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Abstract

Document Visual Question Answering (DocVQA) offers a
promising approach to extracting insights from large doc-
ument corpora. However, existing benchmarks focus on
evaluating multi-modal understanding within a single doc-
ument. This gap hinders the development of methods in-
tegrating scattered information across pages and docu-
ments. To address this, we introduce M3DocVQA, the
first benchmark designed for multi-modal, multi-page, and
multi-document understanding. M3DocVQA comprises
over 3,000 PDF documents with more than 40,000 pages,
offering a challenging environment where evidence is dis-
tributed across diverse sources and modalities. Along-
side the dataset, we introduce M3DocRAG, a baseline
method based on multi-modal retrieval-augmented gener-
ation. M3DocRAG flexibly handles both single and multi-
ple document settings while preserving critical visual infor-
mation, establishing a useful starting point for future work
in open-domain multi-modal document understanding.
Our experiments across three benchmarks (M3DocVQA,
MMLongBench-Doc, and MP-DocVQA) show that exist-
ing methods struggle with open-domain question answer-
ing over extensive, multi-modal documents. Although
M3DocRAG has shown promising performance, there is
large room for future improvement. We provide compre-
hensive ablation studies of different indexing, multi-modal
language models, and multi-modal retrieval models, along
with qualitative examples to guide future research.

1. Introduction

Document visual question answering (DocVQA) [16, 32,
42,44, 58] is a multi-modal task that answers textual ques-
tions by interpreting information contained within docu-
ment images. The capability of accurately and efficiently
answering questions across numerous, lengthy documents
with intricate layouts would greatly benefit many domains
such as finance, healthcare, and law, where document Al
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assistants can streamline the daily processing of large vol-
umes of documents, improving productivity and enabling
faster, more informed decision-making. However, existing
DocVQA benchmarks focus on evaluating question answer-
ing (QA) capabilities within a single document, so their
questions assume that a QA model already knows the con-
text of that specific document. For example, they have ques-
tions given a single-page CV and “In which year did the au-
thor publish their first journal article?” as shown in Fig. |
(left). This gap hinders the development of methods inte-
grating scattered information across pages and documents.

To address this limitation, we introduce M3DOCV QA
(Multi-modal ~ Multi-page  Multi-Document ~ Visual
Question Answering), an open-domain dataset that
significantly raises the challenge of DocVQA to answering
questions from a large document corpus (Sec. 2). As exem-
plified in Fig. 1 (right), M3DOCVQA supports scenarios
like reviewing a corpus of thousands of multi-page CVs and
answering a question like “Which candidate has published
in ICCV on document understanding?” By extending the
MultimodalQA dataset’s [55] closed-domain context to an
open-domain setting, M3DOCV QA introduces 2,441 ques-
tions spanning 3,368 PDF documents, which collectively
contain over 41,005 pages of diverse multi-modal content,
including text, images, and tables. This dataset presents
real-world challenges by requiring models to navigate
complex reasoning paths across pages and within various
types of document elements, better reflecting the intricacies
of document understanding.

As a useful starting point for M3DOCVQA, we
introduce M3DOCRAG, a baseline method based on
multi-modal retrieval-augmented generation (Sec. 3).
M3DOCRAG retrieves relevant document pages using a
multi-modal retrieval model, such as ColPali [19], and gen-
erates answers to questions from the retrieved pages using
a multi-modal language model (MLM), such as Qwen2-
VL [60]. M3DOCRAG operates in three stages: In (1)
document embedding (Sec. 3.1), we convert all document
pages into RGB images and extract visual embeddings (e.g.,
via ColPali) from the page images. In (2) page retrieval
(Sec. 3.2), we retrieve the top-K pages of high similarity
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Figure 1. Comparison of existing DocVQA datasets (left; e.g., DocVQA [44]) and our M3DOCVQA dataset (right). In contrast to
previous DocVQA datasets that have questions that are specific to a single provided PDF, M3D0OCV QA has information-seeking questions
that benchmark open-domain question answering capabilities across more than 3,000 PDF documents (i.e., 40,000+ pages).

with text queries (e.g., MaxSim operator for ColPali). For
the open-domain setting, we create approximate page in-
dices, such as inverted file index (IVF) [53, 68], for faster
search. In (3) question answering (Sec. 3.3), we conduct
visual question answering with MLM to obtain the final an-
swer. M3DOCRAG can flexibly handle DocVQA in both
closed domain (i.e., a single document) and open-domain
(i.e., alarge corpus of documents) settings.

We  benchmark  state-of-the-art methods and
M3DOCRAG baseline in three datasets: M3DOCVQA,
MMLongBench-Doc [42], and MP-DocVQA [58], which
cover both open-domain (Sec. 5.1) and closed-domain
(Sec. 5.2) DocVQA settings. We find existing methods
struggle with open-domain document understanding in
M3DocVQA, and M3D0OCRAG achieves the text-only
RAG baseline, but there remains large room for future
improvement. We also provide a comprehensive analysis
(Sec. 5.3) about different indexing, MLMs, and retrieval
components and qualitative examples where M3DOCRAG
can successfully handle various scenarios, such as when
the relevant information exists across multiple pages and
when answer evidence only exists in images.

2. M3DocVQA: A New Benchmark for
Multi-modal, Multi-page, Multi-document
Understanding

We present M3DOCV QA (Multi-modal Multi-page Multi-
Document Visual Question Answering), a new open-
domain DocVQA benchmark designed to evaluate the abil-
ity to answer questions using multi-modal information from
a large corpus of documents.

As illustrated in Fig. 1 and Table 1, existing DocVQA
datasets [16, 32, 42, 44, 58] primarily focus on evaluating
question answering within the context of a single document
(i.e., closed-domain). These datasets are not well-suited
for benchmarking open-domain visual question answer-
ing, where relevant information, often in multiple modal-
ities such as text, images, and tables, must be retrieved

Table 1. Comparison of recent DocVQA datasets with the pro-
posed M3DOCVQA dataset in terms of context size.

Datasets Multi-page  Multi-document ~ Avg. # pages per question
DocVQA [44] X X 1
MP-DocVQA [58] v X 83
DUDE [32] v X 5.7
MMVQA [16] v X 9.6
MMLongBench-Doc [42] v X 47.5
M3DOCVQA (ours) v v 41,005
Table 2. M3D0OCV QA statistics.
# Documents 3,368
# Pages 41,005
- Avg. # pages per document 12.2
# Questions 2,441

(Answer modalities)

- Text 1,048 (35.2%)
- Table 860 (42.9%)
- Image 533 (21.8%)
(Question hops)

- Single-hop 1,461 (59.9%)
- Multi-hop 980 (40.1%)
Avg. # characters for question 100.8
Avg. # characters for answer 7.1

from multiple documents. This limitation stems from their
questions being designed around specific content on cer-
tain pages within a single document. In real-world sce-
narios, users often seek answers that span across multiple
documents and modalities, making open-domain settings
critical. However, the questions in the existing DocVQA
datasets are not applicable in such an open-domain set-
ting. For example, a question from MP-DocVQA, such as
“What was the gross profit in the year 2009?” assumes
that the model already has access to specific information
within the document. M3DOCVQA challenges models in
an open-domain DocVQA setting, where they must navi-
gate a large ‘haystack’ of multi-modal documents and re-

6179



Our PDFs in M3DocVQA

( MultimodalQA (Talmor et al., 2021)
{ N
“Question”: “.”,
“Answer”: “.” 4
“supporting Contexts”: [ 1. Obtain URLs of
1 “rextr: ©., supporting contexts
“title”: “2012-13 La Liga”,
“url”: .
https: //en.wikipedia.org/wiki/2e12 [ 2- Renderin
-13 La Liga ... a web browser
1,
\, ~/ | 3. Create PDFs
\
[“Question": “.”, ] J
\,

Figure 2. Illustration of PDF collections in M3D0OCVQA. We first collect the URLs of all supporting contexts (Wikipedia documents) of
individual questions of MultimodalQA [55]. Then, we create PDF versions from their URLs by rendering them in a web browser.

trieve relevant information to generate the final answer. The
dataset consists of 2,441 questions spread across 3,368 PDF
documents, totaling 41,005 pages. Each question is sup-
ported by evidence found in one or more documents, span-
ning multiple modalities such as text, images, and tables,
capturing the complexity and diversity typical of real-world
documents. In Table 2, we provide detailed statistics of
M3DocVQA. Additionally, we provide the training split,
consisting of 24,162 Wikipedia PDFs. Although the docu-
ments in the training split were not utilized in our experi-
ments, they offer future researchers the opportunity to ex-
plore even larger-scale retrieval tasks or use the documents
for training models, further expanding the potential appli-
cations of M3DOCVQA.

To create M3DOCVQA, we extend the question-answer
pairs from a short-context VQA dataset to a more complex
setting that includes 1) PDF documents and 2) open-domain
contexts. Specifically, we use the question-answer pairs
from the development split' of MultimodalQA [55], where
models answer multi-hop questions based on short multi-
modal contexts (e.g., short text passages, 1-2 images, a ta-
ble) sourced from Wikipedia. We retrieved the URLs of all
Wikipedia documents used as context in any of the Multi-
modalQA development split questions. Then we generated
PDF versions of the Wikipedia pages by rendering them in a
Chromium web browser [57], using the Playwright Python
package [46]. These PDFs retain all vector graphics and
metadata, ensuring zoom-in functionality and maintaining
operational hyperlinks. In addition, no objects are split be-
tween different pages in the resulting PDFs.

While both M3DOCVQA and MultimodalQA [55]
share the goal of evaluating question answering given multi-
modal context, M3DOCVQA introduces a more demand-
ing scenario by requiring models to retrieve relevant in-
formation from a large set of documents, as opposed to
being provided with a short context. In MultimodalQA,

IThe test split of MultimodalQA [55] is unavailable, and previous
works have used the development split for comparison.
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models are given short, curated context (e.g., a paragraph
from a Wikipedia document) that directly contains the
information needed to answer the questions, simplifying
the task to reasoning within the provided material. In
contrast, M3DOCVQA presents an open-domain setting,
where models must retrieve information from a diverse col-
lection of 3,368 PDF documents before attempting to an-
swer any question. This not only requires handling large-
scale document retrieval but also dealing with multi-modal
content—text, images, and tables—distributed across multiple
documents. This key distinction highlights M3DOCVQA’s
ability to simulate real-world challenges, where the rele-
vant data is often spread across multiple sources. Conse-
quently, M3DOCVQA serves as a robust benchmark for
retrieval-augmented generation tasks in document under-
standing, pushing the boundaries of models to deal with
large-scale, multi-modal, and multi-document settings.

3. M3DOCRAG: A New Baseline for Open-
domain Document Understanding

As a useful starting point for M3DOCVQA, we propose
M3DOCRAG, a baseline method based on multi-modal
retrieval-augmented generation. As illustrated in Fig. 3,
M3DOCRAG operates in three stages: (1) encoding docu-
ment images into visual embeddings (Sec. 3.1), (2) retriev-
ing relevant document pages (Sec. 3.2), and (3) generating
answers to questions based on the retrieved pages (Sec. 3.3).
Below, we explain the problem definition and the details of
each stage.

Problem definition. We define a corpus of documents as
C = {Dy,Ds,...,Dy}, where M is the total number
of documents, and each document D; consists of a set of
pages, P;, represented as RGB images. From the docu-
ments in C, we construct a global set of page images P =
M
U;—1 P» = {p1,p2,...,pn}, where each p; represents an
individual page image, and NN is the total number of page
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Figure 3. Our M3DOCRAG framework (Sec. 3) consists of three stages: (1) document embedding (Sec. 3.1), (2) page retrieval (Sec. 3.2),
and (3) question answering (Sec. 3.3). In (1) document embedding, we extract visual embedding (with ColPali) to represent each page
from all PDF documents. In (2) page retrieval, we retrieve the top-K pages of high relevance (MaxSim scores) with text queries. In
an open-domain setting, we create approximate page indices for faster search. In (3) question answering, we conduct visual question
answering with multi-modal LM (e.g. Qwen2-VL) to obtain the final answer.

images across all documents in C' (i.e., N = Z£1 | ;).
The objective of M3DOCRAG is to accurately answer a
given question ¢ using the multi-modal information avail-
able in the corpus of documents C'. First, we identify P,
the top K (< N) pages that are most relevant to answering
the query ¢ from the global page set P. Then, we obtain the
final answer with a question answering model that takes re-
trieved page images Pf- and query ¢ as inputs. The problem
of question answering can be categorized into two settings
with different document context sizes:

Closed-domain question answering — The query ¢
should be answerable from a given single document D;.
The retrieval model outputs the top K relevant page images
P, from the page images P; of the document D;.

Open-domain question answering — The query ¢ may
require information from single or multiple documents
within the entire document corpus C. The retrieval model
outputs the top K relevant page images P from the entire
set of page images P.

3.1. Document Embedding

In M3DOCRAG, both textual query ¢ and page images P
are projected into a shared multi-modal embedding space
using ColPali [19]. ColPali is a multi-modal retrieval model
based on a late interaction mechanism, which encodes the
text and image inputs into unified vector representations and
retrieves the top K most relevant images. ColPali adopts
both training objective and similarity scoring from Col-
BERT [30, 51], which utilizes a shared architecture to en-
code either textual or visual inputs. In our framework, each
page p C P; of a document D; is treated as a single image
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with fixed dimensions (width x height).

From an image of a page, we extract a dense visual em-
bedding E? € R" %4, where n" represents the number of
visual tokens per page (which remains constant across all
pages), and d denotes the embedding dimension (e.g., 128).
For a textual query ¢, we similarly obtain an embedding
E? € R"" %4 where n4 is the number of text tokens.

For efficiency, we treat each page of a document inde-
pendently. This allows us to flatten all pages in the docu-
ment corpus C' into a single page-level embedding tensor:
EC € RVxn"xd \here N represents the total number of
pages in the entire document corpus, n” is the number of
visual tokens per page, and d is the embedding dimension.
M3DOCRAG can flexibly adapt to different retrieval set-
tings, such as a single-page document (N = 1), a single
document with multiple pages (e.g. N = 100), and a large
corpus of multi-page documents (e.g. N > 1, 000).

3.2. Page Retrieval

The relevance between the query ¢ and the page p is com-
puted using the MaxSim score s(q,p):

nd

Z max Ef - f _
7 i€n”] o '
where - denotes the dot product, and E; . € R denotes the
i-th row (vector) of the embedding matrix F € R™*4 We
then identify P}, the top K (< N) pages that are most
relevant to answering the query ¢; i.e. we search K pages
scoring highest s(q, p). That is,

P = {p{,p5,...,p%} = argtop-k,c p 5(q, p)



Approximate indexing for open-domain page retrieval.
Searching pages over in a large document corpus can be
time-consuming and computationally expensive. When a
faster search is desired, we create page indices offline by
applying approximate nearest neighborhood search, based
on Faiss [18, 27]. We use exact search for closed-domain
page retrieval and employ inverted file index (IVF) [53, 68]
(IVFFlat in Faiss) for an open-domain setting, which
could reduce page retrieval latency from 20s/query to less
than 2s/query when searching across 40K pages. See
Sec. 5.3 for a detailed comparison of speed-accuracy trade-
offs across different indexing methods.

3.3. Question Answering

We run visual question answering by giving the text query
¢ and retrieved page images Pj- to a multi-modal language
model to obtain the final answer. For this, we employ multi-
modal language models (e.g. Qwen2-VL [60]) that consist
of a visual encoder Enc'*® and a language model LM. The
visual encoder takes K retrieved page images P as inputs
and outputs visual embeddings (different from ColPali en-
coder’s outputs). The language model takes the visual em-
beddings and text embeddings of query ¢ as inputs and out-
puts the final answer a in an autoregressive manner:

a =LM(Enc"*(PL), q).
4. Experiment Setup

Datasets. We benchmark M3DOCRAG on three PDF
document understanding datasets that represent different
scenarios: (1) M3DoOCVQA (Open-domain DocVQA);
(2) MMLongBench-Doc [42] (Closed-domain DocVQA);
(3) MP-DocVQA [58] (Closed-domain DocVQA). In
M3DocVQA, M3DoOCRAG processes over 3,000 PDFs,
totaling more than 40,000 pages. For MP-DocVQA, models
handle a single PDF with up to 20 pages for each question.
For MMLongBench-Doc, models handle a single PDF with
up to 120 pages for each question.

Evaluation Metrics. For M3DoOCVQA, we follow
the evaluation setup of MultimodalQA [55]. For
MMLongBench-Doc [42] and MP-DocVQA [58], we fol-
low their official evaluation setups. For M3DOCVQA, we
evaluate answer accuracy with exact match (EM) and F1.
For MMLongBench-Doc, we extract short answers with
GPT4o [47] from the model outputs and report answer ac-
curacy with generalized accuracy (based on a rule-based
evaluation script covering different answer types) and F1
score. For MP-DocVQA, we report answer accuracy with
ANLS [8] and page retrieval with accuracy (same as re-
call@1, as there is a single page annotation for each ques-
tion) by submitting the generation results to the test server.’

zhttps://rrc.cvc.uab.eg/?ch:lV&ccm:tasks
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Models. We mainly experiment with the ColPali v1 [19]
retrieval model and various recent open source multi-modal
LMs with <10B parameters, including Idefics 2 [34],
Idefics 3 [33], InternVL 2 [12], and Qwen2-VL [60]. We
also experiment with a text-based RAG pipeline by combin-
ing recent widely used text retrieval and language models:
CoIBERT v2 [51] and Llama 3.1 [38]. For reproducible
evaluation, we use deterministic greedy decoding for an-
swer generation. We compare these multi-modal and text-
based RAG pipelines with recent top entries with compara-
ble parameters (<10B) reported on the leaderboards.

Other implementation details. We use PyTorch [48,
49], Transformers [61], and FlashAttention-2 [14] libraries
for running models. We use Tesseract [54] for OCR
in text RAG baselines, following Ma et al. [42]. We
use Faiss [18, 27] for document indexing. We use the
pdf2image [6] library to convert each PDF page into an
RGB image with a resolution of DPI=144. While all PDF
pages in M3DOCVQA have the same size — 8.5 (width)
x 11 (height) in inches (i.e. US letter size) and 1224
(width) x 1584 (height) in pixels, in MP-DocVQA and
MMLongBench-Doc datasets, pages have slightly different
sizes. To handle this, we resize page images to the most
common image size within the dataset — 1700 (width) x
2200 (height) for MP-DocVQA, and to the most common
image size within each PDF document for MMLongBench-
Doc. All experiments are conducted with a single H100
80GB GPU. We provide up to 4 pages as visual inputs to
our multi-modal LMs, the maximum number of images we
could fit in the single GPU.

5. Results and Key Findings

In the following, we describe experiment results of
M3DOCRAG and baselines in both open-domain (Sec. 5.1)
and closed-domain settings (Sec. 5.2). Next, we provide ab-
lation studies (Sec. 5.3) about different page indexing strate-
gies, multi-modal LMs, and retrieval models. Lastly, we
show a qualitative example (Sec. 5.4) where M3DOCRAG
can tackle M3DOCVQA questions whose answer source
exists in the visual modality. Please also see the appendix
for additional qualitative examples.

5.1. Open-domain DocVQA

Multi-modal RAG outperforms text RAG, especially on
non-text evidence sources. Table 3 shows the evalua-
tion results on M3DOCVQA. As a model needs to find
relevant documents from 3,000+ PDFs for each question,
we focus solely on RAG pipelines. We observe that our
M3DoOCRAG (ColPali + Qwen2-VL 7B) outperforms text
RAG (ColBERT v2 + Llama 3.1 8B), across all different
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Table 3. Open-domain DocVQA evaluation results on M3DOCVQA. The scores are based on F1, unless otherwise noted.

Method # Pages Evidence Modalities Question Hops Overall
Image Table Text Single-hop Multi-hop EM  Fl

Text RAG (w/ ColBERT v2)

Llama 3.1 8B 1 8.3 15.7  29.6 253 12.3 154 20.0

Llama 3.1 8B 2 7.7 16.8 317 27.4 12.1 15.8 21.2

Llama 3.1 8B 4 7.8 21.0 341 29.4 15.2 17.8 237

M3DOCRAG (w/ ColPali)

Qwen2-VL 7B (Ours) 1 25.1 27.8  39.6 37.2 25.0 279 323

Qwen2-VL 7B (Ours) 2 26.8 304 421 41.0 25.2 299 34.6

Qwen2-VL 7B (Ours) 4 247 304 412 43.2 26.6 314 36.5

Table 4. Closed-domain DocVQA evaluation results on MMLongBench-Doc. We report the generalized accuracy (ACC) across five
evidence source modalities: text (TXT), layout (LAY), chart (CHA), table (TAB), and image (IMG), and three evidence locations: single-
page (SIN), cross-page (MUL), and unanswerable (UNA). The scores from non-RAG methods are from Ma et al. [42].

Method # Pages ‘ Evidence Modalities ‘ Evidence Locations ‘ Overall
| TXT LAY CHA TAB IMG | SIN MUL UNA | ACC FI
Text Pipeline
LMs
ChatGLM-128k [5] upto 120 | 234 12.7 9.7 10.2 12.2 18.8 11.5 18.1 16.3 14.9
Mistral-Instruct-v0.2 [26] up to 120 19.9 134 10.2 10.1 11.0 16.9 11.3 24.1 16.4 13.8
Text RAG
ColBERT v2 + Llama 3.1 1 20.1 14.8 12.7 174 7.4 21.8 7.8 41.3 21.0 16.1
ColBERT v2 + Llama 3.1 4 23.7 17.7 14.9 24.0 119 | 25.7 12.2 38.1 23,5 197
Multi-modal Pipeline
Multi-modal LMs
DeepSeek-VL-Chat [39] up to 120 7.2 6.5 1.6 52 7.6 52 7.0 12.8 7.4 54
Idefics2 [34] up to 120 9.0 10.6 4.8 4.1 8.7 7.7 7.2 5.0 7.0 6.8
MiniCPM-Llama3-V2.5 [62,66] upto 120 | 11.9 10.8 5.1 5.9 12.2 9.5 9.5 45 8.5 8.6
InternLM-XC2-4KHD [17] up to 120 9.9 14.3 7.7 6.3 13.0 12.6 7.6 9.6 10.3 9.8
mPLUG-DocOwl 1.5 [23] up to 120 8.2 8.4 2.0 34 9.9 7.4 6.4 6.2 6.9 6.3
Qwen-VL-Chat [4] up to 120 55 9.0 54 2.2 6.9 52 7.1 6.2 6.1 54
Monkey-Chat [37] up to 120 6.8 7.2 3.6 6.7 9.4 6.6 6.2 6.2 6.2 5.6
M3DoCRAG
ColPali + Idefics2 (Ours) 1 10.9 11.1 6.0 7.7 15.7 154 7.2 8.1 11.2 11.0
ColPali + Qwen2-VL 7B (Ours) 1 257 210 18.5 16.4 19.7 | 30.4 10.6 5.8 18.8  20.1
ColPali + Qwen2-VL 7B (Ours) 30.0 235 18.9 20.1 20.8 | 324 14.8 5.8 21.0 226

evidence modalities / question hops / # pages. The perfor-
mance gap is especially big when the evidence involves im-
ages, underscoring that M3DOCRAG addresses the infor-
mation loss over non-textual content by text-only pipelines.
We also notice that providing more retrieved pages as con-
text generally increases the performance of both text RAG
and M3DOCRAG (using the top 4 pages yields higher per-
formance than using only the top 1 or 2 pages).

5.2. Closed-domain DocVQA

Multi-modal RAG boosts long document understanding
of MLMs. In MMLongBench-Doc, the models must han-
dle a long PDF document (up to 120 pages) for each ques-
tion. Since many multi-modal LMs have limited context
length, Ma et al. [42] employed a concatenation strategy

that combines all screenshot pages into either 1 or 5 im-
ages and inputs these concatenated images to multi-modal
LMs. Table 4 shows that M3DOCRAG with Idefics2 sur-
pass Idefics2 without RAG, as well as all previous multi-
modal entries. In addition, M3DOCRAG with Qwen2-VL
achieves the best scores in overall F1 and most evidence
modality/page settings. This demonstrates the effective-
ness of multi-modal retrieval over handling many pages
by concatenating low-resolution images. As observed in
M3DoCVQA experiments, we also notice that providing
more retrieved pages as context generally increases the per-
formance of both text RAG and M3DOCRAG (using the
top 4 pages yields higher performance than using only the

top 1 page).
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Table 5. Closed-domain DocVQA evaluation results on MP-
DocVQA. The RAG methods retrieve a single page to the down-
stream QA models.

Answer Accuracy Page Retrieval

Method ANLS R@1
Multi-modal LMs

Arctic-TILT 0.8B [10] 0.8122 50.79
GRAM [9] 0.8032 19.98
GRAM C-Former [9] 0.7812 19.98
ScreenAl 5B [3] 0.7711 77.88
Text RAG

CoIBERT v2 + Llama 3.1 8B 0.5603 75.33
M3DOCRAG

ColPali + Qwen2-VL 7B (Ours) 0.8444 81.05

M3DOCRAG achieves the state-of-the-art performance
in MP-DocVQA. In MP-DocVQA, the models must han-
dle a PDF document of up to 20 pages for each ques-
tion. Table 5 presents the top-performing entries in the
MP-DocVQA test split leaderboard, comparing text-based
and multi-modal RAG pipelines. While the text RAG (Col-
BERT v2 + Llama 3.1) falls short compared to existing ap-
proaches, all multi-modal RAG pipelines outperform their
text-based counterpart. Notably, the M3DOCRAG delivers
the state-of-the-art results on MP-DocVQA.

5.3. Additional Analysis of M3DOCRAG

Different page indexing: speed and accuracy. In Ta-
ble 6, we analyze the speed and accuracy of M3DOCRAG
pipeline with different document embedding indexing
methods. While the naive indexing with exact search
(FlatIP) is slow (21s per query), we find that us-
ing approximate indexing such as inverted file [53, 68]
(IVEFF1lat) and product quantization [28] (IVEPQ) can re-
tain most of the accuracy, while making the search signifi-
cantly faster (< 2s per query). Weuse FlatIP+IVFFlat
indexing by default, and users can choose appropriate in-
dexing methods depending on their requirements.

Different QA models. In Table 7, we compare four
different QA models in the M3DOCRAG framework:
Idefics2 8B [34], Idefics3 8B [33], InternVL2 8B [12], In-
ternVL2.5 [13] and Qwen2-VL 7B [60]. The Qwen2-VL
7B model outperforms other MLMs in all three bench-
marks. Thus, we use the model as the default MLM com-
ponent for M3DOCRAG.

Different retrieval models. In Table 8, we compare
different text-only (ColBERTv2 [51]) and multi-modal
(CLIP [50], DSE [41], VisRAG [65], and ColPali) re-
trieval models on M3D0OCVQA. ColBERTV2 and ColPali
use late-interaction [30] score calculation, while DSE and
CLIP use dot-product scores. We find that ColPali achieves
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Table 6. Speed-accuracy tradeoff with different indexing strategies
on M3DoCVQA. Backbones: ColPali + Qwen2-VL 7B.

# Pages Indexing Latency (s) ()  Accuracy (1)
Retrieval VQA EM F1
1 FlatIP 21.0 1.1 289 337
1 FlatIP + IVFFlat 1.8 1.1 279 323
1 FlatIP + IVFPQ 0.2 1.1 259 303
2 FlatIP + IVFFlat 1.8 24 299 346
2 FlatIP + IVFPQ 0.2 24 290 335
4 FlatIP + IVFFlat 1.8 48 314 365
4 FlatIP + IVFPQ 0.2 48 299 347
Table 7. Comparison of different QA models within RAG

pipelines, evaluated on M3DOCVQA.

QA models M
F11
M3DOCRAG w/ ColPali
Idefics2 8B 27.8
Idefics3 8B 31.8
InternVL 2 8B 30.9
InternVL 2.5 8B 32.1
Qwen2 VL 7B 323
Qwen2.5 VL 7B 29.1
Text RAG w/ ColBERTV2
Llama 3.1 18.8
InternVL 2.5 (text only) 17.5
Qwen2 VL 7B 19.5
Qwen2.5 VL 7B 20.9

Table 8. Comparison of different retrieval models on
M3DocVQA. QA model=InternVL 2.5. Batch size=1. Preci-
sion=bfloat16. Measured on a single A6000 48GB GPU.
. Embedding Time Embed/Index Storage  Accuracy
Retrievers
(s/page) | (KB/page) | F1 1
Text RAG w/ OCR
ColBERTV2 2.21 60.6/118.7 17.5
M3DocCRAG
CLIP (ViT-L/14) 0.04 1.7/3.1 23.8
DSE (Qwen2-2B) 0.15 3.2/6.2 26.6
VisRAG 0.37 4.7/9.2 24.7
ColPali 0.08 227.8/530.4 32.1

the best performance in M3D0OCV QA, even outperforming
DSE trained on Wikipedia document screenshots, showing
the effectiveness of late-interaction approaches for multi-
modal document retrieval. Thus, we use ColPali as the de-
fault retrieval model for M3DOCRAG. Users should note
that late-interaction approaches (ColBERTv2 and ColPali)
requires more storage requirements than dot-product ap-
proaches (CLIP, DSE, and VisRAG), as they store multiple
vectors instead of a single vector per document.



Question: “SIE Bend Studio's 2019 game cover has man leaning on what?”

ColPali + Qwen2-VL 7B: “motorcycle”

Top 2 pages retrieved by ColPali

Days Gone

Figure 4. Qualitative example of M3DOCRAG on M3DOCVQA.
Image regions relevant to the question/answer are highlighted with
orange boxes. The answer is only stored visually within the game
logo, where a man is leaning on a motorcycle. Best viewed by
zooming in for details. See additional examples in appendix.

Document as pixels vs. text. We compare pixel-based
and text-based representations of documents using the same
MLM, InternVL 2.5, which can optionally take image in-
put. The blue rows of Table 7 show that the pixel-based
representation outperforms the text-based representation of
documents. Table 8 also shows that text embedding (based
on OCR) from PDFs is much slower than visual embedding
due to additional costs incurred by the OCR model.

5.4. Qualitative Examples

we provide qualitative examples of M3DOCRAG (ColPali
+ Qwen2-VL 7B)’s question answering results on several
M3DocVQA examples. In Fig. 4, the answer information
is only visually stored within the game logo (‘man is leaning
on a motorcycle’), and M3DOCRAG could find the infor-
mation. Please see the appendix for additional qualitative
examples where M3DOCRAG can tackle M3DoCVQA
questions whose answer source exists in various modalities.

6. Related Work

Document visual question answering. Mathew et al.
[44] proposed document visual question answering
(DocVQA) task, where a model extracts information
from documents by treating them as images, as in
generic visual question answering [1]. Most research
on DocVQA focuses on handling a single-page docu-
ment [23, 24, 31, 35, 43, 44, 56, 59, 64], and it has
been now a common practice to include the single-page
DocVQA [44] as a part of the image understanding eval-
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uation suite among recent MLMs [7, 12, 21, 33, 47, 60].
Several recent works propose DocVQA benchmarks with
multi-page documents [15, 16, 32, 42, 58]. However, all
previous DocVQA benchmarks have focused on handling
questions in the context of a specific document, such as
“What was the gross profit in the year 2009?”. While
this is probably due to the limited context length of the
backbone multi-modal LMs, this does not reflect real-world
scenarios, where users often ask questions that require
information across different pages/documents. We address
the limitation by proposing M3DOCV QA that benchmarks
open-domain document understanding capabilities from
over 3,000 documents.

Retrieval-augmented generation. Retrieval-augmented
generation (RAG) [36] has emerged as a hybrid approach
combining retrieval systems with generative models to im-
prove the quality and relevance of generated content [20].
RAG has been widely studied for open-domain question an-
swering [2, 22, 25, 29, 40, 67], where the community has
well-established practices for text-based pipelines. A line of
work in VQA studies RAG on visual questions that require
world knowledge [11, 45, 52, 63], but their retrieval context
is usually generic images and/or short text snippets and does
not cover DocVQA settings. To the best of our knowledge,
no prior work has explored RAG for multi-modal docu-
ment understanding only with multi-modal models (instead
of using OCR methods). Our M3DOCRAG tackles open-
domain question answering over documents with complex
multi-modal contexts.

7. Conclusion

We introduce M3DOCVQA, the first benchmark that eval-
uates open-domain multi-modal document understanding
capabilities. In contrast to previous DocVQA datasets
that evaluate question answering within the context of sin-
gle document, M3DOCVQA offers a challenging ques-
tion answering task where the answers exist among 3,000+
PDF documents, totaling more than 40,000 pages, con-
taining various modalities such as images, text, and ta-
bles. We also introduce M3DOCRAG, a multi-modal
RAG baseline that flexibly accommodates various doc-
ument contexts, question hops and evidence modalities.
We benchmark state-of-the-art methods and M3DOCRAG
baseline in three datasets: M3DOCVQA, MP-DocVQA,
and MMLongBench-Doc. Existing methods struggle with
open-domain document understanding in M3DOCVQA,
and M3DOCRAG achieves the text-only RAG baseline, but
there remains large room for future improvement. We hope
our work encourages future advancements in multi-modal
frameworks for document understanding, paving the way
for more robust, scalable, and practical solutions in real-
world applications.
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