BAdd: Bias Mitigation through Bias Addition

Supplementary Material

1. Model Architecture

In experiments involving the MNIST-based datasets,
namely Biased-MNIST and FB-Biased-MNIST, we utilize
a simple Convolutional Neural Network (CNN) architec-
ture outlined in [4], which comprises four convolutional
layers with 7x7 kernels and a classification head. For
the experiments involving the Biased-UTKFace, Corrupted-
CIFARI10, and CelebA datasets, we adopt the ResNet-18 ar-
chitecture [14]. For Waterbirds and UrbanCars datasets, we
use ResNet-50 networks.

2. Implementation Details

We employ the Adam optimizer with a 0.001 initial learn-
ing rate, which is divided by 10 every 1/3 of the training
epochs. Batch size is fixed at 128 and weight decay is
set to 104, Following previous works [16, 22, 28], we
train the models on Biased-MNIST and FB-Biased-MNIST
datasets for 80 epochs. For Biased-UTKFace and CelebA,
training duration is set to 20 and 40 epochs, respectively.
As for the Corrupted-CIFAR10 dataset, models are trained
for 100 epochs using a cosine annealing scheduler. For
the Waterbirds and UrbanCars datasets, we do not use a
learning rate scheduler, and the models are trained for 300
and 100 epochs, respectively. Following the initial training
phase, the classification head of all models is fine-tuned for
an additional 20 epochs. Note that this fine-tuning stage
yields only minor performance gains (i.e., less than 1% im-
provement in accuracy) and can therefore be considered op-
tional. Regarding the bias-capturing models, for Biased-
MNIST, FB-Biased-MNIST, Waterbirds, UrbanCars, and
CelebA datasets, they are trained on the same dataset as
the main model using the attributes introducing bias as tar-
get attributes. For Biased-UTKFace we employ the pre-
trained bias-capturing classifiers provided by [30], which is
trained on the FairFace [35] dataset. Finally, for Corrupted-
CIFAR10 we just project the one-hot vectors representing
the texture labels (i.e., the attribute introducing the bias) to
the feature space of the main model without using a train-
able bias-capturing model. All experiments were conducted
on a single NVIDIA RTX-3090 Ti GPU and repeated for 5
different random seeds.

3. Ablation Study

In this section, we explore the ways of integrating bias-
capturing features into the training process. Tab. 11
presents a comparison of BAdd’s performance when the

bias-capturing features are added to the main features ver-
sus when they are concatenated with them. As one may

observe, the concatenation approach is much less effective
than the addition. This is anticipated, as relying on b, with
non-zero corresponding weights, would perform poorly on
balanced settings (random background color), while not re-
lying on it, with ~ 0 corresponding weights, would be
equivalent to the sub-optimal vanilla training. Furthermore,
Tab. 12 demonstrates how the selection of layer to incor-
porate the bias-capturing features affects the performance
of BAdd. The penultimate layer yields the most favorable
performance, as the shallower the selected layer, the fewer
layers remain independent of the protected attributes.

Table 11. Addition vs Concatenation: Biased-MNIST perfor-
mance comparison between different approaches of integrating
bias-capturing features.

4q
Method 099 0995 0997 0999

Concatenation 91.5 81.7 70.3 36.5
Addition 981 973 96.3 91.7

Table 12. BAdd performance on Biased-MNIST with ¢ = 0.99
when considering different layers for incorporating the bias cap-
turing features.

Layer
Method —o—— 9~ 31 4m
BAdd 746 858 977 98.1

Also, we explore how BAdd performs when used on
datasets with a very limited degree of bias. To assess
this, we utilize the Biased-MNIST dataset with low ¢ val-
ues - specifically, 0.1, 0.3, 0.5, and 0.7. As shown in
Tab. 13, BAdd maintains model performance consistently
(i.e., 99.3%) across all the levels of data bias.

Table 13. BAdd accuracy on fair (i.e., ¢ = 0.1) or slightly biased
data (i.e., ¢ = {0.3,0.5,0.7}).

q
Method —G4——G=——(45 07

Vanilla 0993 0.992 0.991 0.989
BAdd 0.993 0993 0.993 0.993

Furthermore, in Section 5, we show that BAdd can be
combined with either a trained bias capturing model or a

Table 14. Bias capturing model vs projection: Performance on Biased-MNIST.

q
Method 0995 0997 0999
Vanilla 90.84+03 79.5+01 62.5+29 11.8+07
BAdd w/ projection 97.4+02 94.8406 90.1+17 65.4+44
BAdd w/ bias capturing model 98.1+02 97.3+02 96.3+02 91.7+0.6

Table 15. Bias capturing model vs projection: Performance on Biased-UTKFace.

Bias
Method Race Age
Unbiased Bias-conflicting Unbiased Bias-conflicting
Vanilla 87.4+03 79.1+03 72.3+03 46.5+0.2
BAdd w/ projection 89.7+256 88.7+ 45 78.3+1.1 61.8+3.1
BAdd w/ bias capturing model ~ 92.2+0.2 93.3+0.2 80.3+0.8 73.6+1.0

projection of one-hot vectors representing the biased at-
tribute labels to the space of h for deriving b. When em-
ploying a bias-capturing classifier, a deep learning model is
specifically trained to predict the protected attribute, such
as race, gender, hair color, or background. This process
encourages the model to learn richer and more diverse la-
tent features associated with these attributes. By focusing
on predicting these protected attributes, the model captures
subtle, underlying patterns in the data that may be over-
looked if solely relying on labeled attributes. Such com-
prehensive representations can improve the model’s under-
standing of complex visual features, ultimately enhancing
the efficacy of bias mitigation. Conversely, the approach of
projecting one-hot encoded labels is computationally less
intensive and easier to implement as it does not require any
additional training steps. However, this method may not
effectively capture the intricate visual features that a ded-
icated bias-capturing classifier can uncover. Tab. 14 and
Tab. 15 provide a comparison of these two BAdd variants
on Biased-MNIST and Biased-UTKFace datasets, respec-
tively. The flexibility in choosing between these approaches
allows practitioners to balance implementation simplicity
with the richness of feature representation. Utilizing a
trained bias-capturing model may lead to more effective
bias mitigation, especially in datasets where the complex-
ity of visual features plays a critical role.

4. Learning Dynamics

As demonstrated in the main manuscript, bias-conflicting
samples trigger spikes in the gradients of the bias-aligned
loss in subsequent training steps. Fig. 5 illustrates that these
spikes are mitigated when using BAdd, with the gradients of

L 4 staying near zero. This is a direct result of the injection
of b into the learning process.

o
=3
c

IS
S

-

3
t:

w
S
.

N
=3
w
S
e

15
p

amplitude of gradients of £,
5]
g

o
=
o

1500 2000 2500 3000 3500 4000
Step

(a) Vanilla

amplitude of gradients of £¢
8
9

]

20 £

10 3
L 10 £

©

1500 2000 2500 3000 3500 4000
Step

(b) BAdd

Figure 5. BAdd prevents the spikes of the gradients of bias-aligned
loss triggered by the bias-conflicting samples of Biased-MNIST.
Blue bars indicate the steps where bias-conflicting samples occur,
with their height representing the amplitude of gradients.

5. Qualitative Results

Fig. 6 visualizes the GradCam activations of a model trained
on UrbanCars with BAdd compared to a vanilla model.
BAdd effectively shifts the model’s focus to the object of

interest, with only minor activations in the background that,
however, are reflected in the model’s performance (i.e., -4.3
BG Gap).

6. Complexity Analysis

Regarding the computational complexity of BAdd, we pro-
vide a detailed analysis comparing BAdd to the baseline
(vanilla) model for a typical example involving a ResNet18
network, input images of size 3x224 x224, and two classes
for the biased attribute (similar to CelebA or UTKFace ex-
periments).

Regarding the FLOPs of the trainable components, the
baseline model’s computational cost is 1.818 GFLOPs. The
BAdd’s addition of bias-capturing features into the main
model’s penultimate layer increases the computational com-
plexity by 2.82e-7% (i.e., +512 FLOPs), while the fine-
tuning process, which involves updating only the final clas-
sification layer, incurs an additional computational cost of
5.63e-7% (i.e., +1.024 FLOPs). This phase remains effi-
cient as only a small number of parameters are updated.

Regarding the inference FLOPs, if projection is em-

ployed for extracting bias features, the computational cost
is only 1024 FLOPs. On the other hand, the computational
cost of the bias-capturing model depends on its architecture,
which in this case matches the main model. However, it is
important to note that this model acts as a feature extrac-
tor, so its corresponding features need to be computed only
once.

Moreover, the inference time of BAdd is equivalent to
the baseline, as the bias-capturing component is not in-
volved during inference. Similarly, the number of trainable
parameters in BAdd is the same as in the baseline model,
as the additional components related to the bias features
are not trainable. The main potential overhead arises if
bias-labels are unavailable or if there is no pretrained bias-
capturing model. In such cases, training a bias-capturing
model from scratch would add to the overall computational
effort. In summary, BAdd introduces minimal overheads
during training (e.g., feature addition and fine-tuning the
classification layer), while the inference complexity and
number of trainable parameters remain equivalent to the
baseline.

(a) Method: Vanilla, (b) Method: BAdd, (c) Method: Vanilla, (d) Method: Vanilla,

Target: Country, Target: Country, Target: Country, Target: Country,
Background: Country, Background: Country, Background: Urban, Background: Urban,
CoObj: Country CoObj: Country CoObj: Urban CoObj: Urban

(e) Method: Vanilla, (f) Method: Vanilla, (g) Method: Vanilla, (h) Method: BAdd,
Target: Urban, Target: Urban, Target: Urban, Target: Urban,
Background: Urban, Background: Urban, Background: Country, Background: Country,
CoObj: Urban CoObj: Urban CoObj: Country CoObj: Country

Figure 6. Vanilla vs BAdd: GradCam activations on bias-aligned and bias-conflicting samples of UrbanCars dataset.

