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Abstract

In this work, we present Iterative Binary Training, an effec-
tive training strategy designed to improve face anti-spoofing
systems, especially when dealing with imbalanced datasets.
Instead of treating all spoofing attacks at once, our method
starts by training a binary classifier to distinguish bonafide
faces from the most frequent spoofing type. Then, step
by step, it adds new spoofing classes—moving from the
most common to the rarest— and thus, the model gradually
learns to handle a wider variety of attacks.

This method encourages the model to first focus on dom-
inant spoofing patterns and later adapt to more challeng-
ing, less frequent attacks, reducing overfitting and improv-
ing generalization. We tested it using four deep learning
models, including ViT-B/16, ViT-B/32, ResNeXt-101, and
ResNet-50. All showed good performance with our method,
with ResNeXt-101 standing out as the top performer.

Our approach does not rely on extra data, additional
modalities, or ensembling techniques. Instead, it builds on
standard tools like class-balanced loss functions and pre-
trained backbones, making it easy to reproduce and de-
ploy. The results suggest that Iterative Binary Training
offers a promising direction for enhancing FAS systems in
real-world scenarios.

1. Introduction
Face anti-spoofing (FAS) remains a dynamic and challeng-
ing field, especially as attackers continuously develop more
sophisticated and varied attack strategies. The increasing
diversity and realism of presentation attacks—ranging from
high-resolution prints and video replays to 3D masks and
adversarial digital forgeries—have pushed FAS systems to
their limits.

In this context, the ICCV 2025 6th Face Anti-Spoofing
Challenge [1] introduces a significant step forward: the re-
lease of the UniAttackData+ dataset [12], designed to re-
flect real-world complexities by combining multiple attack

types and unseen scenarios within a unified benchmark.
This dataset addresses critical limitations observed in ear-
lier benchmarks, like CASIA-SURF [19] or CASIA-SURF
CeFA [9], which often relied on narrow acquisition settings,
a limited number of subjects, or incomplete coverage of
spoofing modalities.

Moreover, recent works [5, 7, 11] have emphasized the
need to unify physical and digital attack detection. Fang
et al. [5] introduced a vision-language model capable of
identifying diverse attack types within a single framework,
whereas He et al. [7] proposed simulated data augmentation
via SPSC and SDSC to expose models to unseen spoofing
clues. Liu et al. [11] proposed Class-Free Prompt Learn-
ing (CFPL), a CLIP-based method that improves gener-
alization by dynamically adapting classifier weights using
style- and content-aware prompts, without relying on fixed
spoof classes or domain labels. These directions point to-
ward training paradigms that prioritize generalization over
fitting known spoof taxonomies.

Unlike previous editions, which focused predominantly
on performance metrics, the ICCV 2025 6th Face Anti-
Spoofing Challenge encourages the exploration of innova-
tive and practical solutions that go beyond accuracy scores.
According to the organizers, the goal of this year is to fos-
ter the development of robust and generalizable approaches,
with an emphasis on the design of methodologies and the
understanding of underlying limitations. This shift creates
a unique opportunity to rethink how the training and evalu-
ation of FAS models can be faced.

Motivated by this change, we propose to investigate not
only the architecture or performance of models, but the way
in which data is presented to the classifier during training.
Our approach is grounded on two core assumptions: (1)
the nature of the FAS problem can be reformulated as a
binary classification task, where the model learns to dis-
tinguish between bonafide and spoofed samples, regardless
of spoofing modality [7], and (2) FAS datasets are inher-
ently imbalanced, with bonafide samples often underrepre-
sented or overly homogeneous compared to the diversity of
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attacks [9].
To address these challenges, we introduce Iterative Bi-

nary Training (ITB), a data exposure strategy that structures
learning as a progressive sequence of binary tasks. Start-
ing with the most frequent spoofing class and incrementally
adding rarer ones, this method encourages early generaliza-
tion while systematically reducing class bias and improving
resilience against unseen attacks.

The remainder of this paper is structured as follows.
Section 2 reviews the state-of-the-art in face anti-spoofing
(FAS) datasets and training strategies. Section 3 introduces
the proposed Iterative Binary Training (IBT) method, a pro-
gressive strategy tailored to imbalanced classification tasks
in the FAS context. Section 4 details the experimental
setup and evaluates IBT using the UniAttackData+ bench-
mark, comparing its performance with standard training and
across four different model architectures: ViT-B/16, ViT-
B/32, ResNeXt-101, and ResNet-50. Section 5 discusses
the results, highlighting the strengths and limitations of IBT.
Finally, Section 6 concludes the paper and outlines future
research directions.

2. Related Work

Towards Unified Detection of Physical and Digital At-
tacks. While most prior work treated Physical Attack
Detection (PAD) and Digital Attack Detection (DAD)
as separate tasks, recent efforts advocate for a unified
treatment. Fang et al. [5] proposed UniAttackDetection,
a vision-language model trained on the UniAttackData
dataset, which includes ID-consistent samples across 2
physical and 12 digital attack types for over 1,800 sub-
jects. Their method introduces prompt-based modules —
Teacher-Student Prompts, Unified Knowledge Mining, and
Sample-Level Prompt Interaction — that enable simultane-
ous learning of unified and specific knowledge representa-
tions.

He et al. [7] advanced this by introducing simulated
spoofing clues to bonafide data, bridging the physical-
digital domain gap during training. Their approach uses
synthetic transformations (SPSC and SDSC) to enhance the
model’s robustness to unseen attack types, achieving State-
of-the-Art (SoA) results on cross-modal and cross-dataset
settings. These two works redefine how FAS systems can
generalize across modalities.

Benchmark Evolution and Dataset Scope. Dataset di-
versity is central to robust generalization in FAS. Zhang et
al. introduced the CASIA-SURF dataset [19], a large-scale
multi-modal benchmark that addresses limitations of scale
and modality in earlier datasets. It includes RGB, depth,
and IR modalities across more than 20,000 video clips.
Later, CASIA-SURF CeFA [9] further expanded coverage

to multi-ethnic populations and provided a strong founda-
tion for cross-ethnicity evaluation. Liu et al. [10] extended
this with contrastive learning strategies to improve mask
PAD under 3D conditions.

Building on these efforts, UniAttackData [5] introduced
a unified benchmark combining identity-consistent sam-
ples across diverse spoof types. It enabled the creation of
protocols for unseen attack evaluation, which are essen-
tial for assessing generalization. More recently, UniAttack-
Data+ [12] extended this benchmark by incorporating ad-
ditional spoof categories and updated evaluation protocols,
and currently represents the most comprehensive physical-
digital dataset in the field. In contrast to earlier bench-
marks, which often merged separate datasets without con-
sistent identity alignment, both UniAttackData and its ex-
tended version ensure that each subject includes all spoof
variants, minimizing label leakage and enhancing model ro-
bustness.

Learning Strategies in Face Anti-Spoofing. Conven-
tional supervised learning has laid the foundation for many
FAS systems. Typically, deep neural networks are trained
to classify bonafide versus spoof samples using standard
losses like cross-entropy. While this setup yields compet-
itive results in closed-set settings, models often fail to gen-
eralize to unseen attack types due to overfitting and dataset
bias.

To overcome these limitations, researchers have ex-
plored alternative training paradigms such as meta-learning
and multi-task learning. These strategies aim to improve
adaptability and robustness by exposing models to auxiliary
tasks and simulated domain shifts. For instance, Chuang et
al. [3] proposed a unified model that integrates face parsing,
depth estimation, and spoof classification using a one-side
triplet loss. This approach helps the model focus on live
features and improves generalization across spoof types and
domains.

Another direction is one-class learning and anomaly de-
tection [8], where models are trained only on bonafide sam-
ples and are expected to reject anything deviating from the
learned distribution. These models tend to generalize better
to unknown attacks, although at the cost of reduced sensi-
tivity.

Building on these foundations, curriculum learning has
emerged as a promising approach. Initially introduced by
Bengio et al. [2], this paradigm organizes the training pro-
cess by presenting easier examples first and gradually in-
creasing difficulty. While curriculum learning has shown
success in general computer vision tasks [17], its applica-
tion to FAS remains relatively limited.

Some efforts have adopted curriculum-like approaches.
Quan et al. [15] proposed a progressive transfer learning
framework that starts from a small set of labeled data and in-
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crementally adds high-confidence pseudo-labeled samples.
Their method leverages temporal consistency and adaptive
selection to expose the model to gradually more complex
spoofing scenarios, yielding strong performance under do-
main shifts.

In this context, our work introduces two innovations.
First, we explicitly frame FAS as a binary classification
problem, treating bonafide as a fixed anchor class while
spoofing types vary across training stages. Second, we
propose a reverse curriculum learning strategy, where the
model is first exposed to the most frequent (and typically
easiest) spoof class and progressively learns to distinguish
rarer and more challenging attacks. This learning schedule
enables the model to form strong early representations and
improves its robustness to less common spoof types.

To our knowledge, this combination—binary task for-
mulation with an inverse curriculum schedule—has not
been explicitly explored in the FAS literature. It offers
a promising new direction for improving generalization in
highly imbalanced and heterogeneous anti-spoofing scenar-
ios.

3. Iterative Binary Training Method

We propose an Iterative Binary Training (IBT) strategy for
classification tasks in imbalanced datasets, specifically de-
signed for face anti-spoofing. The method assumes a fixed
bonafide class and introduces spoofing classes progressively
across multiple training phases.

The motivation for using binary classification is to en-
courage the model to generalize to unseen and unknown
spoofing attacks, learning to recognize bonafide samples re-
gardless of the spoofing type presented.

While traditional curriculum learning [17] typically pro-
gresses from easy to hard samples, our method follows a
reverse class frequency schedule: training begins with the
most frequent spoofing class and progressively incorporates
less frequent classes in each new phase.

At each iteration:
• The model is trained as a binary classifier: bonafide vs. a

single spoofing class.
• After convergence or a fixed number of epochs, a new

spoofing class is introduced, and training continues.

Algorithm 1 summarizes this procedure in pseudo-code:

Algorithm 1 Iterative Binary Training (IBT)

Require: Live samplesDlive; spoofing classeDspoof; spoof-
ing subsets Dci (rarest → frequent); backbone Φ0;
epochs per loop E

Ensure: Trained classifier Φ⋆

1: Φ← Φ0 ▷ binary head (live / spoof)
2: for all spoofing class Dci in Dspoof do
3: Dtrain ← Dlive ∪ Dci

4: for e = 1 to E do
5: Train Φ on Dtrain
6: end for
7: end for
8: return Φ⋆ ← Φ

• Φ is the convolutional backbone being fine-tuned; it is
initialized from a pretrained model Φ0 with a two-class
(live vs. spoof) faces.

• Dlive contains all bona fide images, andDspoof contains all
spoofing classes (Dspoof = ∪Ni=1Dci ), where Dci denotes
the set of samples belonging to the i-th spoofing class ci,
and N is the total number of spoofing classes.

• Spoofing classes are introduced iteratively, from the
rarest to the most frequent. After adding a class, Φ is
retrained for E epochs on the binary set (Dlive ∪ Dci).
This method facilitates early learning from dominant

patterns, incrementally increases robustness by exposing
the model to more diverse and rare attacks, and reduces both
class bias and catastrophic forgetting. Furthermore, it inte-
grates well with transfer learning and data augmentation,
without requiring full dataset rebalancing at the start.

4. Experiments
4.1. Experimental Setup
AttackData+ Dataset. We conduct all our experiments
using the UniAttackData+ dataset, officially released as part
of the ICCV 2025 6th Face Anti-Spoofing Challenge [11,
12]. This benchmark extends the original UniAttackData
[5] to include a broader set of spoofing types, covering both
physical and digital modalities. The dataset contains diverse
attack samples and subjects of multiple ethnic backgrounds.
Spoofing classes are organized hierarchically by modality
and subcategory. Specifically, physical attacks (1 ) include
2D types such as Print, Replay, and Cutouts, and 3D types
such as Transparent, Plaster, and Resin. Digital attacks
(2 ) include three major categories: Digital Manipulation
(e.g., Face-Swap, Attribute-Edit), Digital Adversarial (e.g.,
Pixel-Level, Semantic-Level), and Digital Generation (e.g.,
ID-Consistent, Style, Prompt-based).

Following the official protocol of the challenge, the train-
ing and validation sets are disjoint and contain mutually ex-
clusive attack samples. Table 1 summarizes the number of
instances per class in both sets.
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Protocol Type Class Label ID #Samples #Total Samples

Train

Live Live Face 0 0 0 839

22367

Physical Print 1 0 0 43
Physical Replay 1 0 1 109
Physical Cutouts 1 0 2 79
Digital Face-Swap 2 0 1 6160
Digital Attribute-Edit 2 0 0 1476
Digital Video-Driven 2 0 2 1540
Digital Pixel-Level 2 1 0 8364
Digital Semantic-Level 2 1 1 3757

Eval

Live Live Face 0 0 0 13

5396

Physical Print 1 0 0 12
Physical Replay 1 0 1 26
Physical Cutouts 1 0 2 20
Digital Face-Swap 2 0 1 1555
Digital Attribute-Edit 2 0 0 385
Digital Video-Driven 2 0 2 354
Digital Pixel-Level 2 1 0 2053
Digital Semantic-Level 2 1 1 978

Test The test protocol remains unpublished and is solely used by the challenge organizers for
official scoring.

9083

Table 1. Distribution of samples in the UniAttackData+ dataset across training, evaluation, and test protocols.

Models. Four backbone models were tested: ViT-B/16
and ViT-B/32 [4], ResNeXt-101 [18], and ResNet-50 [6].
ViT-B/16 and ViT-B/32 are Vision Transformers that model
image patches as tokens and rely entirely on self-attention,
differing mainly in patch size and resolution. ResNet-50
is a standard convolutional architecture with residual con-
nections, while ResNeXt-101 is a more powerful CNN that
extends ResNet by introducing group convolutions to in-
crease representational capacity with controlled complexity.
All models were evaluated under two initialization regimes:
standard pretrained weights (ImageNet) and from scratch.

Training Configuration. All models were trained using
the AdamW optimizer [13] with a learning rate of 1 ×
10−4 and weight decay of 0.01. We resized input images
to 224 × 224 and applied no augmentations. The train-
ing batch size was set to 32, and each binary phase was
trained for 30 epochs. Cross-entropy loss [16] was used,
with class-balanced weights computed using the Scikit-
learn [14] compute class weight function.

Evaluation Metrics. The evaluation protocol used to as-
sess model performance follows standard practices in the
field of Face Anti-Spoofing (FAS). In particular, we adopt
three widely accepted metrics:
• Attack Presentation Classification Error Rate

(APCER): It measures the proportion of attack samples

incorrectly classified as bonafide.
• Bona Fide Presentation Classification Error Rate

(BPCER): It measures the proportion of bonafide sam-
ples incorrectly classified as attacks.

• Average Classification Error Rate (ACER): This is the
average of APCER and BPCER.
These metrics are formally defined as:

APCER =
FP

FP + TN

BPCER =
FN

FN + TP

ACER =
APCER+ BPCER

2
,

(1)

where FP , FN , TP , and TN denote the number of
false positives, false negatives, true positives, and true neg-
atives, respectively. The ACER score is used to determine
final rankings in the ICCV 2025 6th Face Anti-Spoofing
Challenge [1] and is the metric used in our experimentation.

4.2. Comparison with Baseline
For comparison, we define a baseline standard training
(STD) strategy in which the model is trained in a single
stage using all spoofing classes simultaneously, without any
curriculum or iterative exposure. Figure 1 presents the
ACER evolution across epochs (5 to 30) for four differ-
ent models, comparing the baseline STD with our proposed
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Figure 1. IBT vs STD per epoch

Model BEST ACER (%) - From Scratch BEST ACER (%) - Pre-Trained

Standard Training Iterative Binary Training Standard Training Iterative Binary Training

ResNeXt-101 21.0 24.2 20.0 7.3
ResNet-50 20.0 26.8 38.0 10.9
ViT-B/16 27.0 27.1 25.0 31.0
ViT-B/32 29.0 29.6 22.0 20.9

Table 2. Best ACER comparison across models trained from scratch and with pre-trained weights, using standard and iterative binary
training.

IBT, both with and without pre-trained initialization.
The two convolutional-based models, ResNeXt-101 and

ResNet-50, show substantial improvements when using
IBT in conjunction with pretrained weights. In particular,
ResNeXt-101 achieves the best overall performance, reduc-
ing its ACER from 20.0% (standard training) to 7.3% with
IBT. Similarly, ResNet-50 improves from 38.0% to 10.9%,
highlighting the effectiveness of combining iterative learn-
ing with prior knowledge from large-scale pretraining.

In contrast, the transformer-based models demonstrate

differing patterns of behavior. While ViT-B/16 shows mini-
mal variation across configurations, with similar ACER val-
ues under all training strategies, ViT-B/32 consistently ben-
efits from IBT — especially when using pretrained initial-
ization — confirming its sensitivity to data exposure strate-
gies.

When comparing models trained from scratch, the per-
formance gap between STD and IBT is narrower. In this
setting, convolutional models slightly favor standard train-
ing, while transformer models tend to benefit more from the
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Figure 2. IBT vs IBT+STD vs STD per epoch (Pre-trained and From Scratch)

Model BEST ACER (%) - From Scratch BEST ACER (%) - Pre-Trained

STD IBT IBT+STD STD IBT IBT+STD

ResNeXt-101 21.0 24.2 26.0 20.0 7.3 19.6
ResNet-50 20.0 26.8 27.6 38.0 10.9 31.0
ViT-B/16 27.0 27.1 29.1 25.0 31.0 31.1
ViT-B/32 29.0 29.6 24.4 22.0 20.9 21.1

Table 3. Best ACER comparison - Ablation study IBT+STD

IBT strategy.
Overall, IBT method demonstrates notable improve-

ments in ACER for most architectures, particularly when
pretrained weights are available. These results validate our
hypothesis that structured, progressive exposure to spoof
types enhances generalization. Table 2 summarizes the best
ACER scores obtained for each configuration.

4.3. Ablation Study
IBT followed by Standard Training. This experiment
was designed to evaluate whether the Iterative Binary Train-
ing (IBT) strategy can serve as an effective pre-training

phase. To test this, we appended a final standard training
step (STD) after the last binary iteration, where the model
is retrained using all classes together. The goal was to as-
sess whether combining the binary-focused learning with
standard multi-class training would improve generalization.

The results shown in Figure 2 demonstrate that IBT fol-
lowed by Standard Training (IBT+STD) consistently out-
performs standard training (STD) across most epochs, while
still performing worse than the pure IBT strategy.

Table 3 reports the best ACER scores obtained from
models trained from scratch and using pre-trained weights
across STD, IBT, and the combined IBT+STD setup.
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Occlusion Type Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 All (STD)

Physical Occlusion (PO) Pixel-Level Face-Swap Semantic-Level Video-Driven Attribute-Edit + All Physical
Digital Occlusion (DO) Replay Cutouts Print – – + All Digital

Table 4. Occlusion-based ablation protocol per iteration, with PO using only digital attacks and DO using only physical attacks.

Figure 3. Digital Occlusion per Epoch

Model BEST ACER (%) - Pre-Trained

STD IBT IBT+STD PO PO+STD DO DO+STD

ResNeXt-101 20.0 7.3 19.6 25.8 21.6 6.9 34.8
ResNet-50 38.0 10.9 31.0 32.4 33.4 5.1 36.1
ViT-B/16 25.0 31.0 31.1 26.9 27.9 12.4 23.1
ViT-B/32 22.0 20.9 21.1 24.1 21.4 19.2 25.9

Table 5. Best ACER (%) for pre-trained models across standard training, Iterative Binary Training (IBT), and occlusion-based configura-
tions. PO refers to Physical Occlusion and DO to Digital Occlusion, both part of the ablation study.

Occlusion-based IBT: Physical vs. Digital Attacks. To
further investigate the impact of different types of spoofing
attacks on training performance, we conducted a targeted

ablation study using occlusion. We trained models using
IBT method while systematically excluding all physical at-
tack classes (PO – Physical Occlusion) and excluding all
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digital attack classes (DO – Digital Occlusion) from the bi-
nary training steps. Table 4 outlines the occlusion proto-
col, detailing which spoofing classes were included in the
binary training at each iteration for both PO and DO set-
tings. Classes were introduced in descending order of fre-
quency, and all configurations included live samples. A fi-
nal standard training step (denoted as “STD”) reintroduced
all classes to assess recovery in performance. These ex-
periments aim to evaluate the relative importance of each
attack group in the learning process, and their contribution
to generalization when reintroduced via standard training
(PO+STD and DO+STD).

Table 5 shows the best ACER scores for each occlusion
configuration using only pre-trained models, since from-
scratch models consistently performed worse with ACER
above 20%.

The results show that Digital Occlusion (DO) not only
preserves competitive performance but in fact outperforms
standard training (STD) and Iterative Binary Training (IBT)
without occlusion across all models. As shown in Table 5,
DO achieves the lowest ACER for every architecture, high-
lighting its effectiveness as a training strategy. The full evo-
lution of ACER scores across training epochs and occlusion
iterations — comparing from scratch and pretrained models
— is illustrated in Figure 3. This is especially remarkable
in the case of ResNet-50 and ResNeXt-101, where ACER
drops from 38.0% to 5.1% and from 20.0% to 6.9%, re-
spectively. These improvements suggest that training with
only physical attacks forces the model to generalize better
to digital attacks, which appear more diverse and harder
to classify. Surprisingly, adding a final standard training
step (DO+STD) does not improve performance and in some
cases even degrades it in comparison with STD, possibly
due to loss of the specialized representation learned during
the binary-focused training. In contrast, the Physical Occlu-
sion (PO) strategy leads to significantly worse results very
close to the standard training. These findings reinforce the
idea that physical attacks play a key role in effective model
generalization, and that carefully selected occlusion strate-
gies can outperform traditional training methods.

5. Discussion
While Iterative Binary Training has proven to be a stable
and effective strategy for handling class imbalance in face
anti-spoofing, there are several directions worth exploring
to further improve its performance and generalization capa-
bilities.

First, although our current scheduling strategy is based
on spoof class frequency (i.e., starting from the most fre-
quent attack), it may be beneficial to experiment with al-
ternative curricula. For example, ordering classes based on
difficulty, visual similarity, or domain shift could allow for
more targeted knowledge transfer across spoof types. Sim-

ilarly, grouping spoof classes by physical modality (e.g.,
print, replay, 3D) might better align the curriculum with the
underlying structure of the data.

Second, the binary formulation, while simplifying the
training dynamics, might limit the model’s ability to simul-
taneously learn shared spoof features. Incorporating multi-
label soft supervision or intermediate knowledge distillation
could allow the model to retain useful spoof-specific repre-
sentations while preserving the benefits of the binary focus.

Third, although our method does not require additional
data or architectural changes, its iterative nature increases
training time linearly with the number of spoofing classes.
This motivates the investigation of adaptive iteration sched-
ules, where early stopping or dynamic class inclusion could
reduce computational cost while maintaining robustness.

Finally, we note that our current experiments are con-
strained to a single dataset (UniAttackData+). To truly
evaluate the generalization ability of this method, future
work should explore cross-dataset experiments and domain
adaptation setups, where class imbalance and unseen attack
types are even more pronounced.

In summary, Iterative Binary Training opens up a op-
portunity for future research on data exposure strategies in
FAS, with significant potential to be extended through more
adaptive, structured, and multi-task training components.

6. Conclusions

In this work, we introduced Iterative Binary Training, a
simple yet effective strategy designed to address data im-
balance and generalization challenges in face anti-spoofing.
Despite not achieving top-3 performance in the ICCV 2025
competition, our approach delivered satisfactory results and
ranked among the top 8 teams, demonstrating the practical
potential of restructuring the training process through itera-
tive, frequency-based data exposure.

Given that the full dataset from the competition (Uni-
AttackData+) has not yet been publicly released, our eval-
uation was constrained to the test subset accessed exclu-
sively through the competition’s official scoring system.
Still, our method consistently led to stable training and cor-
rect convergence across several architectures, particularly
ResNeXt-101.

These initial findings suggest that Iterative Binary Train-
ing can offer meaningful improvements in learning dynam-
ics without modifying model architectures or requiring ad-
ditional data. Nevertheless, further studies are needed to
validate this approach across diverse datasets and under al-
ternative exposure strategies—including different curricu-
lum orders, grouping schemes, or domain-specific data aug-
mentation.
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