a bias-neutral feature repre-
sentation.

3.2. The Vicious Circle of Bias

Before introducing the proposed methodology, we for-
mally describe how bias is typically introduced in a vanilla
model. When training a classification model h(-) on a bi-
ased dataset D, the model often prioritizes learning features
correlated with protected attributes rather than those that di-
rectly characterize the target class. This phenomenon arises
in cases of high correlation between protected attributes and
targets, provided that the protected attribute’s visual charac-
teristics are easier to capture than the visual characteristics
of the target [45]. Below, we delve into the details behind
a vanilla model’s inherent inclination towards this kind of
bias and explain how the proposed approach addresses this
limitation.

First, let us consider the Cross-Entropy loss on a batch
of samples B = B4 U Be:
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where NV is the number of samples within a batch, and K

is the number of target classes. The predictions y(J )
computed via multinomial logistic regression, as follows

9 = o1 (2(x); 61)), )

where j is the index of input sample x(), @y, the learn-
able parameters of model h(-) and oy, the k-th class prob-



ability after applying the softmax function on the logits
z(x); 0y).

Given that ||B.4||>> ||B¢||, where ||-|| denotes the car-
dinality of a set, we can assume that there exists a point in
the training process at which the model has learned to be ac-
curate on the bias-aligned samples B 4 misguidedly relying
on protected attributes’ features, so that Lz, ~ 0, while
at the same time £, >> 0. Consequently, backpropa-
gating the gradients of £ will update the parameters @y, in
a way that steers the model towards accurately predicting
the bias-conflicting samples B¢ to further reduce £, which
stops reliance of h(-) on the protected attributes. The major
limitation of a vanilla model is directly connected to the loss
behavior when the model processes the next mini-batch. In
particular, the step the model makes towards correctly pre-
dicting the samples in Be, thus reducing Lz, , adversely af-
fects the loss w.r.t. the bias-aligned samples, which is now
Lp, >> 0,as h(-) relies less on the protected attributes and
at the same time it is impossible to learn to encode the tar-
get with only one batch of ||B¢|| bias-conflicting samples.
This leads to a loss spike for the bias-aligned samples that
in the next iteration will restore the model’s parameters 0},
to their initial state (encoding the protected attributes’ fea-
tures) in order to again achieve a much lower L. Figure 2
illustrates this behavior through a snapshot of the losses and
the gradients related to the bias-aligned and bias-conflicting
samples during several training steps of the vanilla model
(refer to the supplementary material for the BAdd model
behavior). In this example, to emphasize the described phe-
nomenon, we primarily include bias-aligned samples, with
only 2 batches of bias-conflicting samples introduced every
200 training steps.

To better expose this behavior, let us consider the deriva-
tive of the loss of (1) w.r.t. a parameter 92 for the i-th
sample:
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where & is the correct class, according to the ground truth
(ie. yn = 1). Setting AL = 97s(2(<:0n) (i)
T i 0 00"

and o,
0.(2(x7; 8y,)), the derivative for a batch becomes
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“)
After the model has learned to predict the targets based on
the protected attributes, 0,9) is large (close to 1) while AE)Z)
is small, as h(-) already correctly predicts samples in 5 4.
(4)

In contrast, o’ is small while Aéj ) is large. The model
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Figure 2. Biased-MNIST bias-conflicting samples trigger spikes
on L 4 and gradients of £ 4. Blue bars indicate the steps where
bias-conflicting samples occur, with height representing y-axis
values.

update, therefore, strongly depends on the samples in Be.
After the update step, however, a,@ becomes smaller, Aéi)
becomes larger and given that ||B 4]|>> ||Bc¢||, the deriva-
tive is now dominated by samples in B 4, and the parame-
ters revert back to their previous values. In other words, any
progress the model makes towards reducing its bias is coun-
teracted by the loss function, which is lower when the model
focuses on the easier-to-learn, biased samples. This essen-
tially traps the model in a vicious circle where the model is
condemned to encode the protected attributes instead of the
targets.

3.3. Bias Mitigation through Bias Addition

BAdd proposes incorporating the features b that capture
the protected attributes of the dataset in the model’s fea-
ture representation h. Feature representation b encapsulates
all the desired protected attributes and can be considered as
b = by + by + -+ + by, where M = |T| is the num-
ber of protected attributes in the dataset. These features
can be obtained either by training a bias-capturing classi-
fier or, in case the protected attribute labels are known, by
projecting them into the dimension of h through one-hot
encoding. In the first case, a typical DL model is trained
to predict the attribute of interest, e.g., race, gender, hair
color, or background, which the main model should avoid



“using” for its prediction. Note that training a classifier to
predict the protected attributes encourages the learning of
richer, more diverse latent features associated with them.
This approach helps capture subtle, underlying patterns in
the data that may otherwise be lost when relying solely on
labeled attributes. On the other hand, directly projecting
attribute labels through one-hot encoding is easier to imple-
ment and computationally less intensive. However, it may
not capture the complexity of visual features as effectively
as a dedicated bias-capturing classifier.

The sum of the representations, h + b, is then fed to
the final classification layer. Thus, during training, model

predictions are computed as §) = o(W(h(x(7); 8),) +
b(x)))+ p), where W and p are the parameters of the last
linear layer of h(-). By incorporating the biased features b
in the training, we equip the model with the necessary infor-
mation to consistently account for the bias-aligned samples.
This means that the £z, values are consistently close to 0,
preventing the loss spikes, and thus enabling features h to
encode information about the target classes rather than the
protected attributes, without having a negative impact on
the loss of the bias-aligned samples. In terms of the training
process implied by (4), the addition of b entails invariably
large a,gf) and small Aéi), thus forcing model updates to de-
pend on the samples of B¢ consequently eliminating the ef-
fect of bias-aligned samples. Having learned a bias-neutral
representation h, a final fine-tuning step is required to ac-
count for the fact that b will not be added to input samples
at inference time. During this fine-tuning stage, only the fi-
nal classification layer (i.e., W and p) is updated using h
as input. After this step, model predictions are computed
using /) = o (Wh(x9;05,) + p).

While BAdd is found to be very effective in mitigating
bias in cases of highly biased datasets, we observe that it
does not adversely affect model performance in cases of
datasets where bias is much less prevalent (cf. experimen-
tal results in the supplementary material). This is an ex-
pected behavior because, in low- or no-bias scenarios, the
bias-capturing features, b, do not contain information that
the model can exploit to predict the target variables. As a
result, these features act as noise, which the model naturally
learns to ignore without affecting its overall performance.

4. Experimental Setup

4.1. Datasets

Biased-MNIST [4] is an MNIST derivative dataset [20]
that serves as a benchmark for bias mitigation methods. It
features digits with colored backgrounds, introducing bias
through the association of each digit with a specific color.
The degree of bias, represented by the probability ¢ of sam-
ples belonging to class y and at the same time possessing
the attributes ¢, thus determines the strength of this spurious
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correlation. We consider four variations of Biased-MNIST
with ¢ values of 0.99, 0.995, 0.997, and 0.999, as commonly
used in previous works. Biased-CelebA [16] is a subset of
the CelebA facial image dataset, which is annotated with 40
binary attributes. Biased-CelebA considers gender as the
target, while HeavyMakeup and WearingLipstick
serve as the attributes introducing bias. Similarly, Biased-
UTKFace [16] is a subset of the facial image UTKFace
dataset that is annotated with gender, race, and age la-
bels. Gender is the target label, with race or age con-
sidered as protected attributes. In both Biased-CelebA and
Biased-UTKFace, the enforced correlation between the tar-
get and protected attributes is 0.9. The Corrupted-CIFAR10
dataset [15] consists of 10 classes with texture-related bi-
ases uniformly distributed in the training data using four
different values of ¢: 0.95, 0.98, 0.99, and 0.995. Finally,
the Waterbirds [28] dataset demonstrates a co-occurrence of
0.95 between waterbirds (or landbirds) and aquatic environ-
ments (or terrestrial environments) as background.

Table 1. Fairness of a vanilla gender classifier trained on default
CelebA w.r.t. potentially biased attributes. Accuracy for the under-
represented groups (e.g., male-WearingLipstick)is denoted
as “Bias-Conflicting” and the average accuracy across all the sub-
groups defined by the gender and the attribute is denoted as “Un-
biased”.

. Accuracy
Auribute Unbiased Bias-conflicting
Smiling 98.6 98.5
WearingNecklace 98.1 97.3
WearingEarrings 97.7 96.3
BlondHair 96.9 94.9
Eyeglasses 96.5 94.5
WearingLipstick 95.2 91.1
HeavyMakeup 93.0 86.7

Similar to the Biased-MNIST, we create FB-Biased-
MNIST, an extension that enhances the bias introduced
by the background color in Biased-MNIST, by injecting
foreground color bias into the dataset. Considering the
increased complexity of this dataset compared to Biased-
MNIST, we opt for lower ¢ values, namely 0.9, 0.95, and
0.99. Furthermore, the UrbanCars dataset is a synthetic

Table 2. CelebA: co-occurrence between gender and
WearingLipstick and HeavyMakeup attributes.

Co-occurrence

Attribute

Females Males
WearingLipstick  80.6%  0.06%
HeavyMakeup 66.3%  0.03%




dataset that exhibits a 0.95 co-occurrence between car body
type and the background and/or certain objects relevant to
urban or rural regions. We also assess the performance
of bias mitigation methods on the default CelebA dataset
[24] that is devoid of injected biases. To properly select at-
tributes with a measurable degree of bias that could lead
to problematic model behavior, we consider the perfor-
mance disparities of a standard gender classifier trained
on CelebA with respect to various potentially biased at-
tributes. Subsequently, we identify the top two attributes
(WearingLipstick, HeavyMakeup) with the most
significant impact on the model’s performance (Tab. 1), as a
result of the strong association between these attributes and
females (Tab. 2).

4.2. Evaluation Protocol

Different evaluation setups are used for each dataset, fol-
lowing the conventions of the literature to be comparable
with previous works. In particular, following [5, 16, 30], the
test sets used for Biased-MNIST and FB-Biased-MNIST
are composed using ¢ = 0.1 that ensures each digit-color
group is equally represented. For Biased-UTKFace and
CelebA datasets, we utilize bias-conflicting and unbiased
accuracy as in [16, 30]. In particular, bias-conflicting accu-
racy refers to the accuracy of the under-represented samples
(e.g., males wearing lipstick), and unbiased accuracy refers
to the average accuracy across all the subgroups defined by
the target (i.e., gender) and the protected attributes (i.e.,
WearingLipstick and HeavyMakeup). The original
test set, as shared by the dataset creators, is used in the case
of Corrupted-CIFAR10. Regarding the Waterbirds dataset,
we employ the average accuracy between different groups
and the Worst-Group (WG) accuracy. Finally, for the Ur-
banCars dataset, we measure the In Distribution Accuracy
(I.D. Acc) which is the weighted average accuracy w.r.t.
the different groups, where the correlation ratios are the
weights. The I.D. Acc is used as a baseline to measure the
accuracy drop with respect to the background (BG Gap), co-
occurring objects (CoObj Gap), and both the background
and co-occurring objects (BG+CoObj Gap). Note that the
implementation details are provided in the supplementary
material.

5. Results
5.1. Single Attribute Bias

Table 3 presents the performance of BAdd against nine
competing methods. The proposed approach consistently
surpasses state-of-the-art, demonstrating accuracy improve-
ments ranging from 0.1% to 0.8% across different ¢ val-
ues. Fig. 3 illustrates the mean activations in image regions
where bias occurs alongside the corresponding classifica-
tion errors for both the Vanilla and BAdd approaches. This
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Figure 3. Vanilla vs BAdd: Mean biased filter activation values
and classification error.

makes clear that the proposed method effectively reduces
activations in areas where bias appears, leading to signif-
icant improvements in classification performance. This is
particularly pronounced in experiments with ¢ = 0.999,
where the vanilla approach struggles with the impact of the
biased attribute. Furthermore, the efficacy of BAdd to learn
feature representations that are independent of the protected
attribute is illustrated in Tab. 4. Specifically, Tab. 4 shows
the mean pairwise cosine similarity between 10 variations
of each Biased-MNIST test sample, where each variation
has a different background color. BAdd leads to similar-
ity values consistently close to 1 for all correlation ratios,
which is not the case for the vanilla model that cannot main-
tain high similarities when the correlation ratio increases
(e.g., 0.416 similarity for ¢ = 0.999).



Table 3. Evaluation on Biased-MNIST for different bias levels.

Method ¢
0.99 0.995 0.997 0.999

Vanilla 90.8+03 79.5+0.1  62.5429 11.8+07
LM [9] 91.5+04 80.9+09 56.0+43 10.5+0.6
Rubi [8] 859401 71.8+05 49.6+15 10.6+05
ReBias [4] 88.4+06 75.4+10 65.8+403 26.5+14
LfF [25] 95.1+01  90.3+14 63.7+203 15.3+29
LNL [17] 86.0+02 72.5+09 57.2+22 18.2+12
EnD [39] 94.8403 94.0+06 82.7+03  59.5+23
BC-BB [16] 95.0+09 88.2+23 82.8442 30.3+11.1
FairKL [5] 97.9+00 97.0+00 96.2+02  90.5+15
FLAC [30] 97.9+01  96.8+00 95.8+02  89.4+038
BAdd 98.1+02 97.3+02 96.3+02 91.7+06

Table 4. Mean pairwise cosine similarity between 10 variations of
each Biased-MNIST test sample, where each sample variation has
a different background color.

q
Method —555—G5995~ 0997 0.099
Vanilla  0.889 0854 0811 0416
BAdd 0985 0985 0980 0973

Table 5 illustrates the performance comparison of BAdd
against the competing methods on the Biased-UTKFace
dataset, where race and age are considered as pro-
tected attributes. Across both protected attributes, the pro-
posed approach outperforms competing methods on bias-
conflicting samples, achieving improvements of +1.1%
(race) and +1.9% (age) compared with the second best.
In terms of unbiased performance, BAdd exhibits only
marginal differences compared to the state-of-the-art meth-
ods, with increases of 0.2% (race) and decreases of 0.3%

(age).

Table 5. Evaluation of the proposed method on Biased-UTKFace
for two different protected attributes, namely race and age, with
gender as the target attribute.

Bias
Method Race Age
Unbiased Bias-conflicting Unbiased Bias-conflicting

Vanilla 87.4+03 79.1+03 72.3403 46.5+02
LNL [17] 87.3+03 78.8+0.6 72.9+0.1 47.0+0.1
EnD [39] 88.4+03 81.6+03 73.2+03 47.9+06
BC-BB [16]  91.0+02 89.2+0.1 79.1+03 T1.7+038
FairKL [5] 85.5+0.7 80.4+1.0 72.7+0.2 48.6+0.6
FLAC [30] 92.0+0.2 92.2+07 80.6+0.7 71.6+26
BAdd 92.2+02 93.3+02 80.3+038 73.6+1.0

In the final single-attribute evaluation scenario, biases
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(a) Vanilla: bias- (b) BAdd: bias- (c¢) Vanilla: bias- (d) BAdd: bias-
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Figure 4. Vanilla vs BAdd: GradCam activations on bias-aligned
(waterbird with sea background) and bias-conflicting (land bird
with sea background) samples of Waterbirds dataset.

stemming from image background or textures are consid-
ered. As for the texture biases, the results obtained on
the Corrupted-CIFAR10 dataset for four different bias ra-
tios are summarized in Tab. 6. Given the complexity of
training a bias-capturing classifier in this scenario, BAdd
is implemented using a projection of one-hot vectors repre-
senting the texture labels to the feature space of the main
model. Notably, BAdd consistently outperforms state-of-
the-art across all Corrupted-CIFAR10 variations. Specifi-
cally, it achieves improvements of 6.5%, 3.1%, 3.4%, and
1.6% for correlation ratios of 0.95, 0.98, 0.99, and 0.995,
respectively.

Table 7, demonstrates the performance of BAdd on the
Waterbirds dataset compared to the state-of-the-art meth-
ods for distributionally robust optimization. Here, BAdd
reaches the state-of-the-art WG accuracy, i.e., 92.9%, and
demonstrates competitive average accuracy, i.e., 93.6%. To
further illustrate the effect of BAdd on the behavior of A(+),
we visualize GradCam [32] activations for a bias-aligned
and a bias-conflicting sample of Waterbirds in Fig. 4. As
can be easily noticed, the model trained with BAdd effec-
tively focuses on birds, remaining unaffected by the pres-
ence of biases (i.e., background). In contrast, the vanilla
model relies primarily on the background for its predictions.

Table 6. Evaluation on Corrupted-CIFAR10.

Method d
0.95 0.98 0.99 0.995

Vanilla 394+06 30.1+07 25.8403 23.1+12
EnD [39] 36.6+40 34.1+48 23.1+11  19.4+14
ReBias [4] 43.4+04 31.7+04 25.7+02 22.3+04
LfF [25] 50.3+16  39.9+03 33.1+08 28.6+13
FairKL [5] 50.7+09 41.5+04 36.5+04 33.3+04
FLAC [30] 53.0+07 46.0+02 39.3+04 34.1+05
BAdd 59.5+05 49.1+03 42.7+02 35.7+06




Table 7. Evaluation on Waterbirds.

Method WG Acc.  Avg. Acc.
JTT [23] 86.7+15 93.3+03
DISC [43] 88.7+04 93.8+0.7
GroupDro [28]  90.6+1.1 91.8+03
DFR [19] 92.9+0.2 94.2+0.4
BAdd 92.9+0.3 93.6+0.2

Table 8. Evaluation on FB-Biased-MNIST.

Method d
0.9 0.95 0.99

Vanilla 82.5+08 57.9+17 25.5+06
EnD [39] 82.5+10 57.5+20 25.7+08
BC-BB [16] 80.9+24 66.0424 40.9+34
FairKL [5] 87.6+08 61.6+26 42.0+1.1
FLAC [30] 844408 63.1+17 32.4+1.1
BAdd 95.6+03 89.0+18 69.5+25

5.2. Multi-Attribute Bias

As previously discussed, evaluating bias mitigation per-
formance solely in single-attribute scenarios provides an
initial assessment but fails to capture the complexities of
real-world settings. In this section, we present the perfor-
mance of BAdd in two multi-attribute bias evaluation se-
tups, namely on FB-Biased-MNIST and CelebA datasets.

As depicted in Tab. 8, competing methods struggle to
effectively mitigate bias on the FB-Biased-MNIST dataset,
while BAdd consistently outperforms the second-best per-
forming methods by significant margins of 8%, 23%, and
27.5% for q of 0.9, 0.95, and 0.99, respectively. Notably,
even in an artificial dataset like FB-Biased-MNIST, exist-
ing approaches struggle to address multiple biases. Ta-
ble 9 demonstrates the performance of BAdd on Urban-
Cars, a dataset with artificially injected bias that is much
more challenging than FB-Biased-MNIST. As observed,
most methods struggle to address both the background
and the co-occurring object biases. The only exception is
LLE, which employs architectural modifications and spe-
cific bias-oriented augmentations to tackle each type of bias.
However, LLE requires extensive pre-processing, includ-
ing object segmentation, making its application to other
CV datasets very effort-intensive or even infeasible. Fi-
nally, as an example of a real-world dataset without arti-
ficially injected biases, we use the default CelebA dataset,
where gender is the target attribute and multiple biases are
present. As shown in Tab. 10, BAdd consistently improves
performance for the attributes introducing bias, achieving
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absolute accuracy improvements of +3.5% and +5.5% for
the bias-conflicting samples and +1.1% and +2.1% average
accuracy across the subgroups compared to the second-best
performing methods.

Table 9. Evaluation on UrbanCars.

Method ID. Acc BGGap CoObjGap BG+CoObjGap
LfF [25] 97.2 -11.6 -18.4 -63.2

JTT [23] 95.9 -8.1 -13.3 -40.1
Debian [21] 98.0 -14.9 -10.5 -69.0
GroupDro [28] 91.6 -10.9 -3.6 -16.4
DFR [19] 89.7 -10.7 -6.9 -45.2

LLE [22] 96.7 -2.1 2.7 -5.9
BAdd 91.0+07  -4.3+04 -1.6+1.0 -3.9+04

Table 10. Evaluation of the proposed method on CelebA for multi-
ple attributes introducing bias, namely WearingLipstick and
HeavyMakeup. Gender is the target attribute.

Biases
Method WearingLipstick HeavyMakeup
Unbiased Bias-conflicting Unbiased Bias-conflicting

Vanilla 95.2+03 91.1+06 93.0+0.8 86.7+1.6
EnD [39] 95.1+04 91.0+0.7 92.3+07 85.3+15
BC-BB[16] 91.6426 85.8+5.1 89.7+23 81.8+45
FairKL [5] 82.7+04 74.7+03 84.4+09 77.9+12
FLAC [30] 95.4403 91.6+0.5 93.2+03 87.2+07
BAdd 96.5+0.2 95.1+04 95.3+05 92.7+11

6. Conclusion

In this work, we propose a method for bias mitigation in
CV DL models, termed BAdd. The proposed method in-
jects bias-capturing features in the features of a model to
force the model parameter updates to rely only on unbiased
samples, thus leading to bias-neutral representations. The
main requirement for BAdd is to either have access to the la-
bels introducing bias within the dataset or to be able to train
attribute label predictors on another dataset where these la-
bels are available. Also, note that existing bias identifica-
tion methods [18, 46] can be employed to infer such labels.
However, the exploration of bias identification techniques
falls outside the scope of this work. Through a comprehen-
sive experimental evaluation, we show that the proposed ap-
proach surpasses the state-of-the-art in single-attribute and
more profoundly in multi-attribute bias scenarios.
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