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Abstract

This paper presents Oculus, our submission to the 6th Face
Anti-Spoofing Challenge on Unified Physical-Digital At-
tacks Detection (ICCV Workshop 2025), where we propose
a novel Hierarchical Vision Transformer (ViT)-based archi-
tecture for face anti-spoofing. Our method jointly addresses
binary live/spoof classification, attack type identification,
attack group prediction in a unified hierarchical framework.
The proposed architecture leverages a ViT backbone fused
with a frequency-domain branch, enhanced by a Central
Difference Convolution (CDC) frontend and a Squeeze-and-
Excitation (SE) residual block to capture subtle spoofing
cues. The model first predicts the coarse attack group before
conditionally classifying the specific attack type within the
predicted group. In parallel, a binary live/spoof decision
is also produced, enabling the model to benefit from hier-
archical supervision. Input images might be preprocessed
via MTCNN face detection and then use FFT frequency-
transformed . The final fused features are regularized us-
ing dropout and optimized with binary cross-entropy and
softmax losses in a multi-task setting. On the challenge
validation set, our Hierarchical ViT architecture achieved
an ACER under 7%, while ResNet-based variants achieved
ACERs below 5%. Our best model reported an official
ACER of 20.14% on the competition leaderboard. These
results confirm the effectiveness of our multi-branch, hier-
archical ViT framework for robust face anti-spoofing under
both physical and digital attack scenarios. Our training set-
ting is available at https://github.com/de20ce/
oculus.

1. Introduction

Face anti-spoofing (FAS) plays a critical role in securing
face recognition systems against presentation attacks (PAs),
such as printed photos, replayed videos, and digital manip-
ulations [16, 25, 46]. With the rapid expansion of online
services and biometric authentication, robust generalization
across varying spoof types and acquisition conditions has
become a key research challenge [8, 26]. This problem
is further exacerbated in the wild, where unseen attacks
and domain shifts significantly degrade model performance
[18, 36].

Recent works have attempted to improve generalization
by introducing domain adaptation techniques [18, 39], aux-
iliary supervision [25, 46], or spatial-temporal modeling
[17, 25]. However, many of these methods are limited by
their reliance on hand-crafted features or task-specific ar-
chitectures.

To better handle the diversity of spoofing patterns, sev-
eral researchers have turned to frequency-based methods,
leveraging the assumption that spoof artifacts exhibit un-
natural frequency patterns not present in genuine faces
[4, 23, 29, 46]. These frequency-aware approaches have
been particularly effective in capturing subtle spoofing cues
and mitigating overfitting on visual textures.

More recently, the adoption of Vision Transformers
(ViTs) [6] has shown promising results in FAS [12, 28,
42, 45, 52, 53]. By modeling global context and attention-
based representations, ViTs can better capture high-level se-
mantics and long-range dependencies across image patches,
making them well-suited for spoof detection.

In this work, we propose a hierarchical framework that
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Figure 1. Visualization of bona fide and 8 attack types with 4 sample images per type. Each column represents a specific attack category
except the first one.

leverages ViT-based spatial representations fused with a
frequency-domain branch. Our architecture incorporates
task decomposition, enabling binary classification, group-
level categorization (e.g., print vs. replay), and fine-grained
attack type recognition. To improve robustness, we inte-
grate a Central Difference Convolution (CDC) frontend [41]
and post-fusion channel-wise attention using squeeze-and-
excitation (SE) blocks [13].

Our contributions are as follows:
• We design a hierarchical ViT-based model that jointly

predicts live/spoof labels, group-level categories, and
fine-grained attack types.

• We enhance the network with a frequency-aware branch
and CDC-based frontend, improving the ability to capture
subtle spoofing artifacts.

• We evaluate our method on the 6th Face Anti-Spoofing
Challenge dataset, achieving strong results in both gener-
alization and fine-grained classification performance.

2. Related Work

2.1. Frequency-Based and Transformer Architec-
tures

Recent advances in face anti-spoofing have emphasized the
integration of frequency-domain features to detect spoof-
ing artifacts that are often imperceptible in the spatial do-
main. Li et al. [20] leveraged discrete cosine transform
(DCT) components for feature enhancement, while George
et al. [8] introduced Fourier spectrum supervision to im-
prove generalization. In parallel, Transformer-based mod-
els such as Vision Transformers (ViTs) [6] have demon-

strated their effectiveness in capturing long-range depen-
dencies, which is particularly beneficial in recognizing sub-
tle spoofing cues. Inspired by this, recent works [12, 14, 45]
have proposed hybrid architectures combining CNNs with
frequency or Transformer modules.

2.2. Multi-Modal Representations
Multi-modal learning has emerged as a promising approach
for robust anti-spoofing. Yang et al. [44] proposed a CNN
ensemble trained on RGB, depth, and infrared modalities
to capture complementary information. Similarly, Liu et
al. [25] employed auxiliary supervision from multiple do-
mains to guide representation learning. More recent meth-
ods [12, 45] simulate various spoofing clues by fusing phys-
ical and digital attack features through staged or attention-
based learning.

2.3. Domain Generalization and Simulation
Generalization across unseen domains remains a key chal-
lenge. Inspired by domain simulation and augmentation
techniques, authors in [26, 33] introduced meta-learning
strategies and domain adversarial training to improve cross-
dataset robustness. Huang et al. [14] proposed a visualiza-
tion method to quantify domain shifts, offering insights into
how CNNs adapt to new environments. Domain simulation,
as seen in [12], further aids in training models with greater
resilience to synthetic and real-world domain shifts.

2.4. Hierarchical and Fine-Grained Classification
Moving beyond binary classification, hierarchical ap-
proaches model intermediate spoofing cues or attack cat-



egories. George et al. [9] introduced pseudo-depth super-
vision to differentiate between attack types. He et al. [12]
and Yu et al. [45] also presented multi-stage frameworks
to first predict coarse group labels (e.g., physical vs. digi-
tal), followed by finer attack types. This hierarchical setup
aligns with our own architecture, which predicts group, at-
tack type, and live/spoof scores in a unified framework.

2.5. Contrastive Learning and Self-Supervision
Recent efforts in face anti-spoofing have explored self-
supervised and contrastive learning paradigms to improve
representation quality in the absence of explicit labels. Yu
et al. [47] introduced auxiliary contrastive objectives for
distinguishing real and spoofed faces based on subtle tex-
ture inconsistencies. Similarly, Zhao et al. [54] proposed a
multi-perspective contrastive network that learns modality-
invariant representations. Contrastive schemes can be par-
ticularly beneficial when paired with frequency or atten-
tion branches, as they allow models to focus on spoof-
specific distortions. Zhang et al. [52] also utilized self-
supervised learning to pre-train models on large-scale un-
labeled data, yielding better generalization under limited
supervision. These strategies offer promising extensions
to supervised pipelines by encouraging semantic alignment
across modalities and spoof types.

2.6. Spoof-Specific Cues and Generation-Based
Training

Another emerging direction involves the identification and
simulation of spoof-specific cues, including noise residu-
als [23], moiré patterns [49], and lens reflection artifacts [2].
To this end, several works have integrated generative adver-
sarial networks (GANs) to simulate synthetic attacks that
amplify these artifacts for robust model training. Wang
et al. [40] introduced a domain-aware GAN framework
for spoof data augmentation, while Deb et al. [5] gen-
erated cross-PA-type data to simulate harder spoof cases.
StyleGAN-based pipelines [37] have also been employed
to craft attribute-consistent synthetic faces that are hard to
detect, challenging traditional CNN-based methods. These
studies highlight the value of generation-based frameworks
in creating diverse and realistic spoof data for both training
and evaluation phases.

3. Proposed Method
In this work, we propose two complementary step for face
anti-spoofing:

(1) a preprocessing step where MTCNN [50] might be
used to detect and extract face regions from input images.
When no face is detected, we fallback to a center crop. This
preprocessing was not tested during training protocol.

(2) a hierarchical, multi-branch model leveraging
transformer-based spatial features fused with frequency do-

main information, and Both approaches are designed to im-
prove generalization across spoof types and domains, and
trained using the UniAttackData+ dataset[22].

3.1. Hierarchical Multi-Task Transformer Model
Our main model, is a multi-stream architecture that inte-
grates spatial and frequency representations in a unified
framework with hierarchical classification. The model com-
prises three core components: preprocessing via central dif-
ference convolution (CDC) , modality-specific feature ex-
traction, and a multi-task prediction head.

CDC Preprocessing
Each input image is passed through a CDC block [41] to
enhance edge-aware and gradient-sensitive features critical
for detecting edge-aware textures and subtle spoofing cues.
This block improves the capture of high-frequency texture
changes often indicative of print or replay attacks. This re-
places standard convolutions for improved detail sensitivity.

ViT Backbone
A pretrained Vision Transformer is used to extract spatial
features from the image. The final CLS token is passed
through a linear projector to reduce the feature dimension
to 512.

Spatial Branch
The CDC-enhanced image is processed through a Vision
Transformer. The [CLS] token output is linearly projected
to a 512-dimensional embedding.

Frequency Branch
A grayscale version of the input is converted to the fre-
quency domain using FFT. The log-magnitude spectrum is
passed through a CNN-based encoder (FrequencyBranch),
producing another 512-dimensional features.

Fusion and Attention Mechanisms
To effectively combine complementary spatial and
frequency-domain cues, we adopt a late fusion strategy
followed by attention refinement. This design enhances the
model’s ability to capture both local textures and global
spoofing patterns in a unified representation.
• Feature Concatenation: The spatial features extracted

from the ViT backbone and the frequency-domain fea-
tures are concatenated to form a unified feature represen-
tation of 1024 dimensions.

• Fusion Head: This combined vector is processed through
a sequential block consisting of a linear transformation, a
ReLU activation, and dropout. This stage serves to refine
and regularize the joint representation.

• Post-Fusion Attention: To further enhance discrimina-
tive performance, a residual Squeeze-and-Excitation (SE)
block is applied to the fused features. This attention



mechanism adaptively reweights each channel, emphasiz-
ing the most informative components for classification.

3.2. Hierarchical Prediction Heads

To enable both fine-grained spoof type recognition and bi-
nary classification, we implement a hierarchical prediction
strategy. This modular design enhances interpretability and
robustness across various attack categories.

• Group Classifier: A softmax head predicts a high-level
spoofing group category (e.g., print, replay, mask), en-
abling a coarse-grained attack grouping.

• Attack-Specific Classifiers: Based on the predicted
group, the model dynamically selects and routes features
to a group-specific classifier that identifies the exact at-
tack subtype.

• Binary Classifier: A final sigmoid head outputs the con-
fidence score for the live vs. spoof binary decision, sup-
porting the core anti-spoofing task.

This hierarchical multi-task architecture improves the
model’s capacity for detailed spoof categorization while re-
taining strong generalization for binary live/spoof classifi-
cation.

Hierarchical Learning Strategy

To address the complex nature of presentation attack de-
tection (PAD), we adopt a hierarchical multi-task learn-
ing framework. Unlike traditional binary classifiers, our
method jointly learns three interconnected objectives: (1)
binary spoof detection, (2) coarse-grained group classifica-
tion (e.g., print, replay, mask), and (3) fine-grained attack
type classification. This strategy promotes modularity, ro-
bustness, and interpretability.

Loss Function: We implement a custom composite loss
that supervises all three prediction tasks:

• Group Loss: A standard cross-entropy loss is computed
over the predicted spoofing group logits.

• Attack Loss: For each input sample, we compute cross-
entropy loss only over the attack classifier corresponding
to the predicted group, enabling conditional supervision
and reducing label noise.

• Binary Loss: A binary cross-entropy loss is used to su-
pervise the live/spoof confidence score.

The total loss is the weighted sum of these components,
averaged over the batch size:

Ltotal = Lgroup +
1

N

N∑
i=1

L(i)
attack + Lbinary,

where N is the batch size.

Optimization and Scheduling: We use the Adam opti-
mizer with an initial learning rate of 1 × 10−4 and weight
decay of 1 × 10−5. Learning rate scheduling is performed
via validation monitoring, and gradient clipping with a max
norm of 5.0 is applied to stabilize early training dynamics.

4. Experiment

This section presents the training setup, evaluation pro-
tocol, and results of our proposed hierarchical multi-task
face anti-spoofing framework. We evaluate our models us-
ing the UniAttackData+ dataset, following a protocol-wise
train/validation split to simulate real-world generalization.
Various Vision Transformer (ViT) backbones are bench-
marked under a unified architecture integrating spatial-
frequency fusion and post-fusion attention. A combination
of handcrafted data augmentations, multi-objective supervi-
sion, and adaptive inference is employed to maximize per-
formance. All experiments are implemented using the Py-
Torch framework. We train our models on a single NVIDIA
A100 GPU with 80GB of memory, ensuring sufficient ca-
pacity for large-scale batch processing and efficient model
convergence. Finally, we report results using standard met-
rics widely adopted in presentation attack detection, includ-
ing ACER, APCER, BPCER, and AUC.

Dataset Overview. The UniAttackData+ training set
presents a hierarchically annotated structure encompass-
ing a wide spectrum of face presentation attacks, includ-
ing both bona fide samples and multiple spoofing cat-
egories. Bona fide faces, while physical attacks span
subcategories such as Print, Replay, and Cutouts
[1]. In addition, digital manipulations are well represented
through three major groups: Digital Manipulation , includ-
ing AttributeEdit, FaceSwap , and VideoDriven;
and Adversarial Attacks, including PixelAttack and
SemanticAttack [10, 21].

However, several attack types defined in the dataset spec-
ification are not observed in the training or validation
splits, namely:
• 3D Physical Attacks: Transparent, Plaster, and
Resin

• Digital Generation Attacks: IDConsistent,
StyleTransfer, and PromptBased [25, 44]
This selective exposure reflects a zero-shot learning

scenario in which some spoof types are not available during
training or validation, thereby challenging the model to gen-
eralize to unseen attacks during testing [34]. Consequently,
the ability to leverage modality fusion, hierarchical classi-
fication, and semantic abstraction becomes critical in de-
signing robust anti-spoofing systems capable of adapting to
novel or rare presentation attacks at inference time.



Training Protocol:
• Models are trained for 12 epochs with checkpointing en-

abled to resume interrupted sessions.
• Automatic Mixed Precision (AMP) is used to accelerate

computation and reduce GPU memory usage.
• The best-performing checkpoint is selected based on the

validation ACER score after each epoch.

Data Augmentation: We employ conditional transforma-
tions depending on the training phase [35].
• Training: Includes resizing, horizontal flipping, affine

transformations, and color jitter to improve generaliza-
tion.

• Validation: Only resizing and tensor conversion are ap-
plied to maintain evaluation consistency.

Evaluation Metrics: The performance of each model is
assessed using standard PAD metrics:
• AUC: Area Under the ROC Curve.
• BPCER: Bona Fide Presentation Classification Error

Rate.
• APCER: Attack Presentation Classification Error Rate.
• ACER: Average Classification Error Rate, i.e., the mean

of BPCER and APCER.
The decision threshold is selected based on Youden’s J
statistic derived from the ROC curve.

5. Ablation Study
To assess the contribution of key components in our archi-
tecture, we performed comprehensive ablation studies cen-
tered on two critical modules: the Central Difference Con-
volution (CDC) frontend and the Squeeze-and-Excitation
(SE) residual attention block. These modules were selected
due to their distinct roles in enhancing low-level gradient
features and high-level channel-wise feature reweighting,
respectively.

5.1. Effectiveness of Central Difference Convolution
(CDC)

First, we evaluated the impact of replacing standard convo-
lutional layers with CDC layers in the early stages of the
network. The CDC module was introduced to enhance gra-
dient sensitivity, particularly beneficial in detecting edge
inconsistencies, color bleeding, and textural discontinu-
ities—hallmarks of many spoofing techniques. Compared
to the standard convolution baseline, the CDC-enhanced
variant demonstrated a relative reduction in Average Clas-
sification Error Rate (ACER) by approximately 2.1

Moreover, qualitative inspection of feature activa-
tion maps revealed that CDC-equipped models exhibited
stronger responses around facial boundaries and shadow in-
consistencies, which are often weakly represented in con-

ventional convolutional pipelines. These findings align
with theoretical motivations for central difference operators,
which are better suited to highlighting small, localized vari-
ations in input intensity patterns.

5.2. Impact of Squeeze-and-Excitation (SE) Atten-
tion Block

We then investigated the SE residual block, applied af-
ter multi-scale feature fusion. This module adaptively re-
calibrates channel-wise feature responses, guiding the net-
work to focus on the most informative features for spoof
detection. Ablation results showed that removing the SE
block led to a degradation in detection performance, par-
ticularly under challenging conditions such as transparent
mask attacks, makeup-based disguises, or low-light envi-
ronments. These scenarios demand fine-grained attention to
subtle spectral and structural distortions, which are more ef-
fectively modeled when channel-wise dependencies are ex-
plicitly captured [13].

Furthermore, we observed that SE blocks helped sup-
press misleading cues from cluttered backgrounds and ir-
relevant regions, reinforcing spatial focus on critical facial
landmarks. This behavior is especially important in real-
world deployment, where environmental variability is high.

5.3. Combined Removal and Synergy Analysis
When both the CDC and SE modules were removed, the
model’s performance deteriorated significantly, with a com-
bined increase in ACER of over 5

The synergistic benefit is also evident in feature inter-
pretability. Attention heatmaps from the full model show
more sharply localized activation around spoof-specific
anomalies, compared to broader and less informative ac-
tivations in the ablated variants. These results are con-
sistent with existing ablation-based findings that empha-
size the combined effect of early edge-preserving filters
and late-stage attention mechanisms in spoofing scenar-
ios [8, 24, 48].

5.4. Conclusion of Ablation Insights
In summary, the ablation study demonstrates that both CDC
and SE components independently and jointly contribute
to improved spoof detection performance. While CDC en-
hances low-level discrimination by capturing spatial incon-
sistencies, the SE block improves robustness and general-
ization through adaptive channel emphasis. Their integra-
tion yields a resilient and interpretable model architecture
well-suited for detecting diverse and evolving spoofing at-
tacks.

Model Variants: We evaluate the hierarchical framework
across different Vision Transformer backbones including
deit base patch16 224 and convnext base [27,



38]. The best results were consistently observed with back-
bones that incorporate both frequency-domain fusion [10]
and post-fusion channel-wise attention [13]. .

Early Stopping and Checkpoints: Although training is
fixed at 12 epochs, model checkpoints are saved at every
epoch. The final model used for test submission corre-
sponds to the checkpoint with the lowest validation ACER.

Figure 2. Overview of our face anti-spoofing architecture. The in-
put image is processed through two parallel branches: (1) a spatial
feature extractor (e.g., ViT-Base or ResNet-50) followed by a pro-
jector, and (2) a frequency filter branch. The resulting spatial and
frequency features are concatenated and passed through a regular-
ized fusion head and post-attention procedure before hierarchical
classification that ends with a binary one.

This multi-task learning paradigm facilitates joint opti-
mization over spoof detection, attack categorization, and
group-level classification, enabling better generalization
across diverse protocols and unseen attack scenarios. We
observed that training the backbone model from scratch
leads to limited learning capacity. In contrast, using pre-
trained models significantly enhances performance and con-
vergence.

6. Discussion
The proposed hierarchical multi-modal architecture demon-
strates promising results in the domain of face anti-
spoofing, particularly in capturing diverse spoofing cues
from both spatial and frequency domains. Through the inte-
gration of Vision Transformers, central difference convolu-
tion, and frequency-augmented representations, the model
successfully generalizes to a broad range of attack modal-
ities. Our hierarchical prediction heads further enhance
interpretability by simultaneously outputting group-level,
fine-grained, and binary live/spoof predictions. This modu-
lar design not only improves robustness but also facilitates
detailed spoof classification analysis [3, 19].

Despite these strengths, there are still challenges that
merit discussion. Most notably, while our model achieved
strong performance on the validation set, it yielded an Av-
erage Classification Error Rate (ACER) of 20.14% on the
final challenge leaderboard. This gap between local and
challenge results indicates the difficulty of generalizing
across unseen domains and spoof types, especially when
specific attacks were absent from the training and validation
sets [15, 33]. Such domain shift remains one of the central
open problems in face anti-spoofing, necessitating stronger
regularization or domain adaptation mechanisms.
The submission from Oculus (main organization: OPEN
SI), by Vincent Whannou de Dravo, achieved an ACER of
20.14%, an AUC of 87.44%, an ACC of 70.44%, and an
EER of 85.64%. When compared to other participating sys-
tems, the ACER value places the method in the mid-range of
the leaderboard. In terms of ACER ranking, the approach
is positioned around the eighth place among all submitted
solutions.

It is noteworthy that the system surpasses several en-
tries with higher ACER values, such as those from Vı́tor
da Silva (25.22%, GCD-UdL (main organization: Univer-
sity of Lleida ), Yunseo Lee (26.24%, LNL (main orga-
nization: Seoul Women’s University ), Jin He (29.49%,
asakatsu2025 (main organization: Shizuoka University),
Taechoon Kim (31.54%, Siren Shield (main organization:
Chung-Ang University), and Pongchi Yuen (32.81%, BUi-
S UniFAS (main organization: Hong Kong Baptist Univ.).
However, there remains a performance gap when com-
pared with the top-performing methods, such as Hao Yang
(0.144%, yxltya (main organization: Tencent YouTu Lab)
and Qi Zhang (0.178%, TeleAI (main organization: Tele-
AI).

The AUC score of 87.44% is competitive among sys-
tems within the same ACER range, indicating good separa-
bility between positive and negative samples. Nonetheless,
the EER value suggests that further refinement in threshold
calibration and detection sensitivity may improve the over-
all classification performance.

Overall, the Oculus (OPEN SI, NTNU, Fieldmade AS
and NOVITOM) system demonstrates promising perfor-
mance, with strengths in certain evaluation metrics, and
offers a solid foundation for further optimization towards
state-of-the-art ACER results.

Another consideration pertains to the impact of face de-
tection quality on downstream spoof classification. Our
approach relied on standard bounding box crops without
facial landmark alignment. Preliminary ablation experi-
ments revealed that integrating a robust face detector like
MTCNN [50] could potentially improve the alignment of
facial regions, leading to more consistent feature repre-
sentations across samples. MTCNN’s capacity for joint
face detection and alignment offers a strong candidate for



Table 1. Performance metrics of participating teams sorted by ACER (lowest is best). Best values for each metric are in bold.

Leader Name Team Affiliation ACER (%) AUC (%) ACC (%) EER (%) Awards

Hao Yang yxltya Tencent YouTu Lab 0.14 99.93 99.71 6.22 Co-winner
Qi Zhang TeleAI Tele-AI 0.18 99.99 99.64 7.34 Co-winner
Zehua Lan AKLab Akuvox 0.53 99.46 99.97 48.60 Runner-up
Denis Kondrann bkl zn ID R&D 2.10 99.79 98.93 4.60 –
Ming Liu cnsr OnePower 4.62 98.22 96.01 8.59 –
Efim Boiera FaceGuardians Incode 8.11 97.33 90.14 24.84 –
Mika Feng — Tohoku University 11.07 94.48 90.47 61.32 –
Vincent Whannou de Dravo Oculus OPEN SI 20.14 87.44 70.44 85.64 –
Vı́tor da Silva GCD-UdL University of Lleida 25.22 89.60 92.35 38.64 –
Yunseo Lee LNL Seoul Women’s University 26.24 82.72 86.20 28.96 –
Jin He asakatsu2025 Shizuoka University 29.49 73.05 61.22 84.60 –
Taechoon Kim Siren Shield Chung-Ang University 31.54 59.62 82.94 61.55 –
Pongchi Yuen BUi-S UniFAS Hong Kong Baptist Univ. 32.81 73.34 70.11 8.60 –

preprocessing, particularly in cross-domain settings where
pose and occlusion vary significantly. This direction aligns
with recent findings in biometric security [32] and could be
enhanced further by facial alignment-aware attention mech-
anisms.

Furthermore, incorporating MTCNN or similar detec-
tors into the pipeline could also reduce noise introduced by
poorly localized spoof regions and improve training signal
quality. Recent studies show that accurate alignment and
facial region selection play a pivotal role in enhancing the
discriminative capacity of frequency-domain features [23].
As highlighted in the work of Raja et al. [31], spatial align-
ment and temporal consistency are especially important for
video-based presentation attack detection and remain rele-
vant even in frame-level models like ours.

We also observed that pretraining the backbone model
significantly improved convergence and overall detection
accuracy compared to training from scratch. Moreover, the
inclusion of frequency-based cues was particularly useful
in detecting subtle spoofing patterns like print and digital
manipulations [55]. However, certain 3D physical attacks
(e.g., resin masks or silicone replicas) still presented classi-
fication difficulties due to limited representation in the train-
ing data. This reflects an imbalance in the available datasets
and suggests that our current model’s inductive bias favors
texture-based artifacts over structural distortions.

A key insight from our experiments is the importance of
high-quality and diverse data sampling. Some attack types
were underrepresented in the training split, making it harder
for the model to learn generalizable features. Future work
could benefit from targeted sampling strategies, hard nega-
tive mining, or even synthetic attack generation using diffu-
sion models [30, 43, 51]. Leveraging generative augmenta-
tion techniques may enable us to simulate underrepresented
attack categories and fine-tune the model for edge cases.

Lastly, while our fusion and attention modules con-
tributed to performance stability, their sensitivity to archi-
tectural hyperparameters suggests room for further tuning.

A promising extension would be to integrate multi-domain
training objectives or domain adversarial components, such
as gradient reversal layers, to explicitly mitigate distribu-
tional shift [7]. Likewise, self-supervised contrastive pre-
training could be adopted to enhance representation learn-
ing from limited annotated data [11].

Overall, our model provides a solid foundation for hier-
archical spoof detection and opens avenues for more inter-
pretable and scalable face anti-spoofing solutions. Integrat-
ing robust preprocessing pipelines, domain-adaptive train-
ing strategies, and architectural improvements offers a con-
crete path forward for deploying generalized anti-spoofing
systems in real-world biometric applications.

7. Conclusion
In this work, we introduced a hierarchical multi-modal ar-
chitecture for face anti-spoofing that integrates spatial, fre-
quency, and hierarchical prediction modules. The sys-
tem demonstrated competitive performance in the ChaLearn
challenge, achieving an ACER of 20.14% and an AUC of
87.44%. While these results placed our approach in the
mid-range of the leaderboard, the architecture showed clear
strengths in interpretability and robustness, surpassing sev-
eral competing methods in key evaluation metrics.

The discussion highlighted both the advantages and the
limitations of our approach. Notably, the model benefited
from frequency-based cues and pretraining strategies, but
still struggled with domain shifts and underrepresented at-
tack types. Furthermore, the absence of robust preprocess-
ing (e.g., alignment via MTCNN) introduced variability in
feature representation, underscoring the importance of reli-
able face detection in the pipeline.

Looking ahead, future work should explore domain
adaptation mechanisms, alignment-aware preprocess-
ing, and generative augmentation to bridge perfor-
mance gaps across unseen domains. The integration
of self-supervised pretraining and adversarial domain
generalization also presents promising directions. With



these extensions, the proposed architecture offers a
strong foundation for developing more generalizable,
interpretable, and practical face anti-spoofing systems
suitable for real-world biometric security applications.

References
[1] Akshay Bharati, Richa Singh, Mayank Vatsa, and Afzel

Noore. Detecting face spoofing with visual dynamics. In
ECCV, 2016. 4

[2] Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour
Hadid. Face anti-spoofing based on color texture analysis.
IEEE Transactions on Information Forensics and Security,
11(8):1818–1830, 2016. 3

[3] Wei Chen, Yun Liu, and Xilin Tan. Domain generalization
via frequency spectrum alignment for face anti-spoofing. In
CVPR, 2023. 6
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